The Most Inn vative Institute

 ResconanceTime : 3 Hrs. समय : 3 घंटे
Max. Marks : 180 अधिकतम अंक : 180
Please read the instructions carefully. You are allotted 5 minutes specifically for this purpose. कृपया इन निर्देशों को ध्यान से पढ़ें। आपको 5 मिनट विशेष रूप से इस काम के लिए दिये गये हैं।

INSTRUCTIONS (निर्देश)

A. General सामान्य :

1. This booklet is your Question Paper. Do not break the seal of the booklet before being instructed to do so by the invigilators.
यह पुस्तिका आपका प्रश्नपत्र है। इसकी मुहर तब तक न तोडें जब तक निरीक्षकों के द्वारा इसका निर्देश न दिया जाये।
2. The question paper CODE is printed on the left hand top corner of this sheet and on the back cover page of this booklet.
प्रश्न-पत्र का कोड (CODE) इस पृष्ठ के ऊपरी बाएँ कोने और इस पुस्तिका के पिछले पृष्ठ पर छपा है।
3. Blank spaces and blank pages are provided in the question paper for your rough work. No additional sheets will be provided for rough work.
कच्चे कार्य के लिये खाली पृष्ठ और खाली स्थान इस पुस्तिका में ही है। कच्चे कार्य के लिए कोई अतिरिक्त कागज नहीं दिया जायेगा।
4. Blank papers, clipboards, log tables, slide rules, calculators, cameras, cellular phones, pagers and electronic gadget of any kind are NOT allowed inside the examination hall.
कोरे कागज, क्लिप बोर्ड, लॉग तालिका, स्लाइडरूल, कैल्कुलेटर, कैमरा, सेलफोन, पेजर और किसी प्रकार के इलेक्ट्रॉनिक उपकरण परीक्षा कम में अनुमती नहीं है।
5. Write your Name and Roll number in the space provided on the back cover of this booklet. इस पुस्तिका के पिछले पृष्ठ पर दिए गए स्थान में अपना नाम और रोल नम्बर लिखिए।
6. Answers to the questions and personal details are to be filled on an Optical Response Sheet, which is privided separately. The ORS is a doublet of two sheets - upper and lower, having identical layout. The upper sheet is a machine-gradable Objective Response Sheet (ORS) which will be collected by the invigilator at the end of the examination. The upper sheet is designed in such a way that darkening the bubble with a ball point pen will leave an identical impression at the corresponding place on the lower sheet. You will be allowed to take away the lower sheet at the end of the examination. (see Figure-1 on the back cover page for the correct way of darkening the bubbles for valid answer.)
प्रश्नों के उत्तर और अपनी व्यक्तिगत जानकारियाँ एक ऑप्टीकल रिस्पांस शीट, जो अलग से दिया जाएगा, पर भरी जायेगी। ओ.आर.एस. समरूप विन्यास वाली ऊपरी और निचली दो शीटों का युग्म है। ऊपरी पृष्ठ मशीन-जाँच ऑब्जेक्टिव रिस्पासं शीट (ओर.आर.एम., ORS) है, जो निरीक्षक द्वारा वापस ले ली जायेगी। ऊपरी पृष्ठ इस प्रकार डिजाईन किया गया है कि बुलबुले को पेन से काला करने पर यह निचले पृष्ठ के संगत स्थान पर समरूप निशान छोड़ता है। आप निचले पृष्ठ को परीक्षा समाप्ति पर अपने साथ ले जा सकते हैं। (देखें : पिछले पृष्ठ आवरण पर चित्र-1 वैध उत्तर के लिए बुलबुले को भरने का सही तरीका)
7. Use a black ball point pen only to darken the bubbles on the upper original sheet. Apply sufficient pressure so that the impression is created on the lower sheet. See Figure-1 on the back cover page for appropriate way of darkening the bubbles for valid answers.
ऊपरी मूल पृष्ठ के बुलबुलों (BUBBLES) को केवल काले बॉल प्वाइंट कलम से काला करें। इतना दबाव डालें कि निचले डुप्लीकेट पृष्ठ पर निशान बन जाये। (देखें : पिछले पृष्ठ आवरण पर चित्र-1 वैद्य उत्तर के लिए बुलबुले को भरने का सही तरीका)

Resonance Eduventures Pvt. Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Tel. No. : 0744-3192222, 3012222, 3022222 | Toll Free : 18002002244 | To Know more : sms RESO at 56677 Website : www.resonance.ac.in | Email : contact@resonance.ac.in
8. DO NOT TAMPER WITH/MULTIPLE THE ORS OR THIS BOOKLET.

ओ.आर.एस. (ORS) या इस पुस्तिका में हेर-फेर/विकृति न करें।
9. On breaking the seal of the booklet check that it contains all the $\mathbf{6 0}$ questions and corresponding answer choices are legible. Rad carefully the instruction printed at the beginning of each section.
इस पुस्तिका की मुहर तोड़ने के पश्चात् कृपया जाँच लें कि इसमें सभी 60 प्रश्न और उनके उत्तर विकल्प ठीक से पढ़े जा सकते हैं। सभी खंडों के प्रारंभ में दिये हुए निर्देशों को ध्यान से पढ़ें।
B. Filling the right part of the ORS ओर.आर.एस (ORS) के दाएँ भाग को भरना।
10. The ORS also has a CODE printed on its left and right parts.

ओ.आर.एस के दाएँ और बाएँ भाग में भी कोड छपे हुए हैं।
11. Verify that the CODE printed on the ORS (on both the left and right parts) is the same as that on this booklet and put your signature in the Box designated as R4.
सुनिश्चित करें कि ओ.आर.एस. (बाएँ और दाएँ दोनों भागों) पर छपा कोड इस पुस्तिका पर छपे कोड के समान ही है और निर्दिष्ट बॉक्स R4 में अपने हस्ताक्षर करें।
12. IF THE CODES DO NOT MATCH, ASK FOR A CHANGE OF THE BOOKLET/ORS AS APPLICABLE.

यदि कोड भिन्न हैं तो इस पुस्तिका/ओ.आर.एस. को यथानुसार बदलने की माँग करें।
13. Write your Name, Roll No. and the name of centre and sign with pen in the boxes provided on the upper sheet of ORS. Do not write any of the anywhere else. Darken the appropriate bubble UNDER each digit of your Roll No. in such way that the impression is created on the bottom sheet. (see example in Figure 2 on the back cover)
अपना नाम, रोल नं. और परीक्षा केन्द्र का नाम ओ.आर.एस. के ऊपरी पृष्ठ में दिये गये खानों में कलम से भरें और अपने हस्ताक्षर करें। इनमें से कोई भी जानकारी कही और न लिखें। रोल नम्बर के हर अंक के नीचे अनुरूप बुलबुले (BUBBLE) को इस तरह से काला करें कि निचले पृष्ठ पर भी निशान बन जाए। (देखें उदाहरण : पिछले पृष्ठ पर चित्र-2)
C. Question Paper Format प्रश्न-पत्र का प्रारूप

The question paper consists of three parts (Physics, Chemistry and Mathematics). Each part consists of three sections.
इस प्रश्न-पत्र के तीन भाग (भौतिक विज्ञान, रसायन विज्ञान और गणित) हैं। हर भाग के तीन खंड हैं।
14. Section 1 contains 10 multiple choice questions. Each question has four choices (A), (B), (C) and (D) out of which ONE is correct.

खंड 1 में 10 बहुविकल्प प्रश्न हैं। हर प्रश्न में चार विकल्प $(A),(B),(C)$ और (D) हैं जिनमें से एक सही हैं।
15. Section 2 contains 3 paragraphs each describing theory, experiment and data etc. Six questions relate to three paragraphs with two questions on each paragraph. Each question pertaining to a partcular passage should have only one correct answer among the four given choices (A), (B), (C) and (D).
खण्ड 2 में सिद्धान्तों, प्रयोगों और आँकड़ों आदि को दर्शाने वाले $\mathbf{3}$ अनुच्छेद हैं। तीन अनुच्छेदों से संबंधित छ: प्रश्न हैं, जिनमें से हर अनुच्छेद पर दो प्रश्न हैं। किसी भी अनुच्छेद में हर प्रश्न के चार विकल्प $(A),(B),(C)$ और (D) हैं जिनमें से केवल एक ही सही है।
16. Section 3 contains 4 multiple choice questions. Each question has two lists (list-1: P, Q, R and S; List-2: 1, 2, 3 and 4). The options for the correct match are provided as (A), (B), (C) and (D) out of which ONLY ONE is correct.
खंड 3 में 4 बहुविकल्प प्रश्न हैं। प्रत्येक प्रश्न में दो सूचियाँ (सूची-1: P, Q, R और S; सूची-2:1,2,3 और 4) है। सही मिलान के लिए विकल्प $(A),(B),(C)$ और (D) हैं जिनमें से केवल एक सही है।
D. Marking Scheme अंकन योजना
17. For each question in Section 1, 2 and 3 you will be awarded 3 marks if you darken the bubble corresponding to the correct answer and zero mark if no bubble is darkened. In all other cases, minus one (-1) mark will be awarded.
खण्ड 1,2 और 3 के हर प्रश्न में केवल सही उत्तर वाले बुलबुले को काला करने पर 3 अंक और कोई भी बुलबुला काला नहीं करने पर शून्य (0) अंक प्रदान किए जायेगें। अन्य सभी र्थितियों में ऋणात्मक एक $(\mathbf{- 1)}$ अंक प्रदान किया जायेगा।

Resonance Eduventures Pvt. Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

PART - I : PHYSICS

SECTION-1 : (One one options correct Type)

This section contains 10 multiple choice questions. Each questions has four choices (A), (B), (C) and (D) out of which Only ONE option is correct

> खण्ड-1 : (केवल एक सही विकल्प प्रकार)

इस खण्ड में 10 बहुविकल्प प्रश्न हैं। प्रत्येक प्रश्न में चार विकल्प $(A),(B),(C)$ और (D) हैं, जिनमें से केवल एक सही है।

1. A glass capillary tube is of the shape of a truncated cone with an apex angle α so that its two ends have cross sections of different radii. When dipped in water vertically, water rises in it to a height h, where the radius of its cross section is b. If the surface tension of water is S, its density is ρ, and its contact angle with glass is θ, the value of h will be (g is the acceleration due to gravity)
छिन्न शंकु (truncated cone) की आकृति वाली काँच की एक केशनली, जिसकी शीर्ष कोण α है, के दो अंत सिरों के अनुप्रस्थ काट की त्रिज्याएँ भिन्न है। केशनली को पानी में उर्ध्वतः डुबाने पर केशनली में पानी h ऊँचाई तक चढ़ जाता है, जहाँ इसकी अनुप्रस्थ काट की त्रिज्या b हैं यदि पानी का पृष्ठ तनाव (surface tension) S, घनत्व ρ तथा काँच के साथ इसका स्पर्श कोण 0 हो तब h का मान है (g गुरूत्वीय त्वरण है)

(A) $\frac{2 S}{b \rho g} \cos (\theta-\alpha)$
(B) $\frac{2 \mathrm{~S}}{\mathrm{~b} \rho \mathrm{~g}} \cos (\theta+\alpha)$
(C) $\frac{2 \mathrm{~S}}{\mathrm{~b} \rho \mathrm{~g}} \cos (\theta-\alpha / 2)$
(D) $\frac{2 \mathrm{~S}}{\mathrm{~b} \rho \mathrm{~g}} \cos (\theta+\alpha / 2)$

Ans. (D)
Sol. Using geometry ज्यामिति के उपयोग से : $\frac{\mathrm{b}}{\mathrm{R}_{\mathrm{e}}}=\cos \left(\theta+\frac{\alpha}{2}\right)$

Using Pressure method दाब विधि से : $P_{0}-\frac{2 S}{R_{c}}+h \rho g=P_{0}$

$$
\Rightarrow \mathrm{h}=\frac{2 \mathrm{~S}}{\mathrm{R}_{\mathrm{e}} \rho \mathrm{~g}}=\frac{2 \mathrm{~S}}{\mathrm{~b} \rho \mathrm{~g}} \cos (\theta+\alpha / 2)
$$

Resonance Eduventures Pvt. Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Tel. No. : 0744-3192222, 3012222, 3022222 | Toll Free : 18002002244 | To Know more : sms RESO at 56677 Website : www.resonance.ac.in | Email : contact@resonance.ac.in
2. A planet of radius $\mathrm{R}=\frac{1}{10} \times$ (radius of Earth) has the same mass density as Earth. Scientists dig a well of depth $\frac{R}{5}$ on it and lower a wire of the same length and of linear mass density $10^{-3} \mathrm{kgm}^{-1}$ into it. If the wire is not touching anywhere, the force applied at the top of the wire by a person holding it in place is (take the radius of Earth $=6 \times 10^{6} \mathrm{~m}$ and the acceleration due to gravity on Earth is $10 \mathrm{~ms}^{-2}$)
पृथ्वी के समान द्रव्यमान घनत्व वाले एक ग्रह की त्रिज्या $R=\frac{1}{10} \times$ (पृथ्वी की त्रिज्या) है। वैज्ञानिक इस ग्रह में $\frac{R}{5}$ गहराई वाला एक कुआँ खोदते है और इसमें उतनी ही लम्बाई तथा $10^{-3} \mathrm{kgm}^{-1}$ रेखीय द्रव्यमान घनत्व वाला एक तार डालते है, जो कुएँ को कही भी स्पर्श नहीं करता है। तार को पकड़कर यथास्थान रखने के लिए एक व्यक्ति द्वारा लगाया गया बल है (उपयोगी सूचनाः पृथ्वी की त्रिज्या $=6 \times 10^{6} \mathrm{~m}$ तथा पृथ्वी की सतह पर गुरूत्वीय त्वरण $10 \mathrm{~ms}^{-2}$)
(A) 96 N
(B) 108 N
(C) 120 N
(D) 150 N

Ans. (B)
Sol. Given, $R_{\text {planet }}=\frac{R_{\text {earth }}}{10}$ and
density, $\rho=\frac{M_{\text {earth }}}{\frac{4}{3} \pi R_{\text {earth }}^{3}}=\frac{M_{\text {Planet }}}{\frac{4}{3} R_{\text {planet }}^{3}} \quad \Rightarrow \quad M_{\text {planet }}=\frac{M_{\text {earth }}}{10^{3}}$
$g_{\text {surface of planet }}=\frac{\mathrm{GM}_{\text {planet }}}{\mathrm{R}_{\text {planet }}^{2}}=\frac{G M_{e} \cdot 10^{2}}{10^{3} \cdot R_{e}^{2}}=\frac{\mathrm{GM}_{e}}{10 R_{e}^{2}}=\frac{\mathrm{g}_{\text {surface of earth }}}{10}$
$g_{\text {depph of planet }}=g_{\text {surface of planet }}\left(\frac{x}{R}\right) \quad$ where $\quad x=$ distance from centre of planet
$T=\int_{4 R / 5}^{R} \lambda d x g\left(\frac{x}{R}\right)=\frac{\lambda g}{R}\left[\frac{x^{2}}{2}\right]_{4 R / 5}^{R}=108 N$
HINDI दिया हुआ है, $\quad R_{\text {planet }}=\frac{R_{\text {earth }}}{10}$ तथा
घनत्व, $\rho=\frac{M_{\text {earth }}}{\frac{4}{3} \pi R_{\text {earth }}^{3}}=\frac{M_{\text {Planet }}}{\frac{4}{3} R_{\text {planet }}^{3}} \Rightarrow \quad M_{\text {planet }}=\frac{M_{\text {earth }}}{10^{3}}$
$\mathrm{g}_{\text {गु की सतह पर }}=\frac{\mathrm{GM}_{\text {planet }}}{\mathrm{R}_{\text {planet }}^{2}}=\frac{G M_{\mathrm{e}} \cdot 10^{2}}{10^{3} \cdot R_{e}^{2}}=\frac{G M_{e}}{10 R_{e}^{2}}=\frac{\mathrm{g}_{\text {surface of earth }}}{10}$
$g_{\text {ग्रह की गहराई पर }}=g_{\text {सह की साह पर }}\left(\frac{x}{R}\right)$ जहाँ $x=$ ग्रह के केन्द्र से दूरी है
$T=\int_{4 R / 5}^{R} \lambda d x g\left(\frac{x}{R}\right)=\frac{\lambda g}{R}\left[\frac{x^{2}}{2}\right]_{4 R / 5}^{R}=108 N$

Resonance Eduventures Pvt. Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Tel. No. : 0744-3192222, 3012222, 3022222 | Toll Free : 18002002244 | To Know more : sms RESO at 56677 Website : www.resonance.ac.in | Email : contact@resonance.ac.in
3. Charges $Q, 2 Q$ and $4 Q$ are uniformly distributed in three dielectric solid spheres 1,2 and 3 of radii $R / 2$, R and $2 R$ respectively, as shown in figure. If magnitudes of the electric fields at point P at a distance R from the centre of spheres 1,2 and 3 are $E_{1} E_{2}$ and E_{3} respectively, then
संलग्न चित्र में दर्शाए गए तीन परावैद्युत (dielectric) गोलो पर, जिनकी त्रिज्याऐं क्रमशः $R / 2, R$ तथा $2 R$ है, आवेश $Q, 2 Q$ तथा $4 Q$ क्रमशः समान रूप से वितरित है। यदि बिन्दु P, जो प्रत्येक गोले के केन्द्र से R दूरी पर है, पर गोले 1,2 तथा 3 के कारण विद्युत क्षेत्र का परिमाण क्रमशः E_{1}, E_{2} तथा E_{3} है तब

Sphere 1

Sphere 2

Sphere 3
(A) $E_{1}>E_{2}>E_{3}$
(B) $E_{3}>E_{1}>E_{2}$
(C) $E_{2}>E_{1}>E_{3}$
(D) $E_{3}>E_{2}>E_{1}$

Ans. (C)
Sol. $\quad E_{1}=\frac{K Q}{R^{2}}$
$E_{2}=\frac{k(2 Q)}{R^{2}} \Rightarrow E_{2}=\frac{2 k Q}{R^{2}}$
$E_{3}=\frac{k(4 Q) R}{(2 R)^{3}} \quad \Rightarrow \quad E_{3}=\frac{k Q}{2 R^{2}}$
$\mathrm{E}_{3}<\mathrm{E}_{1}<\mathrm{E}_{2}$
4. If $\lambda_{\text {cu }}$ is the wavelength of $K_{\alpha} X$-ray line of copper (atomic number 29) and $\lambda_{\text {Mo }}$ is the wavelength of the $K_{\alpha} X$-ray line of molybdenum (atomic number 42), then the ratio $\lambda_{\mathrm{Cu}} / \lambda_{\mathrm{MO}_{\mathrm{M}}}$ is close to
तांबे (परमाणु क्रमांक 29) की $\mathrm{K}_{\alpha} \mathrm{X}$-किरण रेखा की तरंगदैर्ध्य $\lambda_{C u}$ है तथा मॉलिब्डेनम (परमाणु क्रमांक 42) की $\mathrm{K}_{\alpha} \mathrm{X}$-किरण रेखा की तरंगदैर्ध्य λ_{Mo} है, तब अनुपात $\lambda_{\mathrm{Cu}} / \lambda_{\mathrm{Mo}}$ लगभग है
(A) 1.99
(B) 2.14
(C) 0.50
(D) 0.48

Ans. (B)

Sol. Using Mosley's law, for K_{α} line $: \sqrt{v}=a(z-b)$ where $b=1$
K_{α} रेखा के लिये मोजले नियम के उपयोग से $: \sqrt{v}=\mathrm{a}(\mathrm{z}-\mathrm{b})$ जहाँ $\mathrm{b}=1$

$$
\begin{aligned}
& v \propto \frac{1}{\lambda} \quad \therefore \frac{\sqrt{\frac{1}{\lambda_{\mathrm{cu}}}}}{\sqrt{\frac{1}{\lambda_{\mathrm{mo}}}}}=\frac{\mathrm{a}(29-1)}{\mathrm{a}(42-1)} \\
& \Rightarrow \frac{\lambda_{\mathrm{cu}}}{\lambda_{\mathrm{mo}}}=\frac{41 \times 41}{28 \times 28}=\frac{1681}{784}=2.144
\end{aligned}
$$

Resonance Eduventures Pvt. Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Tel. No. : 0744-3192222, 3012222, 3022222 | Toll Free : 18002002244 | To Know more : sms RESO at 56677 Website : www.resonance.ac.in | Email : contact@resonance.ac.in
5. A wire, which passes through the hole is a small bead, is bent in the form of quarter of a circle. The wire is fixed vertically on ground as shown in the figure. The bead is released from near the top of the wire and it slides along the wire without friction. As the bead moves from A to B, the force it applies on the wire is
एक तार जो एक छोटे मोती के मध्य में स्थित छिद्र से गुजरता है, को एक चतुर्थांश वृत्त के अनुरूप मोड़ा गया है। तार को भूमि पर ऊर्ध्व तल में स्थित किया गया है जैसा चित्र में दर्शाया गया है। मोती को तार के ऊपरी सिरे से छोड़ा जाता है, जिससे यह तार के अनुदिश बिना किसी घर्षण के सरकता है। जब मोती A से B तक सरकता है, तब इसके द्वारा तार पर लगने वाला बल है

(A) always radially outwards
(B) always radially inwards
(C) radially outwards initially and radially inwards later
(D) radially inwards initially and radially outwards later.
(A) हमेशा त्रिज्य दिशा में बहिर्मुखी (radially outwards)
(B) हमेशा त्रिज्य अन्तर्मुखी (radially inwards)
(C) प्रारम्भ में त्रिज्य दिशा में बहिर्मुखी तत्पश्चात् त्रिज्य दिशा में अन्तर्मुखी
(D) प्रारम्भ में त्रिज्य दिशा में अन्तर्मुखी तत्पश्चात् त्रिज्य दिशा में बहिर्मुखी

Ans. (D)

Sol. Using conservation of energy : mgR $(1-\cos \theta)=\frac{1}{2} \operatorname{mv}^{2}$
Radial force $E q u^{n}: m g \cos \theta-N=\frac{m v^{2}}{R}$
$\Rightarrow \mathrm{N}=\mathrm{mg} \cos \theta-\frac{\mathrm{mv}^{2}}{\mathrm{R}}=\mathrm{mg}(3 \cos (0-2)$

Normal act radially outward on bead if $\cos \theta>\frac{2}{3}$
Normal radially inward on bead if $\cos \theta<\frac{2}{3}$
\therefore Normal on ring is opposite to reaction on bead.

Resonance Eduventures Pvt. Ltd.
CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Tel. No. : 0744-3192222, 3012222,3022222 \| Toll Free : 18002002244
Website : www.resonance.ac.in \| Email : contact@resonance.ac.in

HINDI: ऊर्जा संरक्षण से $: m g R(1-\cos \theta)=\frac{1}{2} \mathrm{mv}^{2}$

त्रिज्यीय बल समीकरण : $m g \cos \theta-N=\frac{\mathrm{mv}^{2}}{R}$
$\Rightarrow \mathrm{N}=\mathrm{mg} \cos \theta-\frac{\mathrm{mv}{ }^{2}}{\mathrm{R}}=\mathrm{mg}(3 \cos (0-2)$

मोती पर अभिलम्ब त्रिज्य बाहर की ओर होगा यदि $\cos \theta>\frac{2}{3}$
मोती पर अभिलम्ब त्रिज्य बाहर की ओर होगा यदि $\cos \theta<\frac{2}{3}$
\therefore मोती पर प्रतिक्रिया वलय पर अभिलम्ब के विपरीत है
6. A metal surface is illuminated by light of two different wavelengths 248 nm and 310 nm . The maximum speeds of the photoelectrons corresponding to these wavelengths are u_{1} and u_{2}, respectively. If the ratio $u_{1}: u_{2}=2: 1$ and $\mathrm{hc}=1240 \mathrm{eV} \mathrm{nm}$, the work function of the metal is nearly
किसी धातु की एक सतह को अलग-अलग तरंग दैर्ध्यों 248 nm तथा 310 nm से प्रदीप्त किया गया है। इन तरंग-दैर्घ्यों के संगत (corresponding) निकलने वाले प्रकाश इलेक्ट्रॉनों (photoelectrons) की अधिकतम गति क्रमशः u_{1} तथा u_{2} है। यदि अनुपात $u_{1}: u_{2}=2: 1$ तथा hc $=1240 \mathrm{eV} \mathrm{nm}$ है, तब धातु का कार्य फलन लगभग है
(A) 3.7 eV
(B) 3.2 eV
(C) 2.8 eV
(D) 2.5 eV

Ans. (A)
Sol. $\quad 248 \mathrm{~nm} \equiv 1240 / 248 \mathrm{ev}=5 \mathrm{ev}$
$310 \mathrm{~nm} \equiv 1240 / 310 \mathrm{ev}=4 \mathrm{ev}$
$\frac{\mathrm{K} \cdot \mathrm{E}_{1}}{\mathrm{~K} \cdot \mathrm{E}_{2}}=\frac{4}{1}=\frac{5 \mathrm{ev}-\mathrm{W}}{4 \mathrm{ev}-\mathrm{W}}$
$\Rightarrow 16-4 \mathrm{~W}=\mathrm{S}-\mathrm{W}$
$\Rightarrow 11=3 \mathrm{~W}$
$\Rightarrow W=\frac{11}{3}=3.67 \mathrm{ev} \cong 3.7 \mathrm{ev}$
7. A tennis ball is dropped on a horizontal smooth surface. It bounces back to its original position after hitting the surface. The force on the ball during the collision is proportional to the length of compression of the ball. Which one of the following sketches describes the variation of its kinetic energy K with time t most appropriately ? The figures are only illustrative and not to the scale.

एक टेनिस की गेंद को एक क्षैतिज चिकनी सतह पर गिराया जाता है। गेंद सतह से टकराने के पश्चात् पुनः अपने मुल स्थान पर पहुँच जाती है। संघट्ट (collision) के दौरान, गेंद पर लगने वाला बल उसकी संपीड़न लंबाई के अनुक्रमानुपाती है। निम्न में से कौनसा रेखाचित्र, समय t के साथ गेंद की गतिज ऊर्जा K के परिवर्तन को सर्वाधिक उचित रूप से प्रदर्शित करता है। (चित्र केवल सांकेतिक हैं और मापन के अनुरूप नहीं हैं)।
(A)

(B)

(C)

(D)

Ans. (B)

$$
t=0 .
$$

Sol.

$K=\frac{1}{2} \mathrm{mg}^{2} \mathrm{t}^{2}$
$\mathrm{K} \propto \mathrm{t}^{2}$: parabolic graph
then during collision kinetic energy first decreases to elastic potential energy and then increases.
Most appropriate graph is B.

Hindi

$K=\frac{1}{2} \mathrm{mg}^{2} \mathrm{t}^{2}$
$K \propto t^{2}$: परवलयाकार आरेख
तब टक्कर के दौरान गतिज ऊर्जा पहले घटेगी प्रत्यास्थ स्थितिज ऊर्जा बढ़ेगी एवं तब गतिज ऊर्जा बढ़ेगी। सबसे सही आरेख B है।

| ReSOnance Eduventures Pvt. Ltd. |
| ---: | ---: |
| CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 |
| Tel. No. : 0744-3192222, 3012222,3022222 \| Toll Free : 18002002244 | To Know more : sms RESO at 56677 |
| Website : www.resonance.ac.in \| Email : contact@resonance.ac.in |

8. During an experiment with a metre bridge, the galvanometer shows a null point when the joceky is pressed at 40.0 cm using a standard resistance of 90Ω, as shown in the figure. The least count of the scale used in the meter bridge is 1 mm . The unknown resistance is :

एक मीटर ब्रीज से 90Ω के मानक प्रतिरोध के साथ एक प्रयोग करते समय, जब जॉकी को तार के बायें सिरे से 40.0 cm पर दबाया जाता है, तब गैल्वनोमीटर पर शून्य विक्षेप प्रदर्शित होता है, जैसा चित्र में दिखाया गया है। मीटर ब्रीज में प्रयुक्त पैमाने का अल्पतमांक(least count) $1 \mathrm{~m} . \mathrm{m}$. है। अज्ञात प्रतिरोध का मान है :

(A) $60 \pm 0.15 \Omega$
(B) $135 \pm 0.56 \Omega$
(C) $60 \pm 0.25 \Omega$
(D) $135 \pm 0.23 \Omega$

Ans. (C)

Sol. For balanced meter bridge सेतु संतुलन के लिये

$$
\begin{aligned}
& \frac{X}{R}=\frac{\ell}{(100-\ell)} \\
& \frac{X}{40}=\frac{90}{60} \Rightarrow X=60 \Omega \\
& X=R \frac{\ell}{(100-\ell)} \\
& \frac{\Delta X}{X}=\frac{\Delta \ell}{\ell}+\frac{\Delta \ell}{100-\ell}=\frac{0.1}{40}+\frac{0.1}{60} \\
& \Delta X=0.25
\end{aligned}
$$

$$
\text { so अतः } \mathrm{X}=(60 \pm 0.25) \Omega
$$

9. Parallel rays of light of intensity $\mathrm{I}=912 \mathrm{Wm}^{-2}$ are incident on a spherical balck body kept in surroundings of temperature 300 K . Take Stefan-Biltzmann constant $\sigma=5.7 \times 10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{-4}$ and assume that the energy exchange with the surroundings is only through radiation. Th final steady state temperature of the black body is close to:

एक गोलाकार कृष्णिका(black body) को 300 K तापमान वाले वातावरण में रखा गया है। इस पर प्रकश के समान्तर किरणें, जिनकी तीव्रता $\mathrm{I}=912 \mathrm{Wm}^{-2}$ है, आपतित हैं। स्टीफन वोल्टज्मान नियतांक $\sigma=5.7 \times 10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{-4}$ का मान लेकर यह मानते हुए कि ऊर्जा का आदान प्रदान सिर्फ विकिरण द्वारा ही हो रहा है, कृष्णिका का स्थायी अवस्था में तापमान लगभग है :
(A) 330 K
(B) 660 K
(C) 990 K
(D) 1550 K

Ans. (A)

Resonance Eduventures Pvt. Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Tel. No. : 0744-3192222, 3012222, 3022222 | Toll Free : 18002002244 | To Know more : sms RESO at 56677

Sol. In steady state स्थायी अवस्था में

$$
\begin{aligned}
& \mathrm{I} \pi \mathrm{R}^{2}=\sigma\left(\mathrm{T}^{4}-\mathrm{T}_{0}^{4}\right) 4 \pi \mathrm{R}^{2} \\
& \Rightarrow \quad \mathrm{I}=\sigma\left(\mathrm{T}^{4}-\mathrm{T}_{0}^{4}\right) 4 \\
& \Rightarrow \\
& \Rightarrow \quad \mathrm{~T}^{4}-\mathrm{T}_{0}^{4}=40 \times 10^{8} \\
& \Rightarrow \\
& \Rightarrow \\
& \Rightarrow \quad \mathrm{~T}^{4}-81 \times 10^{8}=40 \times 10^{8} \\
& \Rightarrow \\
& \mathrm{~T}^{4}=121 \times 10^{8} \\
& \mathrm{~T} \approx 330 \mathrm{~K}
\end{aligned}
$$

10. A point source S is placed at the bottom of a transparent block of height 10 mm and refractive index 2.72. It is immersed in a lower refractive index liquid as shown in the figure. It is found that the light emerging from the block to the liquid forms a circular bright spot of diameter 11.54 mm on the top of the block. The refractive index of the liquid is

एक बिन्दु प्रकाश स्रोत (S) एक 10 mm ऊँचाई वाले पारदर्शी गुटके की निचली सतह पर रखा गया है। गुटके का अपर्वतनांक 2.72 है। गुटके को एक कम अपवर्तनांक वाले द्रव में डुबोया जाता है, जैसा चित्र में दर्शाया गया है। गुटके से निकलकर द्रव में जाने वाला प्रकाश, गुटके की ऊपर सतह पर 11.54 mm व्यास का एक दीप्त वृत्त(spot) बनाता है। द्रव का अपवर्तनांक है :

(A) 1.21
(B) 1.30
(C) 1.36
(D) 1.42

Ans. (C)
Sol. $\operatorname{Sin} \mathrm{i}_{\mathrm{C}}=\frac{\mathrm{r}}{\sqrt{\mathrm{r}^{2}+\mathrm{h}^{2}}}$
$\Rightarrow \frac{\mathrm{n}_{\ell}}{\mathrm{n}_{\mathrm{B}}}=\frac{\mathrm{r}}{\sqrt{\mathrm{r}^{2}+\mathrm{h}^{2}}}$
$\Rightarrow \mathrm{n}_{\ell}=\frac{\mathrm{r}}{\sqrt{\mathrm{r}^{2}+\mathrm{h}^{2}}} \times 2.72$

$=\frac{5.77}{11.54} \times 2.72=1.36$

Resonance Eduventures Pvt. Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Tel. No. : 0744-3192222, 3012222, 3022222 | Toll Free : 18002002244 | To Know more : sms RESO at 56677

SECTION-2 : Comprehension Type (Only One options correct) खण्ड-2 : अनुच्छेद प्रकार (केवल एक विकल्प सही)

This section contains 3 paragraphs, each describing theory, experiments, data etc. Six questions relate to the three paragraphs with two questions on each paragraph. Each question has only one correct answer among the four given options (A), (B), (C) and (D)
इस खण्ड में सिद्धांतों, प्रयोगों और आँकड़ों आदि को दर्शाने वाले 3 अनुच्छेद है। दोनों अनुच्छेदों से संबंधित चार प्रश्न हैं, जिनमें से हर अनुच्छेद पर दो प्रश्न हैं। किसी भी अनुच्छेद में हर प्रश्न के चार विकल्प $(A),(B),(C)$ और (D) हैं, जिनमें से केवल एक ही सही है।

Paragraph For Questions 11 to 12
 प्रश्न संख्या 11 और 12 के लिए अनुच्छेद

The figure shows a circular loop of radius a with two long parallel wires (numbered 1 and 2) all inthe plane of the paper. The distance of each wire from the centre of the loop is d. The loop and the wires are carrying the same current I. The current in the loop is in the counterclockwise direction if seen from above.

चित्र में दर्शाये गये a त्रिज्या वाला वृत्तीय पाश (loop) तथा दो समान्तर तार अंकित 1 तथा 2 सभी पृष्ठ के तल में है। दोनों तार वृत्तीय पाश के केन्द्र के केन्द्र से d दूरी पर है। वृत्तीय पाश तथा दोनों तारों में एकसमान धारा I प्रवाहित है। ऊपर से देखने पर वृत्तीय पाश में धारा की दिशा वामावर्त है।

11. When $\mathrm{d} \approx$ a but wires are not touching the loop, it is found that the net magnetic filed on the axis of the loop is zero at a height h above the loop. In that case
(A) current in wire 1 and wire 2 is the direction $P Q$ and $R S$, respectively and $h \approx a$
(B) current in wire 1 and wire 2 is the direction $P Q$ and $S R$, respectively and $h \approx a$
(C) current in wire 1 and wire 2 is the direction $P Q$ and $S R$, respectively and $h \approx 1.2 \mathrm{a}$
(D) current in wire 1 and wire 2 is the direction $P Q$ and $R S$, resepectively and $h \approx 1.2 \mathrm{a}$

जब $\mathrm{d} \approx \mathrm{a}$ लेकिन तार पाश को स्पर्श नहीं कर रहे हैं तब वृत्तीय पाश के अक्ष पर h ऊॅचाई पर परिणामी चुम्बकीय क्षेत्र शून्य मिलने की स्थिति में
(A) तार 1 तथा तार 2 में धारा की दिशा क्रमशः $P Q$ तथा $R S$ है और $h \approx a$
(B) तार 1 तथा तार 2 में धारा की दिशा क्रमशः $P Q$ तथा $S R$ है और $h \approx a$
(C) तार 1 तथा तार 2 में धारा की दिशा क्रमशः $P Q$ तथा $S R$ है और $h \approx 1.2 \mathrm{a}$
(D) तार 1 तथा तार 2 में धारा की दिशा क्रमशः $P Q$ तथा $R S$ है और $h \approx 1.2 \mathrm{a}$

Ans. (C)

Resonance Eduventures Pvt. Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Tel. No. : 0744-3192222, 3012222, 3022222 | Toll Free : 18002002244 | To Know more : sms RESO at 56677 Website : www.resonance.ac.in | Email : contact@resonance.ac.in

[^0]Sol. $\quad \vec{B}_{R}=\vec{B}$ due to ring
$\vec{B}_{1}=\vec{B}$ due to wire - 1
$\vec{B}_{2}=\vec{B}$ due to wire -2
In magnitudes $B_{1}=B_{2}=\frac{\mu_{0} I}{2 \pi r}$
Resultant of B_{1} and $B_{2}=2 B_{1} \cos \theta=\frac{\mu_{0} I a}{\pi r^{2}}$

$B_{R}=\frac{2 \mu_{0} I \pi \mathrm{a}^{2}}{4 \pi \mathrm{r}^{3}}$
For zero magnetic field at P

$$
\frac{\mu_{0} \mathrm{Ia}}{\pi \mathrm{r}^{2}}=\frac{2 \mu \mathrm{OI} \pi \mathrm{a}^{2}}{4 \pi \mathrm{r}^{3}}
$$

$\Rightarrow \mathrm{h} \approx 1.2 \mathrm{a}$
Hindi $\quad \vec{B}_{R}=\vec{B}$ वलय के कारण
$\overrightarrow{\mathrm{B}}_{1}=\overrightarrow{\mathrm{B}}$ तार -1 के कारण
$\overrightarrow{\mathrm{B}}_{2}=\overrightarrow{\mathrm{B}}$ तार -2 के कारण
परिमाण में $\mathrm{B}_{1}=\mathrm{B}_{2}=\frac{\mu_{0} \mathrm{I}}{2 \pi \mathrm{r}}$
B_{1} तथा B_{2} का परिणामी $=2 B_{1} \cos \theta=\frac{\mu_{0} I a}{\pi r^{2}}$

$B_{R}=\frac{2 \mu_{0} I \pi \mathrm{a}^{2}}{4 \pi \mathrm{r}^{3}}$
P पर शून्य चुम्बकीय क्षेत्र के लिए

$$
\begin{aligned}
& \frac{\mu_{0} \mathrm{Ia}}{\pi \mathrm{r}^{2}}=\frac{2 \mu \mathrm{OI} \pi \mathrm{a}^{2}}{4 \pi \mathrm{r}^{3}} \\
& \Rightarrow \mathrm{~h} \approx 1.2 \mathrm{a}
\end{aligned}
$$

12. Consider $\mathrm{d} \gg \mathrm{a}$, and the loop is rotated about its diameter parallel to the wires by 30° from the position shown in the figure. If the currents in the wires are in the opposite directions, the torque on the loop at its new position will be (assume that the net field due to the wires is constant over the loop)

मान लीजिए $d \gg a$ तथा पाश को चित्र में दिखाई गई अवस्था से तारों के समान्तर तथा पाश के व्यास के परितः 30° से घुमाया जाता है। यदि तारों में विद्युत धारा की दिशा एक दूसरे के विपरीत दिशा में हो तो पाश की नई अवस्था में उस पर लगने वाला बल आघूर्ण (torque) होगा (मान लीजिए कि तारों के कारण वृत्तीय पाश पर चुम्बकीय क्षेत्र र्थिर है।)
(A) $\frac{\mu_{0} I^{2} a^{2}}{d}$
(B) $\frac{\mu_{0}{ }^{2} a^{2}}{2 d}$
(C) $\frac{\sqrt{3} \mu_{0} \mathrm{I}^{2} \mathrm{a}^{2}}{\mathrm{~d}}$
(D) $\frac{\sqrt{3} \mu_{0} \mathrm{I}^{2} \mathrm{a}^{2}}{2 \mathrm{~d}}$

Ans. (B)

Resonance Eduventures Pvt. Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Tel. No. : 0744-3192222, 3012222, 3022222 | Toll Free : 18002002244 | To Know more : sms RESO at 56677

Sol. Magnetic field at mid point of two wires $=\frac{\mu_{0} \mathrm{I}}{\pi \mathrm{d}} \otimes$
Magnetic moment of loop $=\mathrm{I} \pi \mathrm{a}^{2}$
Torque on loop $=M B \sin 150^{\circ}$

$$
=\frac{\mu_{0} \mathrm{I}^{2} \mathrm{a}^{2}}{2 \mathrm{~d}}
$$

दो तारों के मध्य बिन्दु पर चुम्बकीय क्षेत्र $=\frac{\mu_{0} \mathrm{I}}{\pi \mathrm{d}} \otimes$
लूप पर चुम्बकीय आघूर्ण $=\mathrm{I} \pi \mathrm{a}^{2}$
लूप पर बलाघूर्ण $=M B \sin 150^{\circ}$

$$
=\frac{\mu_{0} \mathrm{I}^{2} \mathrm{a}^{2}}{2 \mathrm{~d}}
$$

Paragraph For Questions 13 to 14

प्रश्न संख्या 13 और 14 के लिए अनुच्छेद

In the figure a container is shown to have a movable (without friction) piston on top. The container and the piston are all made of perfectly insulating material allowing no heat transfer between outside and inside the container. The container is divided into two compartments by a rigid partition made of a thermally conducting material that allows slow transfer of heat. The lower compartment of the container is filled with 2 moles of an ideal monatomic gas at 700 K and the upper compartment is filled with 2 moles of an ideal diatomic gas at 400 K. The heat capacities per mole of an ideal monatomic gas are $C_{V}=\frac{3}{2} R, C_{P}=\frac{5}{2} R$, and those for an ideal diatomic gas are $C_{V}=\frac{5}{2} R, C_{P}=\frac{7}{2} R$.
चित्र में दिखाए गए पात्र में ऊपर की ओर एक घर्षणरहित चल पिस्टन लगा है। पात्र तथा पिस्टन सभी ताप अवरोधी पदार्थ से निर्मित हैं, जिससे पात्र के अन्दर तथा बाहर ऊर्जा का आदान प्रदान संभव नहीं है। पात्र को एक ऊष्मा चालक पदार्थ से बने हुए दृढ़ विभाजक पटल द्वारा दो भागों में बॉटा गया है जिससे ऊष्मा का क्षीण प्रवाह संभव है। पात्र का निचला भाग एक आदर्श एक.परमाणविक (monatomic) गैस के 2 मोल से, जिसका ताप 700 K है, से भरा हुआ है। पात्र का ऊपरी भाग एक द्विपरमाणविक गैस (diatomic) के 2 मोल से, जिसका तापमान 400 K है, से भरा हुआ है। गैस की प्रतिमोल ऊष्मा धारिता आदर्श एक-परमाणविक गैस के लिए क्रमशः $C_{V}=\frac{3}{2} R, C_{P}=\frac{5}{2} R$ तथा आदर्श द्विपरमाणविक गैस के लिए क्रमश: $C_{V}=\frac{5}{2} R, C_{P}=\frac{7}{2} R$ हैं।

Resonance Eduventures Pvt. Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Tel. No. : 0744-3192222, 3012222, 3022222 | Toll Free : 18002002244 | To Know more : sms RESO at 56677 Website : www.resonance.ac.in | Email : contact@resonance.ac.in
13. Consider the partition to be rigidly fixed so that it does not move. When equilibrium is achieved, the final temperature of the gases will be :
यदि विभाजनक पटल पात्र से दृढ़ता से जुड़ा है, तब साम्यावस्था में आने पर गैसों का अन्तिम तापमान होगा।
(A) 550 K
(B) 525 K
(C) 513 K
(D) 490 K

Ans. (D)

Sol. Let final temperature of gases is T
Heat rejected by gas in lower compartment $\left(n_{v} \Delta T\right)=2 \times \frac{3}{2} R(700-T)$

Heat received by gas in above compartment $\left(n_{p} \Delta T\right)=2 \times \frac{7}{2} R(T-400)$
Equating above

$$
2100-3 T=7 T-2800
$$

$\Rightarrow \quad \mathrm{T}=490 \mathrm{~K}$
माना गेस का अंतिम तापमान T है।
निचले भाग में गैस द्वारा त्यागी गई ऊष्मा $\left(\mathrm{nC}_{v} \Delta T\right)=2 \times \frac{3}{2} R(700-T)$
ऊपरी भाग में गैस द्वारा अवशोषित ऊष्मा $\left(n C_{p} \Delta T\right)=2 \times \frac{7}{2} R(T-400)$
दोनों को बराबर करने पर

$$
\begin{aligned}
& & 2100-3 \mathrm{~T} & =7 \mathrm{~T}-2800 \\
\Rightarrow & & \mathrm{~T} & =490 \mathrm{~K}
\end{aligned}
$$

14. Now consider the partition to be free to move without friction so that the pressure of gases in both compartments is the same. Then total work done by the gases till the time they achieve equilibrium will be :
अब मान लीजिए कि विभाजक पटल घर्षणहीन गति के लिए स्वतंत्र है, जिससे दोनों भागों में गैस का दबाव समान है। गैसों द्वारा साम्यावस्था में पहुचने तक किया गया कुल कार्य होगा।
(A) 250 R
(B) 200 R
(C) 100 R
(D) -100 R

Ans. (D)
Sol. $\quad \Delta \mathrm{W}_{1}+\Delta \mathrm{U}_{1}=\Delta \mathrm{Q}_{1}$
$\Delta W_{2}+\Delta U_{2}=\Delta Q_{2}$
$\Delta Q_{1}+\Delta Q_{2}=0$
$\frac{7}{2} R(T-400)=\frac{5}{2} R(700-T)$
$\Rightarrow \quad \mathrm{T}=\frac{6300}{12}=525 \mathrm{~K}$
So अत: $\Delta \mathrm{W}_{1}+\Delta \mathrm{W}_{2}=2 . \mathrm{R} .(525-400)+2 \mathrm{R}(525-700)$

$$
\begin{aligned}
& =+250 R-350 R \\
& =-100 R
\end{aligned}
$$

Paragraph for Question 15 to 16

प्रश्न संख्या 15 और 16 के लिए अनुच्छेद

A spray gun is shown in the figure where a piston pushes air out of a nozzle. A thin tube of uniform cross section is connected to the nozzle. The other end of the tube is in a small liquid container. As the piston pushes air through the nozzle, the liquid from the container rises into the nozzle and is sprayed out. For the spray gun shown, the radii of the piston and the nozzle are 20 mm and 1 mm respectively. The upper end of the container is open to the atmosphere.
चित्र में दिखाई गई पिचकारी में एक पिस्टन वायु को एक चंचु (nozzle) द्वारा बाहर धकेलता है। चंचू के समाने एकसमान अनुप्रस्थ काट वाली पतली नली लगी है। नली का दूसरा सिरा द्रव से भरे एक छोटे पात्र में है। जब पिस्टन वायु को चंचू से बाहर धकेलता है, तब पात्र में द्रव उठकर चंचू में आ जाता है। और फुहार के रूप में बाहर निकलता है। चित्र में दिखाई गई पिचकारी में पिस्टन तथा चंचू की त्रिज्याएँ क्रमशः 20 mm तथा 1 mm है। पात्र का ऊपरी भाग वातावरण (atmosphere) में खुला है।

15. If the piston is pushed at a speed of $5 \mathrm{mms}^{-1}$, the air comes out of the nozzle with a speed of पिस्टन को $5 \mathrm{mms}^{-1}$ की गति से धकेलने पर चंचू से बाहर वाली वायु की गति है।
(A) $0.1 \mathrm{~ms}^{-1}$
(B) $1 \mathrm{~ms}^{-1}$
(C) $2 \mathrm{~ms}^{-1}$
(D) $8 \mathrm{~ms}^{-1}$

Ans. (C)

Sol. $\quad A_{1} V_{1}=A_{2} V_{2}$

$$
\mathrm{A}_{1}=400 \mathrm{~A}_{2}
$$

$$
\begin{equation*}
400\left(5 \times 10^{-3}\right)=V_{2} \quad \Rightarrow \quad V_{2}=2 \mathrm{~m} / \mathrm{s} \tag{C}
\end{equation*}
$$

16. If the density of air is ρ_{a} and that of the liquid ρ_{ℓ}, then for a given piston speed the rate (volume per unit time) at which the liquid is sprayed will be proportional to
वायु तथा द्रव का घनत्व क्रमशः ρ_{a} और ρ_{ℓ} मानिये। पिस्टन की एक नियत गति के द्रव का भी दर (आयतन प्रति समय) से फुहार होता है। वह दर नीचे दिये गये विकल्पों में से किसके अनुक्रमानुपाती है ?
(A) $\sqrt{\frac{\rho_{a}}{\rho_{\ell}}}$
(B) $\sqrt{\rho_{a} \rho_{\ell}}$
(C) $\sqrt{\frac{\rho_{\ell}}{\rho_{a}}}$
(D) ρ_{ℓ}

Ans. (A)
Sol. Pressure at A and B will be same
A तथा B पर दाब समान होगा

$$
\begin{aligned}
& \mathrm{P}_{0}-\frac{1}{2} \rho_{\mathrm{a}} \mathrm{v}_{\mathrm{a}}^{2}=\mathrm{P}_{0}-\frac{1}{2} \rho_{\ell} \mathrm{v}_{\ell}^{2}-\rho_{\ell} \mathrm{gh} \\
& \mathrm{v}_{\ell}=\sqrt{\frac{\rho_{\mathrm{a}}}{\rho_{\ell}}} \mathrm{v}_{\mathrm{a}}-2 \mathrm{gh}
\end{aligned}
$$

Resonance Eduventures Pvt. Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Tel. No. : 0744-3192222, 3012222, 3022222 | Toll Free : 18002002244 | To Know more : sms RESO at 56677 Website : www.resonance.ac.in | Email : contact@resonance.ac.in
This solution was download from Resonance JEE ADVANCED 2014 Solution portal

SECTION-3 : Matching List Tpype (Only One options correct)

This section contains four questions, each having two matching lists. Choices for the correct combination of elements from List-I and List-II are given as options (A), (B), (C) and (D) out of which one is correct

खण्ड - $\mathbf{3}$ सुमेलन सूची प्रकार (केवल एक विकल्प सही)
इस खण्ड में 4 बहुविकल्प प्रश्न है। प्रत्येक प्रश्न में दो सुमेलन सूचियाँ है। सूचियों के लिए कूट के विकल्प $(A),(B),(C)$ और (D) हैं जिनमें से केवल एक सही है।
17. A person in a lift is holding a water jar, which has a small hole at the lower end of its side. When the lift is at rest, the water jet coming out of the hole hits the floor of the lift at a distance d of 1.2 m from the person. In the following, state of the lift's motion is given in List - I and the distance where the water jet hits the floor of the lift is given in List - II. Match the statements from List - I with those in List- II and select the correct answer using the code given below the lists.

List -I

P. Lift is accelerating vertically up.
Q. Lift is accelerating vertically down with an accelerating less than the gravitational acceleration.
R. List is moving vertically up with constant Speed
S. Lift is falling freely.

List -II

1. $\mathrm{d}=1.2 \mathrm{~m}$
2. $d>1.2 m$
3. $\mathrm{d}<1.2 \mathrm{~m}$
4. No water leaks out of the jar

Code:

(A) P-2, Q-3, R-2, S-4
(B) P-2, Q-3, R-1, S-4
(C) P-1, Q-1, R-1, S-4
(D) P-2, Q-3, R-1, S-1

एक व्यक्ति जल से भरा एक पात्र लेकर लिफ्ट में खड़ा है। पात्र की साइड के निचले तल में एक छिद्र है। जब लिफ्ट विरामावस्था में है, तब छिद्र से बाहर आने वाले जल की धारा व्यक्ति से 1.2 m , दूर d लिफ्ट के फर्श पर गिरती है। लिफ्ट की गति की विभिन्न अवस्था सूची -। में दी गई है, तथा वह दूरी जहाँ जल की धारा फर्श पर गिरती है, सूची-II में दी गई है। सूची-। को, सूची -II से सुमेलित कीजिए तथा सूचियों के नीचे दिए गए कोड का प्रयोग करके सही उत्तर चुनिए :

सूची -I

P. लिफ्ट ऊपर की दिशा में त्वरित गति से गतिशील है।
Q. लिफ्ट त्वरित गति से नीचे की ओर गतिशील है और उसके त्वरण का मान गुरूत्वीय त्वरण से कम है।
R. लिफ्ट ऊपर की ओर एकसमान चाल से गतिमान है।
S. लिफ्ट स्वतंत्र रूप से गिर रही है।

सूची -II

1. $d=1.2 \mathrm{~m}$
2. $d>1.2 m$
3. $d<1.2$ m
4. पात्र से जल बाहर नहीं आएगा।

Resonance Eduventures Pvt. Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Tel. No. : 0744-3192222, 3012222, 3022222 | Toll Free : 18002002244 | To Know more : sms RESO at 56677 Website : www.resonance.ac.in | Email : contact@resonance.ac.in

This solution was download from Resonance JEE ADVANCED 2014 Solution portal

कोड़ :
(A) P-2, Q-3, R-2, S-4
(B) P-2, Q-3, R-1, S-4
(C) P-1, Q-1, R-1, S-4
(D) P-2, Q-3, R-1, S-1

Ans. (C)

Sol. Match the column कॉलम का मिलान कीजिए When lift is at rest: जब लिफ्ट विरामावस्था में है।

(P) $\quad g_{\text {eff }}>g$
$\mathrm{d}=\sqrt{4 \mathrm{~h}_{1} \mathrm{~h}_{2}}=1.2 \mathrm{~m}$
(Q) $\quad g_{\text {eff }}<g$
$d=\sqrt{4 h_{1} h_{2}}=1.2 \mathrm{~m}$
(R) $\quad g_{\text {eff }}=g$
$\mathrm{d}=\sqrt{4 \mathrm{~h}_{1} \mathrm{~h}_{2}}=1.2 \mathrm{~m}$
(S) $\mathrm{g}_{\text {eff }}=0 \quad$ No water leaks out of the jar. जार से कोई पानी बाहर नहीं निकलेगा

Ans. (C) $\quad \mathrm{P}-1 \quad \mathrm{Q}-1 \quad \mathrm{R}-1 \quad \mathrm{~S}-4$
18. Four charge Q_{1}, Q_{2}, Q_{3}, and Q_{4}, of same magnitude are fixed along the x axis at $x=-2 a-a,+a$ and $+2 a$, respectively. A positive charge q is placed on the positive y axis at a distance $b>0$. Four options of the signs of these charges are given in List-I . The direction of the forces on the charge q is given in List-II Match List1 with List-II and select the correct answer using the code given below the lists.

List-I

P. $\quad \mathrm{Q}_{1}, \mathrm{Q}_{2}, \mathrm{Q}_{3}, \mathrm{Q}_{4}$, all positive
Q. $\quad Q_{1}, Q_{2}$ positive Q_{3}, Q_{4} negative
R. $\quad Q_{1}, Q_{4}$ positive Q_{2}, Q_{3} negative
S. $\quad Q_{1}, Q_{3}$ positive Q_{2}, Q_{4} negative

Code:
(A) P-3, Q-1, R-4,S-2
(B) P-4, Q-2, R-3, S-1
(C) P-3, Q-1, R-2,S-4
(D) P-4, Q-2, R-1, S-3

Resonance Eduventures Pvt. Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Tel. No. : 0744-3192222, 3012222, 3022222 | Toll Free : 18002002244 | To Know more : sms RESO at 56677

चार आवेश Q_{1}, Q_{2}, Q_{3}, तथा Q_{4},जिनका मान समान है, x अक्ष के अनुदिश क्रमशः $x=-2 a,-a,+a$ तथा $+2 a$ पर रखे हैं। एक अन्य धनावेश $q,+y$ अक्ष पर $b>0$ दूरी पर रखा है। आवेशों के चिह्न (sign) के चार विकल्प सूची-। में दिए है। आवेश q पर लगने वाले बलों की दिशा सूची-II में दी गई है। सूची-। को सूची-II से सुमेलित कीजिए तथा सूचियों के नीचे दिये गए कोड का प्रयोग करके सही विकल्प चुनिए :

सूची-।

P. $\mathrm{Q}_{1}, \mathrm{Q}_{2}, \mathrm{Q}_{3}, \mathrm{Q}_{4}$, सभी धनावेश है।
Q. Q_{1}, Q_{2} धनावेश है Q_{3}, Q_{4} ऋणावेश है।
R. $\mathrm{Q}_{1}, \mathrm{Q}_{4}$ धनावेश है $\mathrm{Q}_{2}, \mathrm{Q}_{3}$ ऋणावेश है।
S. Q_{1}, Q_{3} धनावेश है Q_{2}, Q_{4} ऋणावेश है।
+y

कोड :
(A) P-3, Q-1, R-4,S-2
(B) P-4, Q-2, R-3, S-1
(C) P-3, Q-1, R-2,S-4
(D) P-4, Q-2, R-1, S-3

Ans. (A)

Sol.
(P)

Component of forces along x-axis will vanish. Net force along +ve y-axis
x-अक्ष के अनुदिश बलों के घटक निरस्त हो जायेंगे। अतः कुल बल धनात्मक y-अक्ष के अनुदिश होगा
(Q)

Component of forces along y-axis will vanish. Net force along +ve x-axis
y -अक्ष के अनुदिश बलों के घटक निरस्त हो जायेंगे। अतः कुल बल धनात्मक x -अक्ष के अनुदिश होगा

Resonance Eduventures Pvt. Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Tel. No. : 0744-3192222, 3012222, 3022222 | Toll Free : 18002002244 | To Know more : sms RESO at 56677 Website : www.resonance.ac.in | Email : contact@resonance.ac.in
(R)

Component of forces along x-axis will vanish. Net force along -ve y-axis.
x-अक्ष के अनुदिश बलों के घटक निरस्त हो जायेंगे। अतः कुल बल ऋणात्मक y-अक्ष के अनुदिश होगा
(S)

Component of forces along y-axis will vanish. Net force along -ve x-axis.
y -अक्ष के अनुदिश बलों के घटक निरस्त हो जायेंगे। अतः कुल बल ऋणात्मक x - अक्ष के अनुदिश होगा
Ans. (A) $\mathrm{P}-3, \mathrm{Q}-1, \mathrm{R}-4, \quad \mathrm{~S}-2$
19. Four combinations of two thin lenses are given in List-I. The radius of curvature of all curved surface is r and the refractive index of all lenses is 1.5 . Match lens combinations in List-I with their focal length in List-II and select the correct answer using the code given below the lists.
दो पतले लेन्सों के चार संयोजन सूची-। में दिए है। प्रत्येक लेन्स के वक्रीय पृष्ठ की वक्रता त्रिज्या r तथा अपवर्तनांक (r.i) 1.5 है। सची-। में विभिन्न लेन्स संयोजन दिए हैं तथा सूची-II में उनकी फोकस दूरी दी हुई है। सूची-। को सूची-II से सुमेलित कीजिए तथा सूचियों के नीचे दिए गए कोड का प्रयोग करके सही उत्तर चुनिए :

List-I

सूची-।
P. M
Q. M
R. N
s. $\sqrt{7}$

List-II

सूची -II

1. 2 r
2. $\mathrm{r} / 2$
3. $-r$
4. r

Code：

कोड ：
（A）P－1，Q－2，R－3，S－4
（B）P－2，Q－4，R－3，S－1
（C）P－4－，Q－1，R－2，S－3
（D）P－2，Q－1，R－3，S－4

Ans．（B）

Sol．
（P） $\int \frac{1}{f}=\left(\frac{3}{2}-1\right)\left(\frac{1}{r}+\frac{1}{r}\right)=\frac{1}{r} \quad \Rightarrow \quad f=r$

$$
⿹ 勹 冫 \quad \frac{1}{f_{e q}}=\frac{1}{f}+\frac{1}{f}=\frac{2}{r} \quad \Rightarrow \quad f_{e q}=\frac{r}{2}
$$

（Q）

$$
\text {) } \frac{1}{f}=\left(\frac{3}{2}-1\right)\left(\frac{1}{r}\right) \quad \Rightarrow \quad f=2 r
$$

$$
\mathcal{M} \Rightarrow \quad \frac{1}{f}+\frac{1}{f}=\frac{2}{f}=\frac{1}{r} \quad \Rightarrow \quad f_{e q}=r
$$

（R）$\sqrt{f}=\left(\frac{3}{2}-1\right)\left(-\frac{1}{r}\right)=-\frac{1}{2 r} \quad f=-2 r$

$$
\square \square \frac{1}{f_{e q}}=\frac{1}{f}+\frac{1}{f}=-\frac{2}{2 r} \quad \Rightarrow \quad f_{e q}=-r
$$

（S）

Ans．（B）$\quad \mathrm{P}-2 \quad \mathrm{Q}-4 \quad \mathrm{R}-3 \quad \mathrm{~S}-1$

Resonance Eduventures Pvt．Ltd．

CORPORATE OFFICE ：CG Tower，A－46 \＆52，IPIA，Near City Mall，Jhalawar Road，Kota（Raj．）－ 324005 Tel．No．：0744－3192222，3012222，3022222｜Toll Free ： 18002002244 ｜To Know more ：sms RESO at 56677 Website ：www．resonance．ac．in｜Email ：contact＠resonance．ac．in
20. A block of mass $m_{1}=1 \mathrm{~kg}$ another mass $m_{2}=2 \mathrm{~kg}$, are placed together (see figure) on an inclined plane with angle of inclination θ. Various values of θ are given in List I. The coefficient of friction between the block m_{1} and the plane is always zero. The coefficient of static and dynamic friction between the block m_{2} and the plane are equal to $\mu=0.3$. In List II expression for the friction on block m_{2} given. Match the correct expression of the friction in List II with the angles given in List I, and choose the correct option. The acceleration due to gravity is denoted by g .
[Useful information : $\tan \left(5.5^{\circ}\right) \approx 0.1 ; \tan \left(11.5^{\circ}\right) \approx 0.2 ; \tan \left(16.5^{\circ} \approx 0.3\right)$]
एक आनत तल पर, जिसका आनत कोण 0 है, द्रव्यमान $m_{1}=1 \mathrm{~kg}$ तथा द्रव्यमान $m_{2}=2 \mathrm{~kg}$ के दो खंड आपस में सटाकर रखे गए है। (जैसा कि चित्र में दिखाया गया है) कोण θ के विभिन्न मान सूची । में दिए गए है। खंड m_{1} तथा आनत तल के बीच घर्षण गुणांक सदैव शून्य है। खंड m_{2} तथा आनत तल के बीच स्थैतिक तथा गतिक घर्षण गुणांक $\mu=0.3$ समान है। सूची II में खंड m_{2} पर लगने वाले घर्षण बल के व्यंजक दिए है। सूची II से सुमेलित कीजिए तथा सूचियों के नीचे दिए गए कोण का प्रयोग करके सही उत्तर चुनिए। गुरूत्वीय त्वरण g से अंकित है।
[आवश्यक आँकड़ें : $\tan \left(5.5^{\circ}\right) \approx 0.1 ; \tan \left(11.5^{\circ}\right) \approx 0.2 ; \tan \left(16.5^{\circ} \approx 0.3\right)$]

List-I

सूची-I
P. $\quad 0=5^{\circ}$
Q. $\quad 0=10^{\circ}$
R. $\quad 0=15^{\circ}$
S. $\quad \theta=20^{\circ}$

Code:
(A) P-1, Q-1, R-1,S-3
(B) P-2, Q-2, R-2,S-3
(C) P-2, Q-2, R-2,S-4
(D) P-2, Q-2, R-3,S-3

List-II

सूची-II

1. $\mathrm{m}_{2} \mathrm{~g} \sin \theta$
2. $\left(m_{1}+m_{2}\right) g \sin \theta$
3. $\mu \mathrm{m}_{2} \mathrm{~g} \cos \theta$
4. $\mu\left(m_{1}+m_{2}\right) g \cos \theta$

Ans. (D)

Resonance Eduventures Pvt. Ltd.

Sol. Block will not slip if

$$
\left(m_{1}+m_{2}\right) g \sin \theta \leq \mu m_{2} g \cos \theta
$$

$3 \sin \theta \leq\left(\frac{3}{10}\right)(2) \cos \theta$
$\tan \theta \leq \frac{1}{5} \quad \Rightarrow \quad \theta \leq 11.5^{\circ}$
$(P) \theta=5^{\circ} \quad$ friction is static $\quad f=\left(m_{1}+m_{2}\right) g \sin \theta$
(Q) $\theta=10^{\circ} \quad$ friction is static $\quad f=\left(m_{1}+m_{2}\right) g \sin \theta$
(R) $\theta=15^{\circ} \quad$ friction is kinetic $\quad f=\mu m_{2} g \cos \theta$
(S) $\theta=20^{\circ} \quad$ friction is kinetic $\quad \mathrm{f}=\mu \mathrm{m}_{2} \mathrm{~g} \cos \theta$

Ans.
(D)
P-2
Q-2
R-3
$S-3$

ब्लॉक नहीं फिसलेगा यदि
$\left(m_{1}+m_{2}\right) g \sin \theta \leq \mu m_{2} g \cos \theta$
$3 \sin \theta \leq\left(\frac{3}{10}\right)(2) \cos \theta$
$\tan \theta \leq \frac{1}{5} \quad \Rightarrow \quad \theta \leq 11.5^{\circ}$
(P) $\theta=5^{\circ}$ स्थैतिक घर्षण
$f=\left(m_{1}+m_{2}\right) g \sin \theta$
(Q) $\theta=10^{\circ}$ स्थैतिक घर्षण
$f=\left(m_{1}+m_{2}\right) g \sin \theta$
(R) $\theta=15^{\circ}$ गतिक घर्षण
$\mathrm{f}=\mu \mathrm{m}_{2} \mathrm{~g} \cos \theta$
(S) $\theta=20^{\circ}$ गतिक घर्षण
$\mathrm{f}=\mu \mathrm{m}_{2} \mathrm{~g} \cos \theta$
Ans. (D) $\quad \mathrm{P}-2 \quad \mathrm{Q}-2 \quad \mathrm{R}-3 \quad \mathrm{~S}-3$

Resonance Eduventures Pvt. Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Tel. No. : 0744-3192222, 3012222, 3022222 | Toll Free : 18002002244 | To Know more : sms RESO at 56677

PART II : CHEMISTRY

Atomic masses: $[\mathrm{H}=1, \mathrm{D}=2, \mathrm{Li}=7, \mathrm{C}=12, \mathrm{~N}=14, \mathrm{O}=16, \mathrm{~F}=19, \mathrm{Na}=23, \mathrm{Mg}=24, \mathrm{Al}=27$, $\mathrm{Si}=28, \mathrm{P}=31, \mathrm{~S}=32, \mathrm{Cl}=35.5, \mathrm{~K}=39, \mathrm{Ca}=40, \mathrm{Cr}=52, \mathrm{Mn}=55, \mathrm{Fe}=56, \mathrm{Cu}=63.5, \mathrm{Zn}=65, \mathrm{As}=$ $75, \mathrm{Br}=80, \mathrm{Ag}=108, \mathrm{I}=127, \mathrm{Ba}=137, \mathrm{Hg}=200, \mathrm{~Pb}=207]$

SECTION-1 : (Only One option correct Type)
 खण्ड-1 : (केवल एक सही विकल्प प्रकार)

This section contains 10 multiple choice questions. Each question has four choices (A), (B), (C) and (D) out of which ONLY ONE is correct.

इस खण्ड में 10 बहुविकल्प प्रश्न हैं। प्रत्येक प्रश्न में चार विकल्प (A), (B), (C) और (D) हैं, जिनमें से केवल एक सही है।
21. Assuming $2 s-2 p$ mixing is NOT operative, the paramagnetic species among the following is :

यह मानते हुए कि $2 s-2 p$ का मिश्रण क्रियाकारी (operative) नहीं है, निम्न में अनुचुम्बकीय (paramagnetic) अवयव (species) है :
(A) Be_{2}
(B) B_{2}
(C) C_{2}
(D) N_{2}

Ans. (C)
Sol. If $2 \mathrm{~s}-2 \mathrm{p}$ mixing is not operative, the increasing order of Molecular orbitals will be :
$\sigma 1 \mathrm{~s}^{2}, \sigma^{*} 1 \mathrm{~s}^{2}, \sigma 2 \mathrm{~s}^{2}, \sigma^{*} 2 \mathrm{~s}^{2}, \sigma 2 \mathrm{P}_{\mathrm{x}}^{2}\left[\begin{array}{l}\pi 2 p_{\mathrm{y}}^{1} \\ \pi 2 p_{\mathrm{z}}^{1}\end{array}\right]$
Considering this $\mathrm{Be}_{2} \& \mathrm{~B}_{2}$ become diamagnetic, so does N_{2}. Only C_{2} would be paramagnatic with electronic configuration as above
हल यदि $2 s-2 p$ मिश्रण क्रियान्वित नहीं होता है, तो आणविक कक्षकों का आरोही क्रम निम्न होगा

$$
\sigma 1 s^{2}, \sigma^{*} 1 s^{2}, \sigma 2 s^{2}, \sigma^{*} 2 s^{2}, \sigma 2 P_{x}^{2}\left[\begin{array}{l}
\pi 2 p_{y}^{1} \\
\pi 2 p_{z}^{1}
\end{array}\right]
$$

Be_{2} व B_{2} प्रतिचुम्बकीय है, ऐसा ही N_{2} के साथ होता है। केवल उपरोक्त इलेक्ट्रॉनिक विन्यास के साथ C_{2} अनुचुम्बकीय होगा।
22. For the process

$$
\mathrm{H}_{2} \mathrm{O}(\ell) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

at $\mathrm{T}=100^{\circ} \mathrm{C}$ and 1 atmosphere pressure, the correct choice is :
(A) $\Delta \mathrm{S}_{\text {system }}>0$ and $\Delta \mathrm{S}_{\text {surroundings }}>0$
(B) $\Delta \mathrm{S}_{\text {system }}>0$ and $\Delta \mathrm{S}_{\text {surroundings }}<0$
(C) $\Delta \mathrm{S}_{\text {system }}^{\text {system }}<0$ and $\Delta \mathrm{S}_{\text {surroundings }}^{\text {surroundings }}>0$
(D) $\Delta \mathrm{S}_{\text {system }}^{\text {sytem }}<0$ and $\Delta \mathrm{S}_{\text {surroundings }}^{\text {surn }}<0$

तापमान $\mathrm{T}=100^{\circ} \mathrm{C}$ तथा 1 वायुमंडलीय दाब पर प्रक्रम $\mathrm{H}_{2} \mathrm{O}(\ell) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ के लिए सही विकल्प है :
(A) $\Delta S_{\text {प्रणाली }}>0$ और $\Delta S_{\text {परिवेश }}>0$
(B) $\Delta S_{\text {प्रणाली }}>0$ और $\Delta S_{\text {परिवेश }}<0$
(C) $\Delta \mathrm{S}_{\text {प्रणाली }}<0$ और $\Delta \mathrm{S}_{\text {परिवेश }}>0$
(D) $\Delta \mathrm{S}_{\text {प्रणाली }}<0$ और $\Delta \mathrm{S}_{\text {परिवेश }}<0$

Ans. (B)
Sol. For $\mathrm{H}_{2} \mathrm{O}(\ell) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ at $\mathrm{T}=100^{\circ} \mathrm{C}$, 1atm
equilibrium exists. $\therefore \Delta G=0, \Delta H-T \Delta S=0$
$\Delta H=T \Delta S>0$ for system, since evaporation is endothermic
$\therefore(\Delta \mathrm{S})_{\text {system }}>0$, also $(\Delta \mathrm{S})_{\text {surrounding }}=\frac{\mathrm{q}_{\text {surr }}}{\mathrm{T}_{\text {surr }}}$
Heat gained by system = heat lost by surroundings
$\therefore \mathrm{q}_{\text {surr. }}<0 \therefore(\Delta \mathrm{~S})_{\text {surr. }}<0$

Resonance Eduventures Pvt. Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Tel. No. : 0744-3192222, 3012222, 3022222 | Toll Free : 18002002244 | To Know more : sms RESO at 56677 Website : www.resonance.ac.in | Email : contact@resonance.ac.in

This solution was download from Resonance JEE ADVANCED 2014 Solution portal

हल $\quad \mathrm{T}=100^{\circ}, 1 \mathrm{~atm}$ पर
$\mathrm{H}_{2} \mathrm{O}(\ell) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ के लिये साम्य स्थापित होता है $\therefore \Delta \mathrm{G}=0, \Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}=0$
तन्त्र के लिए $\Delta H=T \Delta S>0$, चूंकि वाष्पन ऊष्माशोषी होता है।
$\therefore(\Delta \mathrm{S})_{\text {तंत्र }}>0$, साथ ही $(\Delta \mathrm{S})_{\text {परिवेश }}=\frac{\mathrm{q}_{\text {परिवेश }}}{\mathrm{T}_{\text {परिेश }}}$
तंत्र द्वारा प्राप्त ऊष्मा $=$ परिवेश द्वारा हृासित ऊष्मा
$\therefore \mathrm{q}_{\text {परिवेश }}<0 \therefore(\Delta \mathrm{~S})_{\text {परिवेश }}<0$
23. For the elementary reaction $\mathbf{M} \rightarrow \mathbf{N}$, the rate of disappearance of \mathbf{M} increases by a factor of 8 upon doubling the concentration of \mathbf{M}. The order of the reaction with respect to \mathbf{M} is :
सरल अभिक्रिया $\mathbf{M} \rightarrow \mathbf{N}$ के लिए, \mathbf{M} की सान्द्रता दो गुनी करने पर \mathbf{M} की विलोपन दर (rate of disappearance) 8 गुना बढ़ जाती है। \mathbf{M} के सापेक्ष अभिक्रिया की कोटि (order of the reaction) है।
(A) 4
(B) 3
(C) 2
(D) 1

Ans. (B)
Sol. $M \longrightarrow N$
$r=K[M]^{x}$
as [M] is doubled, rate increases by a factor of 8 .
$\begin{array}{ll}\text { i.e. } & 8 r=K[2 M]^{x} \\ \Rightarrow & 8=(2)^{x} \\ & x=3\end{array}$
Sol. $M \longrightarrow N$
$r=K[M]^{x}$
[M] दुगुना होते ही दर के गुणांक में 8 से वृद्धि हो जाती है।
अर्थात् $\quad 8 r=K[2 M]^{x}$
$\Rightarrow \quad 8=(2)^{x}$

$$
x=3
$$

24. For the identification of β-naphthol using dye test, it is necesary to use :
(A) dichloromethane solution of β-naphthol.
(B) acidic solution of β-naphthol.
(C) neutral solution of β-naphthol.
(D) alkaline solution of β-naphthol.

डाई टेस्ट में β-नैफ्थाल को पहचानने के लिए प्रयोग करना आवश्यक है :
(A) β-नैफ्थाल का डाइक्लोरोमिथेन विलयन
(B) β-नैफ्थाल का अम्लीय विलयन
(C) β-नैफ्थाल का उदासीन विलयन
(D) β-नैफ्थाल का क्षारीय विलयन

Ans. (D)
Sol. In dye test, phenolic -OH is converted to $-\mathrm{O}^{\ominus}$, which activates the ring towards EAS. This is possible only in alkaline solution. Hence (D).
हल. रंजक परीक्षण में, फिनॉलिक -OH समूह - O^{\ominus} में परिवर्तित हो जाता है जो वलय को EAS के प्रति सक्रिय कर देता है। यह केवल क्षारीय विलयन में ही सम्भव है। अतः उत्तर (D) होगा।
25. Isomers of hexane, based on their branching, can be divided into three distinct classes as shown in the figure.
[Figure]
I

The correct order of their boiling point is
(A) I $>$ II $>$ III
(B) III $>$ II $>$ I
(C) II $>$ III $>$ I
(D) III $>$ I $>$ II

Resonance Eduventures Pvt. Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Tel. No. : 0744-3192222, 3012222, 3022222 | Toll Free : 18002002244 | To Know more : sms RESO at 56677 Website : www.resonance.ac.in | Email : contact@resonance.ac.in

हैक्सेन के समावयवों (Isomers) को उनके शाखाओं के आधार पर नीचे दर्शाये चित्र की भाँति तीन भिन्न वर्गो में विभाजित किया जा सकता है।

उनके क्वथनांक (boiling point) का सही क्रम है
(A) I $>$ II $>$ III
(B) III $>$ II $>$ I
(C) II $>$ III $>$ I
(D) III $>$ I $>$ II

Ans. (B)
Sol. Greater the extent of branching, lesser is the boiling point of hydrocarbon.
Hence III $>$ II $>$ I
हल. हाइड्रोकार्बन में जितना ज्यादा श्रृंखलन होगा, हाइड्रोकार्बन का क्वथनांक बिन्दु उतना ही कम होगा। अतः III > II > I
26. The acidic hydrolysis of ether (X) shown below is fastest when :
[Figure]

(A) one phenyl group is replaced by a methyl group.
(B) one phenyl group is replaced by a para-methoxyphenyl group.
(C) two phenyl groups are replaced by two para-methoxyphenyl groups.
(D) no structural change is made to X.

नीचे दिये ईथर (X) का अम्लीय जल अपघटन (hydrolysis) तीव्रतम है जब

(A) एक फेनिल समूह को एक मेथिल समूह द्वारा प्रतिस्थापित किया गया हो।
(B) एक फेनिल समूह को एक पैरा-मिथाक्सीफेनिल समूह द्वारा प्रतिस्थापित किया गया हो।
(C) दो फेनिल समूह को दो पैरा-मिथाक्सीफेनिल समूह द्वारा प्रतिस्थापित किया गया हो।
(D) X में कोई संरचनात्मक बदलाव न किया गया हो।

Ans. (C)

Sol.

The reaction proceeds by $S_{N} 1$ Mechanism :

Greater the electron releasing effect of the attached groups greater is the stability of intermediate carbocation, \& faster is the rate of reaction.

If two ph- groups are replaced by $\mathrm{MeO}-\mathrm{O}$ - groups, strong + M effect of $\mathrm{MeO}-$ groups stablize, the carbocation better there by making the reaction faster.

हल.

उपरोक्त अभिक्रिया $S_{N} 1$ क्रियाविधि द्वारा होती है।

संलग्न समूह का जितना ज्यादा इलेक्ट्रॉन प्रतिकर्षी प्रभाव होगा, मयध्यवर्ती कार्बधनायन का स्थायित्व उतना ही ज्यादा होगा तथा अभिक्रिया की दर भी तीव्र होगी।

यदि दो $\mathrm{ph}-$ समूह को $\mathrm{MeO}-\mathrm{O}$ - समूह के द्वारा प्रतिस्थापित कर दिया जाये, $\mathrm{MeO}-$ प्रबल +M कार्बधनायन का अच्छे प्रकार से स्थायीकरण करता है। जिसके परीणामस्वरूप अभिक्रिया तीव्र दर से होगी।
27. Hydrogen peroxide in its reaction with KIO_{4} and $\mathrm{NH}_{2} \mathrm{OH}$ respectively, is acting as a
(A) reducing agent, oxidising agent
(B) reducing agent, reducing agent
(C) oxidising agent, oxidising agent
(D) oxidising agent, reducing agent

हाइड्रोजन पेराक्साइड की क्रमशः KIO_{4} एवं $\mathrm{NH}_{2} \mathrm{OH}$ से अभिक्रिया में, यह कार्य कर रहा है
(A) अपचायक (reducing agent) की तरह, ऑक्सीकारक (oxidising agent) की तरह
(B) अपचायक की तरह, अपचायक की तरह
(C) ऑक्सीकारक की तरह, ऑक्सीकारक की तरह
(D) ऑक्सीकारक की तरह, अपचायक की तरह

Ans. (A)
Sol. $\quad \mathrm{KIO}_{4}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{KIO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
$\mathrm{H}_{2} \mathrm{O}_{2}$ acts as a reductant
$2 \mathrm{NH}_{2} \mathrm{OH}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{~N}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{H}_{2} \mathrm{O}_{2}$ acts as an oxidant.
Sol. $\quad \mathrm{KIO}_{4}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{KIO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
$\mathrm{H}_{2} \mathrm{O}_{2}$ अपचायक की तरह कार्य करता है।
$2 \mathrm{NH}_{2} \mathrm{OH}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{~N}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{H}_{2} \mathrm{O}_{2}$ ऑक्सीकारक की तरह कार्य करता है।

Resonance Eduventures Pvt. Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Tel. No. : 0744-3192222, 3012222, 3022222 | Toll Free : 18002002244 | To Know more : sms RESO at 56677 Website : www.resonance.ac.in | Email : contact@resonance.ac.in
28. The major product in the following reaction is :
[Figure]

(A)

(B)

(C)

(D)

निम्न अभिक्रिया में मुख्य उत्पाद है :

(A)

(B)

(C)

(D)

Ans. (D)

Sol.

Resonance Eduventures Pvt. Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Tel. No. : 0744-3192222, 3012222, 3022222 | Toll Free : 18002002244 | To Know more : sms RESO at 56677
29. Under ambient conditions, the total number of gases released as products in the final step of the reaction scheme shown below is :

(A) 0
(B) 1
(C) 2
(D) 3

परिवेशी अवस्था (ambient conditions) पर नीचे दर्शाये अभिक्रिया प्रणाली के आखिरी चरण में उत्पाद के रूप में निर्मुक्त गैसों की सम्पूर्ण संख्या है :

(A) 0
(B) 1
(C) 2
(D) 3

Ans. (C)
Sol. $\mathrm{XeF}_{6} \xrightarrow[\text { Hydrolysis }]{\text { Complete }} \mathrm{XeO}_{3}+\mathrm{HF}$

हल. $\mathrm{XeF}_{6} \xrightarrow[\text { जूल अपघटन }]{\text { पूर्णरूप से }} \mathrm{XeO}_{3}+\mathrm{HF}$

30. The product formed in the reaction of SOCl_{2} with white phosphorous is :
SOCl_{2} की सफेद फास्फोरस की अभिक्रिया से बना उत्पाद है :
(A) PCl_{3}
(B) $\mathrm{SO}_{2} \mathrm{Cl}_{2}$
(C) SCl_{2}
(D) POCl_{3}

Ans. (A)
Sol. $\mathrm{P}_{4}+8 \mathrm{SOCl}_{2} \rightarrow 4 \mathrm{PCl}_{3}+4 \mathrm{SO}_{2} \mathrm{~S}_{2} \mathrm{Cl}_{2} \quad$ (NCERT Reaction) (NCERT अभिक्रिया)

SECTION - 2 : Comprehension Type (Only One Option Correct)
 खण्ड-2: अनुच्छेद प्रकार (केवल एक विकल्प सही)

This section contains 3 paragraphs each describing theory, experiment, data etc. Six questions relate to three paragraphs with two questions on each paragraph. Each question has only one correct answer among the four given options (A), (B), (C) and (D).
इस खण्ड में सिद्धांतों, प्रयोगों और आँकड़ों आदि को दर्शाने वाले 3 अनुच्छेद है। तीनों अनुच्छेदों से संबंधित छ: प्रश्न हैं, जिनमें से हर अनुच्छेद पर दो प्रश्न हैं। किसी भी अनुच्छेद में हर प्रश्न के चार विकल्प (A), (B), (C) और (D) हैं, जिनमें से केवल एक ही सही है।

Paragraph for questions 31 and 32
X and Y are two volatile liquids with molar weights of $10 \mathrm{~g} \mathrm{~mol}^{-1}$ and $40 \mathrm{~g} \mathrm{~mol}^{-1}$ respectively. Two cotton plugs, one soaked in \mathbf{X} and the other soaked in Y, are simultaneously placed at the ends of a tube of length $\mathbf{L}=24 \mathrm{~cm}$, as shown in the figure. The tube is filled with an inert gas at 1 atmosphere pressure and a temperature of 300 K . Vapours of \mathbf{X} and \mathbf{Y} react to form a product which is first observed at a distance $\mathbf{d} \mathrm{cm}$ from the plug soaked in \mathbf{X}. Take \mathbf{X} and \mathbf{Y} to have equal molecular diameters and assume ideal behaviour for the inert gas and the two vapours.

प्रश्न संख्या 31 और 32 के लिए अनुच्छेद
\mathbf{X} और \mathbf{Y}, क्रमशः 10 g मोल $^{-1}$ एवं 40 g मोल $^{-1}$ के वाष्पशील द्रव हैं। दो रूई के प्लग, एक \mathbf{X} में भिगोये हुए तथा दूसरा \mathbf{Y} में भिगोये हुए, चित्र में दर्शाये अनुसार 24 cm लम्बी एक ट्यूब के दोनों छोरों पर युग्पथ लगे हैं। ट्यूब में एक अक्रिय गैस 1 वायुमण्डलीय दबाव (atmosphere pressure) तथा 300 K के तापक्रम पर भरी है। X और Y की वाष्प अभिकृत होकर एक उत्पाद बनाती है जो \mathbf{X} में भीगे प्लग से $\mathbf{d ~ c m}$ की दूरी पर पहले दिखती है। \mathbf{X} और \mathbf{Y} के आण्विक व्यास (molecular diameters) समान लीजिए तथा अक्रिय गैस एवं दोनों वाष्पों का आदर्श आचरण (ideal behaviour) मानिए।

Resonance Eduventures Pvt. Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Tel. No. : 0744-3192222, 3012222, 3022222 | Toll Free : 18002002244 | To Know more : sms RESO at 56677 Website : www.resonance.ac.in | Email : contact@resonance.ac.in

[^1]
31. The value of \mathbf{d} in cm (shown in the figure), as estimated from Graham's law, is: ग्राहम के नियम से आँकलित \mathbf{d} का मान (दिखाये चित्र में) $\mathbf{c m}$ में है
(A) 8
(B) 12
(C) 16
(D) 20

Ans. (C)
Sol. According to Grham's law, if all conditions are identical,
$r \propto \frac{1}{\sqrt{M}}$
As in this question, all conditions are identical for X and Y, it will be followed
Hence $\frac{r_{x}}{r_{y}}=\sqrt{\frac{M_{y}}{M_{x}}}$
$\frac{d}{24-d}=\sqrt{\frac{40}{10}}$
$\frac{d}{24-d}=2$
$\mathrm{d}=48-2 \mathrm{~d}$
$3 \mathrm{~d}=48$
$\mathrm{d}=16 \mathrm{~cm}$.
हलः ग्राहम नियमानुसार, यदि सभी परिस्थितयाँ समान होती हैं,
$r \propto \frac{1}{\sqrt{M}}$
प्रश्न में X व Y के लिए सभी परिरिथतियाँ समान होती हैं, यह निम्न का पालन करता है
अतः $\frac{r_{x}}{r_{y}}=\sqrt{\frac{M_{y}}{M_{x}}}$
$\frac{d}{24-d}=\sqrt{\frac{40}{10}}$
$\frac{d}{24-d}=2$
$\mathrm{d}=48-2 \mathrm{~d}$
$3 d=48$
$\mathrm{d}=16 \mathrm{~cm}$.

| Resonance Eduventures Pvt. Ltd. |
| ---: | ---: |
| CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 |
| Tel. No. : 0744-3192222, 3012222, 3022222 \| Toll Free : 18002002244 | To Know more : sms RESO at 56677 |
| Website : www.resonance.ac.in \| Email : contact@resonance.ac.in |

32．The experimental value of \mathbf{d} is found to be smaller than the estimate obtained using Graham＇s law．This is due to ：
（A）larger mean free path for \mathbf{X} as compared to that of \mathbf{Y} ．
（B）larger mean free path for \mathbf{Y} as compared to that of \mathbf{X} ．
（C）increased collision frequency of \mathbf{Y} with the inert gas as compared to that of \mathbf{X} with the inert gas．
（D）increased collision frequency of \mathbf{X} with the inert gas as compared to that of \mathbf{Y} with the inert gas．
ग्राहम के नियम को लगाने से मिले आँकलन（extimate）की अपेक्षा \mathbf{d} का प्रायोगिक मान कम पाया गया। इसका कारण है
（A） \mathbf{Y} की अपेक्षा \mathbf{X} का अधिक माध्य मुक्त पथ（mean free path）।
（B） \mathbf{X} की अपेक्षा \mathbf{Y} का अधिक माध्य मुक्त पथ（mean free path）।
（C） \mathbf{X} की अपेक्षा \mathbf{Y} की अक्रिय गैस के साथ बढ़ी संघट्टन आवृत्ति（collision frequency）।
（D） \mathbf{Y} की अपेक्षा \mathbf{X} की अक्रिय गैस के साथ बढ़ी संघट्टन आवृत्ति（collision frequency）।
Ans．（D）
Sol．The general formula of mean free path (λ) is

$$
\begin{array}{ll}
\lambda=\frac{R T}{\sqrt{2} \pi d^{2} N_{A} P} & (d=\text { diameter of molecule } \\
& p=\text { pressure inside the vessel }) .
\end{array}
$$

$\because d \& p$ are same for both gases，ideally their λ are same．Hence it must be the higher drift speed of X due to which it is seeing more collisions per second，with the inert gas in comparison to gas Y ．So X see comparably more resistance from noble gas than Y and hence covers lesser distance than that predicted by Graham＇s Law．
हल．माध्य मुक्त पथ (λ) का सामान्य सूत्र

$$
\begin{array}{ll}
\lambda=\frac{R T}{\sqrt{2} \pi d^{2} N_{A} P} & (d=\text { अणु का व्यास } \\
& p=\text { पात्र के अन्दर दाब }) .
\end{array}
$$

$\because \quad$ दोनों गैसों के लिए d व p समान होते हैं，इसलिए λ समान होता है।
अतः X के लिए उच्च अपवाही वेग होना चाहिए जिसके कारण Y की अपेक्षा अक्रिय गैस के साथ प्रति सैकण्ड अधिक टक्कर देखने को मिलती है। इसलिए यहाँ X में Y की तुलना में उत्कृष्ट गैस से अधिक प्रतिरोध दर्शाता है व इसलिए ग्राहम नियम द्वारा बतायी गयी दूरी की तुलना में कम दूरी तक जाता है।

Paragraph for questions 33 and 34

Schemes 1 and 2 describe sequential transformation of alkynes \mathbf{M} and \mathbf{N} ．Consider only the major products formed in each step for both the schemes．

Resonance Eduventures Pvt．Ltd．

प्रश्न संख्या 33 और 34 के लिए अनुच्छेद

योजनाएँ $\mathbf{1}$ तथा $\mathbf{2}$ एल्काइनों \mathbf{M} एवं \mathbf{N} के अनुक्रमिक रूपान्तरण (sequential transformation) को दर्शाती है। दोनों योजनाओं के प्रत्येक पद के लिए केवल मुख्य उत्पाद पर विचार कीजिए।

33. The product \mathbf{X} is :

उत्पाद \mathbf{X} है
(A)

(B)

(C)

(D)

Ans. (A)

Sol.

(X)

34. The correct statement with respect to product \mathbf{Y} is :
(A) It gives a positive Tollens test and is a functional isomer of \mathbf{X}.
(B) It gives a positive Tollens test and is a geometrical isomer of \mathbf{X}.
(C) It gives a positive iodoform test and is a functional isomer of \mathbf{X}.
(D) It gives a positive iodoform test and is a geometrical isomer of \mathbf{X}.

उत्पाद \mathbf{Y} के संबंध में सत्य कथन है
(A) यह धनात्मक टॉलेन्स टेस्ट देता है तथा \mathbf{X} का क्रियात्मक समावयव (functional isomer) है।
(B) यह धनात्मक टॉलेन्स टेस्ट देता है तथा \mathbf{X} का ज्यामितीय समावयव (geometrical isomer) है।
(C) यह धनात्मक आयोडोफार्म टेस्ट देता है तथा \mathbf{X} का क्रियात्मक समावयव है।
(D) यह धनात्मक आयोडोफार्म टेस्ट देता है तथा \mathbf{X} का ज्यामितीय समावयव है।

Ans. (C)

Sol.

(Y) can answer iodoform test (but not Tollen's test and it is a functional isomer of (X)
(Y) आयोडोफॉर्म परीक्षण देता है (लेकिन टॉलेन परीक्षण नहीं देता है तथा यह (X) का एक क्रियात्मक समावयवी है ।)

Paragraph For question 35 to 36

An aqueous solution of metal ion $\mathbf{M 1}$ reacts separately with reagents \mathbf{Q} and \mathbf{R} in excess to give tetrahedral and square planar complexes, respectively. An aqueous solution of another metal ion M2 always forms tetrahedral complexes with these reagents. Aqueous solution of $\mathbf{M} 2$ on reaction with reagent \mathbf{S} gives white precipitate which dissolves in excess of \mathbf{S}. The reactions are summarized in the scheme given below:

SCHEME:

S, stoichiometric amount White precipitate $\xrightarrow[\text { excess }]{\mathrm{s}}$ precipitate dissolves

Resonance Eduventures Pvt. Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Tel. No. : 0744-3192222, 3012222, 3022222 | Toll Free : 18002002244 | To Know more : sms RESO at 56677 Website : www.resonance.ac.in | Email : contact@resonance.ac.in

प्रश्न संख्या 35 और 36 के लिए अनुच्छेद

एक धातु आयन $\mathbf{M 1}$ का जलीय विलयन अलग-अलग \mathbf{Q} तथा \mathbf{R} अभिकर्मकों की अधिकता में अभिक्रिया करके क्रमशः चतुष्फलकीय एवं वर्ग समतली संकुल बनाते हैं। दूसरे धातु आयन M2 का जलीय विलयन दोनों अभिकर्मकों के साथ अभिक्रिया करके हमेशा चतुष्फलकीय संकुल बनाता है। $\mathbf{M 2}$ का जलीय विलयन अभिकर्मक \mathbf{S} से अभिक्रिया करके सफेद अवक्षेप देता है जो \mathbf{S} की अधिकता में घुल जाता है। अभिक्रियाएँ नीचे दी गई योजना में दर्शायी गई है।
योजना :

S, रससमीकरणीय मात्रा (stoichiometric amount)

$$
\begin{array}{ccc}
\text { सफेद अवक्षेप } & \mathrm{S} \\
\cline { 2 - 2 }
\end{array} \quad \begin{gathered}
\text { अधिकता में }
\end{gathered} \begin{gathered}
\text { घुल जाता है } \\
\text { (precipitate dissolves) }
\end{gathered}
$$

35. $\mathbf{M} 1, \mathbf{Q}$ and \mathbf{R}, respectively are :
(A) $\mathrm{Zn}^{2+}, \mathrm{KCN}$ and HCl
(B) $\mathrm{Ni}^{2+}, \mathrm{HCl}$ and KCN
(C) $\mathrm{Cd}^{2+}, \mathrm{KCN}$ and HCl
(D) $\mathrm{Co}^{2+}, \mathrm{HCl}$ and KCN
$\mathbf{M 1}, \mathbf{Q}$ और \mathbf{R}, क्रमशः है :
(A) $\mathrm{Zn}^{2+}, \mathrm{KCN}$ तथा HCl
(B) $\mathrm{Ni}^{2^{+}}, \mathrm{HCl}$ तथा KCN
(C) $\mathrm{Cd}^{2+}, \mathrm{KCN}$ तथा HCl
(D) $\mathrm{Co}^{2+}, \mathrm{HCl}$ तथा KCN

Ans. (B)
36. Reagent \mathbf{S} is :

अभिकर्मक \mathbf{S} है :
(A) $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
(B) $\mathrm{Na}_{2} \mathrm{HPO}_{4}$
(C) $\mathrm{K}_{2} \mathrm{CrO}_{4}$
(D) KOH

Ans. (D)
(35 \& 36)

| | Resonance Eduventures Pvt. Ltd.
 CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Tel. No. : 0744-3192222, 3012222, 3022222 \| Toll Free : 18002002244 | To Know more : sms RESO at 56677 Website : www.resonance.ac.in | Email : contact@resonance.ac.in |
| :---: | :---: |

Reaction with (S) indicates amphoteric nature of M2. Amongst the options mentioned for (S) in Q.36, only KOH can give a complexing agent OH^{-}; which is its answer.
[Note: M2 may be Zn^{2+}, which (a) is amphoteric (b) has cordination number 4 and (c) always from tetrahedral complexes. It may be noted that Be^{2+} will also qualify with these characterstics]
Let us consider the possiblities of M1. M1 should be able to form square planner complex (dsp ${ }^{2}$ hybridisation) as well as tetrahedral (sp^{3}). This rules out $\mathrm{Zn}^{2+} \& \mathrm{Cd}^{2+}\left[\because \mathrm{d}^{10}\right.$ configuration will not allow dsp ${ }^{2}$ hybridization]
Ni^{2+} is most suitable
Ni^{2+} (aq.) $+4 \mathrm{CN}^{-}$(excess) $\rightleftharpoons \mathrm{Ni}(\mathrm{CN})_{4}^{2-}$ (square planner)
$\mathrm{Ni}^{2+}($ aq. $)+\mathrm{Cl}^{-}($excess $) \rightleftharpoons \mathrm{NiCl}_{4}{ }^{2-}$ (tetrahedral)
$\left[\right.$ Note $: \mathrm{Co}^{2+}+6 \mathrm{CN}^{-}$(excess) $\longrightarrow \mathrm{Co}(\mathrm{CN})_{6}^{4-}$, an octahedral compelex]

(S) के साथ-साथ अभिक्रिया M2 की उभयधर्मी प्रकृति को इंगित करती है। विकल्पों में से प्रश्न 36 में (S) के लिए वर्णित केवल KOH ही एक संकुल अभिकर्मक OH^{-}दे सकता हैं जो कि इसका उत्तर है।
[नोट : M2, Zn^{2+} हो सकता है जिसमें कि (a) उभयधर्मी है (b) समन्वय संख्या 4 रखता है व (c) हमेशा चतुष्फलकीय संकुल बनाता हैं। यह ध्यान देने योग्य हे कि Be^{2+} भी इन अभिलक्षणणों के साथ ऐसा करता हैं।
अब हम M 1 की सम्भावनाओं को देखते हैं। M 1 वर्ग समतलीय संकुल (dsp^{2} संकरण) बनाने के साथ-साथ चतुष्फलकीय $\left(\mathrm{sp}^{3}\right)$ बनाने की क्षमता भी रखता है। यह Zn^{2+} व Cd^{2+} को नकारता है। [$\because \mathrm{d}^{10}$ विन्यास dsp^{2} संकरण को लागू नही करता है।]
Ni^{2+} सबसे उपयुक्त है।
Ni^{2+} (जलीय) $+4 \mathrm{CN}^{-}$(आधिक्य) $\rightleftharpoons \mathrm{Ni}(\mathrm{CN})_{4}^{2-}$ (वर्गसमतलीय)
Ni^{2+} (जलीय) $+\mathrm{Cl}^{-}$(आधिक्य) $\rightleftharpoons \mathrm{NiCl}_{4}{ }^{2-}$ (चतुष्फलकीय)
$\left[न ो ट: \mathrm{Co}^{2+}+6 \mathrm{CN}^{-}\right.$(आधिक्य) $\longrightarrow \mathrm{Co}(\mathrm{CN})_{6}^{4-}$, एक अष्टफलकीय संकुल]

Resonance Eduventures Pvt. Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Tel. No. : 0744-3192222, 3012222, 3022222 | Toll Free : 18002002244 | To Know more : sms RESO at 56677 Website : www.resonance.ac.in | Email : contact@resonance.ac.in

SECTION - 3 : Matching List Type (One One Option Correct)

खण्ड-3: सुमेलन सूची प्रकार (केवल एक विकल्प सही)
This section contains four questions, each having two matching lists. Choices for the correct combination of elements from List-I and List-II are given as option (A), (B), (C) and (D) out of which one is correct.
इस खण्ड में 4 बहुविकल्प प्रश्न है। प्रत्येक प्रश्न में दो सुमेलन सूचियाँ है। सूचियों के लिए कूट के विकल्प (A), (B), (C) तथा (D) है , जिनमें से केवल सिर्फ एक सही है।
37. Match each coordination compound in List-I with an appropriate pair of characteristics from List-II and select the correct answer using the code given below the lists.
$\left\{\mathrm{en}=\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right.$; atomic numbers : $\left.\mathrm{Ti}=22 ; \mathrm{Cr}=24 ; \mathrm{Cp}=27 ; \mathrm{Pt}=78\right\}$

List-I

P. $\left.\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right) \mathrm{Cl}\right]$
Q. $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right]\left(\mathrm{NO}_{3}\right)_{2}$
R. $\left[\mathrm{Pt}(\mathrm{en})\left(\mathrm{NH}_{3}\right) \mathrm{Cl}_{3} \mathrm{NO}_{3}\right.$
S. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{NO}_{3}\right)_{2}\right] \mathrm{NO}_{3}$

List-II

1. Paramagnetic and exhibits ionisation isomerism
2. Diamagentic and exhibits cis-trans isomerism
3. Paramagentic and exhibits cis-trans isomerism
4. Diamagentic and exhibits ionisation isomerism

Code :

	P	Q	R	S
(A)	4	2	3	1
(B)	3	1	4	2
(C)	2	1	3	4
(D)	1	3	4	2

सूची-। के प्रत्येक उपसहसंयोजन यौगिक (coordination compound) को सूची-II की उपयुक्त विशेषताओं की जोड़ी से सुमेलित कीजिए तथा सूचियों के नीचे दिये कोड का प्रयोग करके सही उत्तर चुनिये :
$\left\{\mathrm{en}=\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right.$; परमाणु संख्या : $\left.\mathrm{Ti}=22 ; \mathrm{Cr}=24 ; \mathrm{Cp}=27 ; \mathrm{Pt}=78\right\}$

सूची-I
P. $\left.\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right) \mathrm{Cl}\right]$
Q. $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right]\left(\mathrm{NO}_{3}\right)_{2}$
R. $\left[\mathrm{Pt}(\mathrm{en})\left(\mathrm{NH}_{3}\right) \mathrm{Cl}_{3} \mathrm{NO}_{3}\right.$
S. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{NO}_{3}\right)_{2}\right] \mathrm{NO}_{3}$

सूची-II

1. अनुचुम्बकीय (Paramagnetic) तथा आयनन समावयवता (ionisation isomerism) दर्शाता है।
2. प्रतिचुम्बकीय (Diamagentic) तथा समपक्ष-विपक्ष (cis-trans) समावयवता दर्शाता है।
3. अनुचुम्बकीय तथा समपक्ष-विपक्ष समावयवता दर्शाता है।
4. प्रतिचुम्बकीय तथा आयनन समावयवता दर्शाता है।

कोड:

	P	Q	R	S
(A)	4	2	3	1
(B)	3	1	4	2
(C)	2	1	3	4
(D)	1	3	4	2

Ans. (B)
Sol. (P) $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl} \longrightarrow \mathrm{Cr}^{+3}$ is d^{3}. It is paramagnetic and it shows cis-trans isomerism.
(Q) $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right]\left(\mathrm{NO}_{3}\right)_{2} \longrightarrow \mathrm{Ti}^{+3}$ is d^{1}. It is paramagnetic and it show ionisation isomerism.
(R) $\left[\mathrm{Pt}(\mathrm{en})\left(\mathrm{NH}_{3}\right) \mathrm{Cl}\right] \mathrm{NO}_{3} \longrightarrow \mathrm{Pt}^{+2}$ is d${ }^{8}$. But this complex is square planar and all electron are paired. So it is diamagnatic. It exhibit ionisation isomerism.
(S) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{NO}_{3}\right)_{2} \mathrm{NO}_{3} \longrightarrow \mathrm{Co}^{+3}\right.$ is d d^{6}. Since ligands are strong, so electron are paired. it is diamagnetic. It exhibit cis-trans isomerism.
Ans. is (B).

Resonance Eduventures Pvt. Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Tel. No. : 0744-3192222, 3012222, 3022222 | Toll Free : 18002002244 | To Know more : sms RESO at 56677 Website : www.resonance.ac.in | Email : contact@resonance.ac.in
This solution was download from Resonance JEE ADVANCED 2014 Solution portal

Sol. (P) $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl} \longrightarrow \mathrm{Cr}^{+3} \mathrm{~d}^{3}$ है। यह अनुचुम्बकीय है व यह समपक्ष-विपक्ष समावयवता दर्शाता है।
(Q) $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right]\left(\mathrm{NO}_{3}\right)_{2} \longrightarrow \mathrm{Ti}^{+3} \mathrm{~d}^{1}$ है। यह अनुचुम्बकीय है व यह आयनन समावयवता दर्शाता है।
(R) $\left[\mathrm{Pt}(\mathrm{en})\left(\mathrm{NH}_{3}\right) \mathrm{Cl}\right] \mathrm{NO}_{3} \longrightarrow \mathrm{Pt}^{+2} \mathrm{~d}^{8}$ है। लेकिन यह संकुल वर्ग समतलीय है व सभी इलेक्ट्रॉन युग्मित हो जाते है । इसलिए यह प्रतिचुम्बकीय है। यह आयनन समावयवता प्रदर्शित करता है।
(S) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{NO}_{3}\right)_{2} \mathrm{NO}_{3} \longrightarrow \mathrm{Co}^{+3} \mathrm{~d}^{6}\right.$ है। चूंकि लिगेण्ड प्रबल होते है इसलिए इलेक्ट्रॉन युग्मित हो जाते है। यह प्रतिचुम्बकीय है। यह समपक्ष विपक्ष समावयवता प्रदर्शित करता है।
उत्तर (B) है।
38. Match the orbital overlap figures shown in List-I with the description given in List-II and select the correct answer using the code given below the lists.
P.
List-I

Q.

R.

S.

Code :

	P	Q	R	S
(A)	2	1	3	4
(B)	4	3	1	2
(C)	2	3	1	4
(D)	4	1	3	2

सूची-। में दर्शाये कक्षीय अतिव्यापन (orbital overlap) आकृति को सूची-II में दर्शाये वर्णन से सुमेल कीजिए तथा सूचियों के नीचे दिये कोड का प्रयोग करके सही उत्तर चुनिये :
सूची-।
P.

Q.

R. $8 \neq$
s. ooof

कोड :

	P	Q	R	S
(A)	2	1	3	4
(B)	4	3	1	2
(C)	2	3	1	4
(D)	4	1	3	2

Resonance Eduventures Pvt. Ltd.

Ans. (C)

Sol. \& \longrightarrow It is d-d axial overlap in same phase, so $d-d \sigma$ bonding.

\longrightarrow It is $p \& d$ lateral overlap in same phase, so it is $p-d \pi$ bonding.

$\longrightarrow I t$ is p and d lateral overlap in opposite phase, so it is $p-d \pi$ antibonding.

$\longrightarrow I t$ is $d-d$ axial overlap in opposite phase, so it is $d-d \sigma$ antibonding.

हल.

\longrightarrow यह समान प्रावस्था में $d-d$ अक्षीय अतिव्यापन रखते है, इसलिए $d-d \sigma$ बन्धन रखते है।

\longrightarrow यह समान प्रावस्था में p व d समपार्श्विक अतिव्यापन रखते है, इसलिए $p-d \pi$ बन्धन रखते है।
\longrightarrow यह विपरीत प्रावस्था में p व d समपाशिर्वक अतिवयापन रखते है, इसलिए $p-d \pi$ प्रतिबन्धित रखते है।

\longrightarrow यह विपरीत प्रावस्था में $d-d$ अक्षीय अतिव्यापन रखते है, इसलिए यह $d-d \sigma$ प्रतिबन्धित रखते है।
39. Different possible thermal decomposition pathways for peroxyesters are shwon below. Match each pathway from List I with an appropriate structure from List II and select the correct answer using the code given below the lists.

List-I

P. Pathway \mathbf{P}
Q. Pathway Q
R. Pathway R

List-II

1. C

2.

3.

Resonance Eduventures Pvt. Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Tel. No. : 0744-3192222, 3012222, 3022222 | Toll Free : 18002002244 | To Know more : sms RESO at 56677 Website : www.resonance.ac.in | Email : contact@resonance.ac.in
This solution was download from Resonance JEE ADVANCED 2014 Solution portal
S. Pathway S
4.

Code :

	P	Q	R	S
(A)	1	3	4	2
(B)	2	4	3	1
(C)	4	1	2	3
(D)	3	2	1	4

पैराक्सीईस्टर के लिए विभिन्न संभव तापीय विघटन (thermal decomposition) पथ नीचे दर्शाये गये हैं। सूची-। से प्रत्येक पथ का सूची-II में लिखित एक उपयुक्त संरचना से सुमेल कीजिए तथा सूचियों के नीचे दिये कोड का प्रयोग करके सही उत्तर चुनिये :

P. पथ \mathbf{P}
Q. पथ \mathbf{Q}
R. पथ R
S. पथ S
1.

2.

3.

4.

कोड :

	P	Q	R	S
(A)	1	3	4	2
(B)	2	4	3	1
(C)	4	1	2	3
(D)	3	2	1	4

Ans. (A)

Resonance Eduventures Pvt. Ltd.
cORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Tel. No. : 0744-3192222, $3012222,3022222 \mid$ Toll Free : 18002002244 \| To Know more : sms RESO at 56677
Website : www.resonance.ac.in \| Email : contact@resonance.ac.in

Sol. This is an excellent question, probably the best in the paper. Pyrolysis of peroxyesters is not conventionally taught anywhere for IIT-JEE preparation, not even in any standard organic chemistry course. But the question is throughly logical. It can be answered after a bit of reflection by anyone with good basics of reaction mechanism.
Four pathways for reactions are given :

Note that first homolytic fission is expected to give $\mathrm{R}-\mathrm{Cl}_{\mathrm{C}}-\mathrm{O}^{*}+\mathrm{R}^{\prime} \mathrm{O}^{\bullet}$. This is usually unstable (remember kolbe's electrolysis) and decomposes to $\mathrm{R} \cdot+\mathrm{CO}_{2}$. But $\mathrm{Ph}-\mathrm{C}-\mathrm{O}^{\circ}$ is stable, since it is a difficult bond to break. Hence in (1) \& (3), which have

radical is stable) so P or Q are possible pothways for them. For $P h-C-O-O-R(2 \& 4), R \& S$ pathways will be more likely.
$\therefore 1: P$ or Q
$2: R$ or S
2: P or Q
4:R or S

Now consider $\mathrm{R}^{\prime} \mathrm{O}^{\bullet}$. If it is $\mathrm{CH}_{3} \mathrm{O}^{\bullet}$, It cannot splite.

But
 can occur. Hence carbonyl compound will be formed
with $3 \& 4$, but not with $1 \& 2$.

$$
\begin{array}{lll}
\therefore & 1: P \text { or } S & 3: Q \text { or } R \\
& 2: P \text { or } S & 4: Q \text { or } R
\end{array}
$$

combining these options gives
1: P, 2:S, 3 : Q , 4 : R
I cannot but help commenting that such questions are those which make IIT-JEE what it is. A good motivation for students to keep thinking while studying .

Sol. यह प्रश्न इस प्रश्नपत्र का सबसे अच्छा प्रश्न है। IIT-JEE तैयारी के लिए किसी भी जगह परॉक्सीऐस्टरों के तापीय अपघटन को मुख्य रूप से नहीं पढ़ाया जाता है, यहाँ तक कि किसी उच्च स्तरीय कार्बनिक रसायन की पुस्तकों में भी नहीं दिया गया है। लेकिन यह प्रश्न ही बहुत ही तर्क संगत है। इस प्रश्न का उत्तर अभिक्रिया क्रियाविध की मूलभूत सिद्धान्त के आधार पर किसी के द्वारा दिया जा सकता है।

Resonance Eduventures Pvt. Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Tel. No. : 0744-3192222, 3012222, 3022222 | Toll Free : 18002002244 | To Know more : sms RESO at 56677 Website : www.resonance.ac.in | Email : contact@resonance.ac.in

अभिक्रियाओं के लिए चार पथ दिये गये है :

ध्यान रखें कि सबसे पहले समांष विखण्ड के द्वारा $\mathrm{R}-\mathrm{C}-\mathrm{O}^{\bullet}+\mathrm{R}^{\prime} \mathrm{O}^{\bullet}$ प्राप्त होते है। यह सामान्यतया अस्थायी है (कोल्बे वैद्युत अपघटनीय अभिक्रिया को ध्यान में रखें) तथा $\mathrm{R} \cdot+\mathrm{CO}_{2}$ में अपघटित हो जाते है। लेकिन $\mathrm{Ph}-\mathrm{C}-\mathrm{O}^{\bullet}$ स्थायी होता है, इसका बंध कठिनाइपूर्वक टूटता है।

अतः (1) व (3) में जिसमें $\mathrm{Ph}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{O}-\mathrm{O}-\mathrm{R}$ समूह उपर्थित है, $\mathrm{Ph}-\mathrm{CH}_{2} \cdot$ बनाता है $(\because$ बेन्जिल मूलक स्थायी होता है $)$

\therefore 1: P या Q
$2: R$ या S
2: P या Q
$4: R$ या S
अब $\mathrm{R}^{\prime} \mathrm{O}^{\bullet}$ पर विचार करें, यदि यह $\mathrm{CH}_{3} \mathrm{O}^{\bullet}$ है, तो यह विखण्डित नहीं हो सकता है।

लेकिन

पाया जाता है। अतः 3 व 4 के साथ कार्बोनिल यौगिक बनता

है लेकिन 1 व 2 में नहीं बनता है।

$$
\begin{array}{ll}
\therefore & 1: P \text { या } S \\
2: P \text { या } S & 3: Q \text { या } R \\
& 4: Q \text { या } R
\end{array}
$$

इन विकल्पों का संग्लन करने पर,
1: P, 2:S, 3: Q, 4: R
मैं इस प्रश्न पर कोई तर्क नहीं दे सकता हूँ जो IIT-JEE ने इस प्रकार का प्रश्न बनाया है। यह विद्यार्थी के अध्यनन विचारधारा को बढ़ाने का एक अच्छा स्त्रोत है।
40. Match the four starting materials (P, Q, R, S) given in List I with the corresponding reaction schemes (I, II, III, IV) provided in List II and select the correct answer using the code given below the lists.

List-I

P. $\mathrm{H}=\mathrm{H}$

List-II

1. Scheme I
(i) $\mathrm{KMnO}_{4}, \mathrm{H} \stackrel{\ominus}{\mathrm{O}}$, heat (ii) $\mathrm{H}^{\oplus}, \mathrm{H}_{2} \mathrm{O}$
(iii) SOCl_{2}, (iv) NH_{3}

Resonance Eduventures Pvt. Ltd.

Q.

2. Scheme II

> (i) $\mathrm{Sn} / \mathrm{HCl}$ (ii) $\mathrm{CH}_{3} \mathrm{COCl}$ (iii) conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ (iv) HNO_{3} (v) dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$, heat (vi) HO^{\ominus} $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}$

3. Scheme III
(i) red hot iron, 873 K (ii) fuming $\mathrm{HNO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}$, heat
(iii) $\mathrm{H}_{2} \mathrm{~S}^{2} \mathrm{NH}_{3}$ (iv) $\mathrm{NaNO}_{2}, \mathrm{H}_{2} \mathrm{SO}_{4}$ (v) hydrolysis
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{3}$
S.

4. Scheme IV
(i) conc. $\mathrm{H}_{2} \mathrm{SO}_{4}, 60^{\circ} \mathrm{C}$
(ii) conc. HNO_{3}, conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ (iii) dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$, heat
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{4}$

Code :

	P	Q	R	S
(A)	1	4	2	3
(B)	3	1	4	2
(C)	3	4	2	1
(D)	4	1	3	2

सूची-। में लिखित आरंभिक पदार्थों (P, Q, R, S) को सूची-II में लिखित अभिक्रिया योजनाओं (Scheme) (I, II, III, IV) से सुमेल कीजिए तथा सूचियों के नीचे दिये कोड का प्रयोग करके सही उत्तर चुनिये :

सूची-।
P. $\mathrm{H}=\mathrm{H}$

सूची-II

1. योजना ।
(i) $\mathrm{KMnO}_{4}, \mathrm{H} \stackrel{\ominus}{\mathrm{O}}$, ऊष्मा (ii) $\mathrm{H}^{\oplus}, \mathrm{H}_{2} \mathrm{O}$
(iii) SOCl_{2}, (iv) NH_{3}

Resonance Eduventures Pvt. Ltd.

Q.

2. योजना I।

$$
\begin{aligned}
& \text { (i) } \mathrm{Sn} / \mathrm{HCl} \text { (ii) } \mathrm{CH}_{3} \mathrm{COCl} \text { (iii) सान्द्र } \mathrm{H}_{2} \mathrm{SO}_{4} \\
& \text { (iv) } \mathrm{HNO}_{3} \text { (v) तनु } \mathrm{H}_{2} \mathrm{SO}_{4} \text {, ऊष्मा (vi) } \mathrm{HO}^{\ominus} \\
&
\end{aligned} \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{2} . ~ \$
$$

R.

3. योजना III
(i) लाल तप्त लौह, 873 K (ii) ध्रूम $\mathrm{HNO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}$, ऊष्मा
(iii) $\mathrm{H}_{2} \mathrm{~S}_{\mathrm{NH}}^{3}$ (iv) $\mathrm{NaNO}_{2}, \mathrm{H}_{2} \mathrm{SO}_{4}$ (v) जल अपघटन
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{3}$
S.

4. योजना IV
(i) सान्द्र $\mathrm{H}_{2} \mathrm{SO}_{4}, 60^{\circ} \mathrm{C}$
(ii) सान्द्र HNO_{3}, सान्द्र $\mathrm{H}_{2} \mathrm{SO}_{4}$ (iii) तनु $\mathrm{H}_{2} \mathrm{SO}_{4}$, ऊष्मा
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{4}$
कोड :

	P	Q	R	S
(A)	1	4	2	3
(B)	3	1	4	2
(C)	3	4	2	1
(D)	4	1	3	2

Ans. (C)

Sol. \mathbf{P} :

Resonance Eduventures Pvt. Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Tel. No. : 0744-3192222, 3012222, 3022222 | Toll Free : 18002002244 | To Know more : sms RESO at 56677 Website : www.resonance.ac.in | Email : contact@resonance.ac.in
$\therefore \mathrm{P} \rightarrow 3$

$\therefore \mathrm{Q} \rightarrow 4$

R :

$$
\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}\right)
$$

$\therefore \mathrm{R} \rightarrow 2$

$\therefore S \rightarrow 1$
Hence the answer is (C) (अतः सही उत्तर (C) है।)
Note : Verifying any two can easily give you the answer complete details are given for reference \& understanding.
नोट : आप अपने उत्तर को किन्ही दो के द्वारा आसानी से प्रमाणिक कर सकते हैं।
vkidsfun沊 (reference) तथा समझने के लिए पूर्ण विवरण दिया गया है।

Resonance Eduventures Pvt. Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Tel. No. : 0744-3192222, 3012222, 3022222 | Toll Free : 18002002244 | To Know more : sms RESO at 56677 Website : www.resonance.ac.in | Email : contact@resonance.ac.in

PART-III - MATHEMATICS

SECTION - 1 : (Only One Option Correct Type)
 खण्ड-1 : (केवल एक सही विकल्प प्रकार)

This section contains 10 multiple choice questions. Each question has four choices (A), (B), (C) and (D) out of which ONLY ONE option is correct.
इस खण्ड में 10 बहुविकल्प प्रश्न हैं। प्रत्येक प्रश्न में चार विकल्प $(A),(B),(C)$ और (D) हैं, जिनमें से केवल एक सही है।
41. The quadratic equation $p(x)=0$ with real coefficients has purely imaginary roots. Then the equation $p(p(x))$ $=0$ has
(A) only purely imaginary roots
(B) all real roots
(C) two real and two purely imaginary roots
(D) neither real nor purely imaginary roots

वास्तविक गुणांकों वाले द्विघात समीकरण (quadratic equation) $p(x)=0$ के मूल पूर्णतया काल्पनिक है। तब समीकरण $p(p(x))=0$ के
(A) केवल पूर्णतया काल्पनिक मूल हैं।
(B) सभी मूल वास्तविक हैं।
(C) दो वास्तविक और दो पूर्णतया काल्पनिक मूल हैं।
(D) मूल न तो वास्तविक हैं न ही पूर्णतया काल्पनिक हैं।

Ans. (D)
Sol. $p(x)$ will be of the form $a x^{2}+c$. Since it has purely imaginary roots only.
Since $p(x)$ is zero at imaginary values while $a x^{2}+c$ takes real value only at real ' x ', no root is real.
Also $p(p(x))=0$
$\Rightarrow \quad \mathrm{p}(\mathrm{x})$ is purely imaginary
$\Rightarrow \quad a x^{2}+c=$ purely imaginary
Hence x can not be purely imaginary since x^{2} will be negative in that case and $a x^{2}+c$ will be real.
Thus.(D) is correct.
Hindi $p(x), a x^{2}+c$ रूप का होगा चूंकि यह केवल विशुद्ध काल्पनिक मूल रखता है।
चूंकि काल्पनिक मानों पर $p(x)$ शून्य है जबकि $a x^{2}+c$ केवल वास्तविक ' x ' पर वास्तविक मान लेता है। कोई मूल वास्तविक नहीं
अतः $\quad p(p(x))=0$
$\Rightarrow \quad \mathrm{p}(\mathrm{x})$ विशुद्ध काल्पनिक
$\Rightarrow \quad a x^{2}+c=$ विशुद्ध काल्पनिक
अतः x विशुद्ध काल्पनिक नहीं हो सकता है चूंकि x^{2} ऋणात्मक होगा इस स्थिति में $a x^{2}+c$ वास्तविक होगा
अतः (D) सही है।
42. Three boys and two girls stand in a queue. The probability, that the number of boys ahead of every girl is at least one more than the number of girls ahead of her, is
(A) $\frac{1}{2}$
(B) $\frac{1}{3}$
(C) $\frac{2}{3}$
(D) $\frac{3}{4}$

तीन लड़के और दो लड़कियां एक पक्ति में खड़े हैं। वह प्रायिकता (probability), जब हर लड़की के आगे खड़े होने वाले लड़कों की संख्या उसके आगे खड़ी होने वाली लड़कियों की संख्या से कम से कम एक अधिक हो, निम्न है-
(A) $\frac{1}{2}$
(B) $\frac{1}{3}$
(C) $\frac{2}{3}$
(D) $\frac{3}{4}$

Ans. (A)

| Resonance Eduventures Pvt. Ltd. |
| ---: | ---: |
| CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 |
| Tel. No. : 0744-3192222, 3012222, $3022222 \mid$ Toll Free : 18002002244 \| To Know more : sms RESO at 56677 |
| Website : www.resonance.ac.in \| Email : contact@resonance.ac.in |

This solution was download from Resonance JEE ADVANCED 2014 Solution portal

Sol. 3 Boys \& 2 Girls \qquad
(1) B (2) B (3) B (4)

Girl can't occupy $4^{\text {th }}$ position. Either girls can occupy 2 of $1,2,3$ position or they can both be a position (1) or (2).

Hence total number of ways in which girls can be seated is ${ }^{3} \mathrm{C}_{2} \times 2!\times 3!+{ }^{2} \mathrm{C}_{1} \times 2!\times 3!=36+24=60$. Number of ways in which 3 B \& 2 A can be seated $=5$!

Hence required prob. $=\frac{60}{5!}=\frac{1}{2}$.
Hindi 3 लड़के और 2 लड़कियाँ \qquad
(1) B (2) $B(3) B(4)$

लड़कियाँ $4^{\text {th }}$ स्थान पर नही हो सकता है। या तो लड़कियाँ $1,2,3$ स्थान के 2 पर हो सकती हे या दोनों स्थिति (1) या (2) पर हो सकती है.
अतः कुल क्रमचयों की संख्या जिसमें लड़कियाँ बैठ सकती है ${ }^{3} C_{2} \times 2!\times 3!+{ }^{2} C_{1} \times 2!\times 3!=36+24=60$. क्रमचयो की संख्या जिसमें $3 B$ तथा $2 A$ बैठ सकते है $=5$!

अतः अभीष्ठ प्रायिकता $=\frac{60}{5!}=\frac{1}{2}$.
43. Six cards and six envelopes are numbered $1,2,3,4,5,6$ and cards are to be placed in envelopes so that each envelope contains exactly one card and no card is placed in the envelope bearing the same number and moreover the card numbered 1 is always placed in envelope numbered 2 . Then the number of ways it can be done is
(A) 264
(B) 265
(C) 53
(D) 67

छ: कार्ड और छ: लिफाफे $1,2,3,4,5,6$ अंकों से सूचीबद्ध है। कार्डो को लिफाफों में इस तरह डालना है कि हर लिफाफे में केवल एक ही कार्ड हो, कार्ड व लिफाफे पर अंकित संख्या समान न हो तथा कार्ड संख्या 1 हमेशा लिफाफा संख्या 2 में ही हो, तो इसको करने के कुल तरीकों की संख्या है-
(A) 264
(B) 265
(C) 53
(D) 67

Ans. (C)

Sol.

Cards	Envelopes
1	1
2	2
3	3
4	4
5	5
6	6

If ' 2 ' goes in ' 1 ' then it is dearrangement of 4 things which can be done in 4 ! $\left(\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}\right)=9$ ways.
If ' 2 ' doen't go in 1 , it is dearrangement of 5 things which can be done in 44 ways. Hence total 53 ways.

पत्र	लिफाफे	
Hindi	1	1
	2	2
	3	3
	4	4
	5	5
	6	6

यदि ' 2 ', ' 1 ' में जाता है तब यह 4 वस्तुओं की पुर्नव्यवस्था है जो $4!\left(\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}\right)=9$ तरीकों से की जाती है।
यदि ' 2 ' , 1 , में नही जाता है तब 5 वस्तुओं की पुर्नव्यस्था 44 तरीकों से की जाती है अतः कुल 53 तरीके
44. In a triangle the sum of two sides is x and the product of the same two sides is y. If $x^{2}-c^{2}=y$, where c is the third side of the triangle, then the ratio of the in-radius to the circum-radius of the triangle is
(A) $\frac{3 y}{2 x(x+c)}$
(B) $\frac{3 y}{2 c(x+c)}$
(C) $\frac{3 y}{4 x(x+c)}$
(D) $\frac{3 y}{4 c(x+c)}$

एक त्रिभुज की दो भुजाओं का योग x है तथा उन्हीं भुजाओं का गुणनफलन y है। यदि $x^{2}-c^{2}=y$, जहाँ c त्रिभुज की तीसरी भुजा है, तब त्रिभुज की अंतःत्रिज्या (in-radius) एवं परिवृत-त्रिज्या (circum-radius) का अनुपात (ratio) है-
(A) $\frac{3 y}{2 x(x+c)}$
(B) $\frac{3 y}{2 c(x+c)}$
(C) $\frac{3 y}{4 x(x+c)}$
(D) $\frac{3 y}{4 c(x+c)}$

Ans. (B)
Sol. $a+b=x$
$a b=y$
$x^{2}-c^{2}=y$
$(a+b)^{2}-c^{2}=a b$
$a^{2}+b^{2}+a b=c^{2}$
$a^{2}+b^{2}-c^{2}=-a b$
$\frac{a^{2}+b^{2}-c^{2}}{2 a b}=\frac{7}{2}$

$\cos C=\frac{-1}{2}$
$C=\frac{2 \pi}{3}$
$\frac{r}{R}=\frac{\Delta \times 4 \Delta}{s \times a b c}=\frac{4 \times \frac{1}{4} a^{2} b^{2} \sin ^{2} c}{(a+b+c) a b c}=\frac{3 a b}{4 c(x+c)}$

$$
=\frac{3 y}{4 c(x+c)}
$$

45. The common tangents to the circle $x^{2}+y^{2}=2$ and the parabola $y^{2}=8 x$ touch the circle at the points P, Q and the parabola at the points R, S. Then the area of the quadrilateral $P Q R S$ is
(A) 3
(B) 6
(C) 9
(D) 15

वृत्त $x^{2}+y^{2}=2$ तथा परवलय (parabola) $y^{2}=8 x$ की उभयनिष्ठ स्पर्शरे खायें (common tangents) वृत्त को P, Q पर तथा परवलय को R, S पर स्पर्श करती है, तब चतुर्भुज (quadrilateral) PQRS का क्षेत्रफल है-
(A) 3
(B) 6
(C) 9
(D) 15

Ans. (D)

Sol. $y=m x+\frac{2}{m}$
If it is tangent to $x^{2}+y^{2}=2$
Then,

$$
\left|\frac{\frac{2}{m}}{\sqrt{1+\mathrm{m}^{2}}}\right|=\sqrt{2} \Rightarrow \frac{4}{\mathrm{~m}^{2}\left(1+\mathrm{m}^{2}\right)}=2 \Rightarrow \mathrm{~m}= \pm 1
$$

Hence equation of tangent is $y=x+2 \& y=-x-2$.
Chord of contact $P Q$ is $-2 x=2 \Rightarrow x=-1$
Chord of contanct RS is $y .0=4(x-2) \Rightarrow x=2$
Hence co-ordinates of P, Q, R, S are $(-1,1) ;(-1,-1) ;(2,-4) \&(2,4)$
Area of trapezium is $=\frac{1}{2}(P Q+R S) \times$ Height $=\frac{1}{2}(10) \times 3=15$
Hindi $y=m x+\frac{2}{m}$
यदि यह $\mathrm{x}^{2}+\mathrm{y}^{2}=2$ की स्पर्शरेखा है।
तब,

$$
\left|\frac{\frac{2}{m}}{\sqrt{1+\mathrm{m}^{2}}}\right|=\sqrt{2} \Rightarrow \frac{4}{\mathrm{~m}^{2}\left(1+\mathrm{m}^{2}\right)}=2 \Rightarrow \mathrm{~m}= \pm 1
$$

अतः स्पर्श रेखा का समीकरण $y=x+2 \& y=-x-2$ है।
स्पर्श जीवा $P Q,-2 x=2 \Rightarrow x=-1$ है।
स्पर्श जीवा RS y. $0=4(x-2) \Rightarrow x=2$
अतः P, Q, R, S के निर्देशांक $(-1,1) ;(-1,-1) ;(2,-4) \&(2,4)$
समलम्ब चतुर्भुज का क्षेत्रफल $=\frac{1}{2}(P Q+R S) \times$ ऊँचाई $=\frac{1}{2}(10) \times 3=15$

Resonance Eduventures Pvt. Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Tel. No. : 0744-3192222, 3012222, 3022222 | Toll Free : 18002002244 | To Know more : sms RESO at 56677 Website : www.resonance.ac.in | Email : contact@resonance.ac.in
46. The function $y=f(x)$ is the solution of the differential equation $\frac{d y}{d x}+\frac{x y}{x^{2}-1}=\frac{x^{4}+2 x}{\sqrt{1-x^{2}}}$ in $(-1,1)$ satisfying $f(0)=0$. Then $\int_{-\frac{\sqrt{3}}{2}}^{\frac{\sqrt{3}}{2}} f(x) d x$ is

फलन $y=f(x)$ निम्न अवकलनीय समीकरण (differential equation)
$\frac{d y}{d x}+\frac{x y}{x^{2}-1}=\frac{x^{4}+2 x}{\sqrt{1-x^{2}}}$ का अंतराल $(-1,1)$ में हल है एवम् $f(0)=0$ को सन्तुष्ट करता है। तब $\int_{-\frac{\sqrt{3}}{2}}^{\frac{\sqrt{3}}{2}} f(x) d x$ का मान है-
(A) $\frac{\pi}{3}-\frac{\sqrt{3}}{2}$
(B) $\frac{\pi}{3}-\frac{\sqrt{3}}{4}$
(C) $\frac{\pi}{6}-\frac{\sqrt{3}}{4}$
(D) $\frac{\pi}{6}-\frac{\sqrt{3}}{2}$

Ans. (B)
Sol. I.F. $=e^{\int \frac{x}{x^{2}-1} d x}=e^{\frac{1}{2} \int \frac{2 x}{x^{2}-1} d x}=e^{\frac{1}{2} \ln \left|x^{2}-1\right|}=e^{\frac{1}{2} \ln \left(1-x^{2}\right)}=\sqrt{1-x^{2}}$

$$
\begin{aligned}
& \therefore \quad y \sqrt{1-x^{2}}=\int \frac{x^{4}+2 x}{\sqrt{1-x^{2}}} \times \sqrt{1^{2}-x^{2}} d x+c \\
& \\
& y \sqrt{1^{2}-x^{2}}=\frac{x^{5}}{5}+x^{2}+c \\
& x=0, y=0 \Rightarrow c=0
\end{aligned}
$$

$$
y=\frac{\frac{x^{5}}{5}+x^{2}}{\sqrt{1-x^{2}}}
$$

$$
\therefore \quad \mathrm{I}=\int_{0}^{\frac{\sqrt{3}}{2}}\left(\frac{\frac{x^{5}}{5}+\mathrm{x}^{2}}{\sqrt{1-\mathrm{x}^{2}}}+\frac{\frac{-\mathrm{x}^{5}}{5}+\mathrm{x}^{2}}{\sqrt{1-\mathrm{x}^{2}}}\right) \mathrm{dx}=2 \int_{0}^{\frac{\sqrt{3}}{2}} \frac{\mathrm{x}^{2}}{\sqrt{1-\mathrm{x}^{2}}} d x
$$

$$
x=\sin 0
$$

$\mathrm{dx}=\cos \theta \mathrm{d} \theta=2 \int_{0}^{\frac{\pi}{3}} \frac{\sin ^{2} \theta \cos \theta}{\cos \theta} \mathrm{~d} \theta$
$=\int_{0}^{\frac{\pi}{3}}(1-\cos 2 \theta) \mathrm{d} \theta=\left.\left(\theta-\frac{1}{2} \sin 2 \theta\right)\right|_{0} ^{\frac{\pi}{3}}=\frac{\pi}{3}-\frac{1}{2} \times \sin \frac{2 \pi}{3}=\frac{\pi}{3}-\frac{1}{2} \times \frac{\sqrt{3}}{2}=\frac{\pi}{3}-\frac{\sqrt{3}}{4}$

Resonance Eduventures Pvt. Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Tel. No. : 0744-3192222, 3012222, 3022222 | Toll Free : 18002002244 | To Know more : sms RESO at 56677 Website : www.resonance.ac.in | Email : contact@resonance.ac.in
47. Let $f:[0,2] \rightarrow R$ be a function which is continuous on $[0,2]$ and is differentiable on $(0,2)$ with $f(0)=1$. Let $F(x)=\int_{0}^{x^{2}} f(\sqrt{t}) d t$ for $x \in[0,2]$. If $F^{\prime}(x)=f^{\prime}(x)$ for all $x \in(0,2)$, then $F(2)$ equals माना $f:[0,2] \rightarrow R$ एक ऐसा फलन है जो $[0,2]$ पर संतत् (continuous) है एवम् (0,2) पर अवकलनीय (differentiable) है तथा $f(0)=1$ है। माना कि सभी $x \in[0,2]$ के लिये $\quad F(x)=\int_{0}^{x^{2}} f(\sqrt{t}) d t$ है। यदि सभी $x \in(0,2)$ के लिये $F^{\prime}(x)=f^{\prime}(x)$ है, तब $F(2)$ का मान है-
(A) $e^{2}-1$
(B) $e^{4}-1$
(C) $e-1$
(D) e^{4}

Ans. (B)
Sol. $\quad f^{\prime}(x)=2 x f(x)$

$$
\frac{f^{\prime}(x)}{f(x)}=2 x
$$

$$
\ell n(f(x))=x^{2}+c
$$

$$
x=0, f(0)=1
$$

$c=0$
$\therefore \quad \ln (f(x))=x^{2}$
$f(x)=e^{x^{2}}$
$\therefore \quad \mathrm{F}(\mathrm{x})=\mathrm{f}(\mathrm{x})+\mathrm{c}$
$F(x)=e^{x^{2}}+c$
$\mathrm{F}(0)=0$
$\therefore \quad c=-1$
$\therefore \quad f(x)=e^{x^{2}}-1$
$f(2)=e^{4}-1$
48. Coefficient of x^{11} in the expansion of $\left(1+x^{2}\right)^{4}\left(1+x^{3}\right)^{7}\left(1+x^{4}\right)^{12}$ is
$\left(1+x^{2}\right)^{4}\left(1+x^{3}\right)^{7}\left(1+x^{4}\right)^{12}$ विस्तार में (expansion) x^{11} का गुणांक (coefficient) है-
(A) 1051
(B) 1106
(C) 1113
(D) 1120

Ans. (C)
Sol. Coefficent of $x^{11} \equiv \frac{\left(1+x^{2}\right)^{4}\left(1+x^{3}\right)^{7}\left(1+x^{4}\right)^{12}\left(1-x^{2}\right)^{4}}{\left(1-x^{2}\right)^{4}}$
Coefficent of $x^{11} \equiv\left(1-x^{8}\right)^{4}\left(1+x^{4}\right)^{8}\left(1+x^{3}\right)^{7}\left(1-x^{2}\right)^{-4}$

$$
\begin{aligned}
& =\left(1-4 x^{8}\right)\left(1+x^{4}\right)^{8}\left(7 x^{3}+35 x^{9}\right)\left(1-x^{2}\right)^{-4} \\
& =\left(7 x^{3}+35 x^{9}-28 x^{11}\right)\left(1+x^{4}\right)^{8}\left(1-x^{2}\right)^{-4}
\end{aligned}
$$

Coefficent of $x^{8}=\left(7 x+35 x^{6}-28 x^{8}\right)\left(1+8 x^{4}+28 x^{8}\right)\left(1-x^{2}\right)^{-4}$

$$
=\left(7+35 x^{6}-28 x^{8}+56 x^{4}+196 x^{8}\right)\left(1-x^{2}\right)^{-4}
$$

Coefficent of $\mathrm{t}^{4} \equiv\left(7+56 \mathrm{t}^{2}+35 \mathrm{t}^{3}+168 \mathrm{t}^{4}\right)(1-\mathrm{t})^{-4}$

$$
=7 \cdot{ }^{7} \mathrm{C}_{3}+56 \cdot{ }^{5} \mathrm{C}_{3}+35 \cdot{ }^{4} \mathrm{C}_{3}+168
$$

$$
=245+700+168=1113 .
$$

Resonance Eduventures Pvt. Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Tel. No. : 0744-3192222, 3012222, 3022222 | Toll Free : 18002002244 | To Know more : sms RESO at 56677

Hindi $\frac{\left(1+x^{2}\right)^{4}\left(1+x^{3}\right)^{7}\left(1+x^{4}\right)^{12}\left(1-x^{2}\right)^{4}}{\left(1-x^{2}\right)^{4}}$ में x^{11} का गुणांक

$$
\begin{aligned}
&\left.1-x^{8}\right)^{4}\left(1+x^{4}\right)^{8}\left(1+x^{3}\right)^{7}\left(1-x^{2}\right)^{-4} \text { में } x^{11} \text { का गुणांक } \\
&=\left(1-4 x^{8}\right)\left(1+x^{4}\right)^{8}\left(7 x^{3}+35 x^{9}\right)\left(1-x^{2}\right)^{-4} \\
&=\left(7 x^{3}+35 x^{9}-28 x^{11}\right)\left(1+x^{4}\right)^{8}\left(1-x^{2}\right)^{-4} \\
&\left(7 x+35 x^{6}-28 x^{8}\right)\left(1+8 x^{4}+28 x^{8}\right)\left(1-x^{2}\right)^{-4} \text { में } x^{8} \text { का गुणांक } \\
&=\left(7+35 x^{6}-28 x^{8}+56 x^{4}+196 x^{8}\right)\left(1-x^{2}\right)^{-4} \\
&\left(7+56 t^{2}\right.\left.+35 t^{3}+168 t^{4}\right)(1-t)^{-4} \text { में } t^{4} \text { का गुणांक } \\
&=7 \cdot{ }^{7} C_{3}+56 \cdot{ }^{5} C_{3}+35 \cdot{ }^{4} C_{3}+168 \\
&=245+700+168=1113 .
\end{aligned}
$$

Alterantive :वैकल्पिक हल
$2 x+3 y+4 z=11$
$(x, y, z)=(0,1,2){ }^{4} C_{0} \times{ }^{7} C_{1} \times{ }^{12} C_{2}$
$(1,3,0){ }^{4} \mathrm{C}_{1} \times{ }^{7} \mathrm{C}_{3}$
$(2,1,1){ }^{4} \mathrm{C}_{2} \times{ }^{7} \mathrm{C}_{1} \times{ }^{12} \mathrm{C}_{1}$
$(4,1,0)^{7} C_{1}$
coefficient of x^{11} का गुणांक $=66 \times 7+35 \times 4+42 \times 12+7$
$=1113$. Ans.
49. For $x \in(0, \pi)$, the equation $\sin x+2 \sin 2 x-\sin 3 x=3$ has
(A) infinitely many solutions
(B) three solutions
(C) one solution
(D) no solution
$x \in(0, \pi)$ के लिये समीकरण $\sin x+2 \sin 2 x-\sin 3 x=3$ के
(A) अनन्त (infinitely many) हल है।
(B) तीन (three) है।
(C) एक (one) हल है।
(D) कोई हल नहीं है (no solution)

Ans. (D)
Sol. $\quad \sin x+2 \sin 2 x-\sin 3 x=3$.
$\sin x\left(1+2 \cos x-3+4 \sin ^{2} x\right)=3$.
$\left(4 \sin ^{2} x+2 \cos x-2\right)=\frac{3}{\sin x}$
$2-4 \cos ^{2} x+2 \cos x=\frac{3}{\sin x}$
$\frac{9}{4}-\left(2 \cos x-\frac{1}{2}\right)^{2}=\frac{3}{\sin x}$.
L.H.S. $\leq \frac{9}{4} \quad$ R.H.S. ≥ 3.

No solution. कोई हल नहीं।

Resonance Eduventures Pvt. Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Tel. No. : 0744-3192222, 3012222, 3022222 | Toll Free : 18002002244 | To Know more : sms RESO at 56677
50. The following integral $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}(2 \operatorname{cosec} x)^{17} d x$ is equal to

निम्न समाकल (integral) $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}(2 \operatorname{cosec} x)^{17} \mathrm{dx}$ नीचे दिये गये विकल्पों में से किसके समान है ?
(A) $\int_{0}^{\log (1+\sqrt{2})} 2\left(e^{u}+e^{-u}\right)^{16} d u$
(B) $\int_{0}^{\log (1+\sqrt{2})}\left(e^{u}+e^{-u}\right)^{17} d u$
(C) $\int_{0}^{\log (1+\sqrt{2})}\left(e^{u}-e^{-u}\right)^{17} d u$
(D) $\int_{0}^{\log (1+\sqrt{2})} 2\left(e^{u}-e^{-u}\right)^{16} d u$

Ans. (A)
Sol. $I=\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}(2 \operatorname{cosec} x)^{17} d x$

Put $\ell n \tan x / 2=t$ रखने पर $\quad \Rightarrow \quad \tan \frac{x}{2}=e^{t}$
$\Rightarrow \quad \sin x=\frac{2 e^{t}}{1+e^{2 t}}$
$\operatorname{cosec} x=\frac{e^{t}+e^{-t}}{2}$

$$
\begin{aligned}
& I=2 \int_{\ell n(\sqrt{2}-1)}^{0}\left(e^{t}+e^{-t}\right)^{16} . d t \\
& =2 \int_{\operatorname{tn}(\sqrt{2}-1)}^{0}\left(e^{t}+e^{-t}\right)^{16} . d t
\end{aligned}
$$

since $\left(e^{t}+e^{-t}\right)^{16}$ is an even function
चूंकि $\left(e^{t}+e^{-t}\right)^{16}$ एक समफलन है।
$\int_{-a}^{0}=\int_{0}^{a}$

Hence अतः $I=\int_{0}^{\ell n(\sqrt{2}+1)} 2\left(\mathrm{e}^{\mathrm{t}}+\mathrm{e}^{-\mathrm{t}}\right)^{16} \mathrm{dt}$

| Resonance Eduventures Pvt. Ltd. |
| ---: | ---: |
| CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 |
| Tel. No. : 0744-3192222, 3012222, 3022222 \| Toll Free : 1800200 2244 | To Know more : sms RESO at 56677 |
| Website : www.resonance.ac.in \| Emaill : contact@resonance.ac.in |

SECTION - 2 : Comprehension Type (Only One Option Correct)
 खण्ड-2: अनुच्छेद प्रकार (केवल एक विकल्प सही)

This section contains 3 paragraphs, each describing theory, experiments, data etc. Six questions relate to the three paragraphs with two questions on each paragraph. Each question has only one correct answer among the four given options (A),(B),(C) and (D).
इस खण्ड में सिद्धांतों, प्रयोगों और आँकड़ों आदि को दर्शाने वाले 3 अनुच्छेद है। तीनों अनुच्छेदों से संबंधित छ: प्रश्न हैं, जिनमें से हर अनुच्छेद पर दो प्रश्न हैं। किसी भी अनुच्छेद में हर प्रश्न के चार विकल्प $(A),(B),(C)$ और (D) हैं, जिनमें से केवल एक ही सही है।

Paragraph For Questions 51 and 52 (प्रश्न संख्या 51 और 52 के लिए अनुच्छेद)

Box 1 contains three cards bearing numbers 1, 2, 3; box 2 contains five cards bearing numbers $1,2,3$, 4,5 ; and box 3 contains seven cards bearing numbers $1,2,3,4,5,6,7$. A card is drawn from each of the boxes. Let x_{i} be the number on the card drawn from the $i^{\text {th }}$ box, $i=1,2,3$.
पेटी 1 में तीन कार्ड है जो $1,2,3$ अंकों से सूचीबद्ध है, पेटी 2 में पॉच कार्ड है जो $1,2,3,4,5$ अंको से सूचीबद्ध है तथा पेटी 3 में सात कार्ड है जो $1,2,3,4,5,6,7$ अंको से सूचीबद्ध है। हर पेटी से एक कार्ड निकाला जाता है। माना कि iवी पेटी $\left(\mathrm{i}^{\text {th }} \mathrm{box}\right)$ से निकाले गये कार्ड पर अंक $\mathrm{x}_{\mathrm{i}}(\mathrm{i}=1,2,3)$ है।
51. The probability that $x_{1}+x_{2}+x_{3}$ is odd, is
$\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}$ के विषम होने की प्रायिकता है-
(A) $\frac{29}{105}$
(B) $\frac{53}{105}$
(C) $\frac{57}{105}$
(D) $\frac{1}{2}$

Ans. (B)
Sol. $x_{1}+x_{2}+x_{3}$ is odd if
all three are odd or 2 are even \& one is odd
यहाँ तीनों विषम या दो सम और एक विषम
(OOO) or (OEE) or (EOE) or (EEO)
$\frac{2}{3} \times \frac{3}{5} \times \frac{4}{7}+\frac{2}{3} \times \frac{2}{5} \times \frac{3}{7}+\frac{1}{3} \times \frac{3}{5} \times \frac{3}{7}+\frac{1}{3} \times \frac{2}{5} \times \frac{4}{7}$
$=\frac{24+12+9+8}{105}=\frac{53}{105}$
52. The probability that x_{1}, x_{2}, x_{3} are in an arithmetic progression, is
$\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}$ के समान्तर श्रेणी (arithmetic progression) में होने की प्रायिकता है-
(A) $\frac{9}{105}$
(B) $\frac{10}{105}$
(C) $\frac{11}{105}$
(D) $\frac{7}{105}$

Ans. (C)
Sol. $2 x_{2}=x_{1}+x_{3}$
If $x_{1} \& x_{3}$ both are odd $2 \times 4=8$ ways
$x_{1} \& x_{3}$ both are even $1 \times 3=3$ ways Total $=11$ ways
Total $\left(x_{1} x_{2} x_{3}\right)$ triplets are $3 \times 5 \times 7$
$P=\frac{11}{105}$

Resonance Eduventures Pvt. Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Tel. No. : 0744-3192222, 3012222, 3022222 | Toll Free : 18002002244 | To Know more : sms RESO at 56677 Website : www.resonance.ac.in | Email : contact@resonance.ac.in

This solution was download from Resonance JEE ADVANCED 2014 Solution portal

Hindi. $2 x_{2}=x_{1}+x_{3}$
यदि x_{1} और x_{3} दोनों विषम है $2 \times 4=8$ तरीके
x_{1} तथा x_{3} दोनों सम है $1 \times 3=3$ तरीके

$$
\text { = } 11 \text { तरीके }
$$

कुल $\left(x_{1} x_{2} x_{3}\right)$ त्रिपलेट $3 \times 5 \times 7$
$P=\frac{11}{105}$

Paragraph For Questions 53 and 54 (प्रश्न संख्या 53 और 54 के लिए अनुच्छेद)

Let a, r, s, t be nonzero real numbers. Let $P\left(a t^{2}, 2 a t\right), Q, R\left(a r^{2}, 2 a r\right)$ and ($\left.a s^{2}, 2 a s\right)$ be distinct points on the parabola $y^{2}=4 a x$. Suppose that $P Q$ is the focal chord and lines $Q R$ and $P K$ are parallel, where K is the point (2a, 0)
माना कि a, r, s, t शून्येतर वास्तविक संख्यायें (nonzero real numbers) है $P\left(a t^{2}, 2 a t\right), Q, R\left(a r^{2}, 2 a r\right)$ तथा ($\mathrm{as}^{2}, 2 \mathrm{as}$) परवलय $\mathrm{y}^{2}=4 \mathrm{ax}$ पर स्थित विभिन्न बिन्दु है। माना कि $P Q$ नाभीय जीवा (focal chord) है एवं रेखायें $Q R$ तथा PK समानान्तर है, जहाँ K बिन्दु $(2 a, 0)$ है।
53. The value of r is
r का मान है-
(A) $-\frac{1}{t}$
(B) $\frac{t^{2}+1}{t}$
(C) $\frac{1}{t}$
(D) $\frac{t^{2}-1}{t}$

Ans. (D)
Sol. $\quad m_{P K}=m_{Q R}$
$\frac{2 \mathrm{at}-0}{\mathrm{at}^{2}-2 \mathrm{a}}=\frac{2 \mathrm{at}-2 \mathrm{ar}}{\mathrm{a}\left(\mathrm{t}^{\prime}\right)^{2}-\mathrm{ar}^{2}}$
$\frac{t}{t^{2}-2}=\frac{t^{\prime}-r}{\left(t^{\prime}\right)^{2}-r^{2}}$
$-\mathrm{t}^{\prime}-\mathrm{tr}^{2}=-\mathrm{t}-\mathrm{rt}^{2}-2 \mathrm{t}^{\prime}+2 \mathrm{r}, \mathrm{tt}=-1$
$\mathrm{t}^{\prime}-\mathrm{tr}^{2}=-\mathrm{t}+2 \mathrm{r}-\mathrm{rt}^{2}$
$-\mathrm{tr}^{2}+\mathrm{r}\left(\mathrm{t}^{2}-2\right)+\mathrm{t}^{\prime}+\mathrm{t}=0$
$\lambda=\frac{\left(2-t^{2}\right) \pm \sqrt{\left(t^{2}-2\right)^{2}+4\left(-1+t^{2}\right)}}{-2 t}$
$=\frac{\left(2-\mathrm{t}^{2}\right) \pm \sqrt{\mathrm{t}^{4}}}{-2 \mathrm{t}}=\frac{2-\mathrm{t}^{2} \pm \mathrm{t}^{2}}{-2 \mathrm{t}}$

$r=-\frac{1}{t}$ It is not possible as the $R \& Q$ will be one same.
$r=-\frac{1}{t}$ यह संभव नही है क्योंकि R तथा Q एक समान होगें।
or या $r=\frac{t^{2}-1}{t}$

Resonance Eduventures Pvt. Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Tel. No. : 0744-3192222, 3012222, 3022222 | Toll Free : 18002002244 | To Know more : sms RESO at 56677 Website : www.resonance.ac.in | Email : contact@resonance.ac.in
54. If $s t=1$, then the tangent at P and the normal at S to the parabola meet at a point whose ordinate is यदि $s t=1$ है, तो इस परवलय के बिन्दु P पर स्पर्शरेखा तथा बिन्दु S पर अभिलम्ब (normal) जिस बिन्दु पर मिलते है, उसकी कोटि (ordinate) है-
(A) $\frac{\left(t^{2}+1\right)^{2}}{2 t^{3}}$
(B) $\frac{a\left(t^{2}+1\right)^{2}}{2 t^{3}}$
(C) $\frac{a\left(t^{2}+1\right)^{2}}{t^{3}}$
(D) $\frac{a\left(t^{2}+2\right)^{2}}{t^{3}}$

Ans. (B)
Sol. Tangent at P is $t y=x+a t^{2}$
Normal at S is $y+s x=2 a s+a s^{2}$
P पर स्पर्शरेखा $t y=x+a t^{2}$
S पर अभिलम्ब $y+s x=2 a s+a s^{2}$
$t y+x=2 a+\frac{a}{t^{2}}$
$t y=2 a+\frac{a}{t^{2}}-t y+a t^{2}$
$2 t^{3} y=a t^{4}+2 a t^{2}+a$
$y=\frac{a\left(t^{2}+1\right)^{2}}{2 t^{3}}$

Paragraph For Questions 55 and 56 (प्रश्न संख्या 55 और 56 के लिए अनुच्छेद)

Given that for each $\mathrm{a} \in(0,1)$

$$
\lim _{h \rightarrow 0^{+}} \int_{h}^{1-h} t^{-a}(1-t)^{a-1} d t
$$

exists. Let this limit be $\mathrm{g}(\mathrm{a})$. In addition, it is given that the function $\mathrm{g}(\mathrm{a})$ is differentiable on $(0,1)$.
दिया गया है कि प्रत्येक $a \in(0,1)$ के लिए सीमा
$\lim _{h \rightarrow 0^{+}} \int_{h}^{1-h} t^{-a}(1-t)^{a-1} d t$
वास्तव में है। माना कि यह सीमा $\mathrm{g}(\mathrm{a})$ है इसके अतिरिक्त यह भी दिया गया है कि अंतराल (interval) $(0,1)$ पर फलन $\mathrm{g}(\mathrm{a})$ अवकलनीय है।
55. The value of $g\left(\frac{1}{2}\right)$ is
$g\left(\frac{1}{2}\right)$ का मान है-
(A) π
(B) 2π
(C) $\frac{\pi}{2}$
(D) $\frac{\pi}{4}$

Ans. (A)

Sol. $g^{\prime}(a)=\int_{h}^{1-h} \frac{\partial}{\partial a} t^{-a}(1-t)^{a-1} d t$

$$
\begin{aligned}
& =-\int_{h}^{1-h} t^{-a}(1-t)^{a-1} d t+t^{-a}(1-t)^{a-1} d t=0 \\
& g(a)=\text { constantअचर } \quad \Rightarrow \quad g(a)=\lambda
\end{aligned}
$$

$g(a)=\operatorname{Lt}_{h \rightarrow 0^{+}} \int_{h}^{1-h} \frac{1}{\sqrt{t(1-t)}} d t$
$=\int_{h}^{1-h} \frac{d t}{\sqrt{-\left(t-\frac{1}{2}\right)^{2}+\frac{1}{4}}}=\left(\sin ^{-1} \frac{t-\frac{1}{2}}{\frac{1}{2}}\right)_{h}^{1-h}=\left.\sin ^{-1}(2 t-1)\right|_{h} ^{1-h}=\sin ^{-1}(1-2 h)-\sin ^{-1}(2 h-1)=\pi$
56. The value of $\mathrm{g}^{\prime}\left(\frac{1}{2}\right)$ is $g^{\prime}\left(\frac{1}{2}\right)$ का मान है-
(A) $\frac{\pi}{2}$
(B) π
(C) $-\frac{\pi}{2}$
(D) 0

Ans. (D)
Sol. $g(a)=\lim _{h \rightarrow 0^{+}} \int_{h}^{1-h} t^{-a}(1-t)^{a-1} d t$

$$
\begin{aligned}
g(1-a) & =\lim _{h \rightarrow 0^{+}} \int_{h}^{1-h} t^{-(1-a)}(1-t)^{(1-a)-1} d t=\lim _{h \rightarrow 0^{+}} \int_{h}^{1-h} t^{a-1}(1-t)^{-a} d t \\
& =\lim _{h \rightarrow 0^{+}} \int_{h}^{1-h}(1-t)^{a-1}(1-(1-t))^{-a} d t \quad\left\{b y \int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x\right\} \\
& =\lim _{h \rightarrow 0^{+}} \int_{h}^{1-h}(1-t)^{a-1} t^{-a} d t
\end{aligned}
$$

$$
g(1-a)=g(a)
$$

$$
-g^{\prime}(1-a)=g^{\prime}(a)
$$

$$
\text { at } \quad a=\frac{1}{2},-g^{\prime}\left(\frac{1}{2}\right)=g^{\prime}\left(\frac{1}{2}\right) \quad \Rightarrow \quad g^{\prime}\left(\frac{1}{2}\right)=0
$$

SECTION - 3 : Matching List Type (Only One Option Correct)
 खण्ड-3: सुमेलन सूची प्रकार (केवल एक विकल्प सही)

This section contains four questions, each having two matching lists. Choices for the correct combination of elements from List-I and List-II are given as options (A),(B),(C) and (D), out of which ONE is correct. इस खण्ड में 4 बहुविकल्प प्रश्न है। प्रत्येक प्रश्न में सुमेलन सूचियाँ है। सूचियों के लिए कूट के विकल्प $(A),(B),(C)$ तथा (D) है , जिनमें से केवल एक सही है।
57. List I
P. The number of polynomials $f(x)$ with non-negative integer coefficients of degree ≤ 2, satisfying $f(0)=0$ and $\int_{0}^{1} f(x) d x=1$, is
Q. The number of points in the interval $[-\sqrt{13}, \sqrt{13}]$ at which
$f(x)=\sin \left(x^{2}\right)+\cos \left(x^{2}\right)$ attains its maximum value, is
R. $\int_{-2}^{2} \frac{3 x^{2}}{\left(1+e^{x}\right)} d x$ equals
S. $\frac{\left(\int_{-1 / 2}^{1 / 2} \cos 2 x \log \left(\frac{1+x}{1-x}\right) d x\right)}{\left(\int_{0}^{1 / 2} \cos 2 x \log \left(\frac{1+x}{1-x}\right) d x\right)}$ equals

सूची- I
P. अऋणात्मक पूर्णांक गुणांक (non-negative integer) वाले बहुपदों (polynomials), $f(x)$, जिनकी घात (degree) ≤ 2 है, तथा जो $f(0)=0$ एवम् $\int_{0}^{1} f(x) d x=1$ को संतुष्ट करती है, की संख्या है-
Q. अन्तराल $[-\sqrt{13}, \sqrt{13}]$ में स्थित उन बिन्दुओं की संख्या जिन पर
$f(x)=\sin \left(x^{2}\right)+\cos \left(x^{2}\right)$ का मान अधिकतम है, है-
R. $\int_{-2}^{2} \frac{3 x^{2}}{\left(1+e^{x}\right)} d x$ का मान है-
S. $\frac{\left(\int_{-1 / 2}^{1 / 2} \cos 2 x \log \left(\frac{1+x}{1-x}\right) d x\right)}{\left(\int_{0}^{1 / 2} \cos 2 x \log \left(\frac{1+x}{1-x}\right) d x\right)}$ का मान है-

Resonance Eduventures Pvt. Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Tel. No. : 0744-3192222, 3012222, 3022222 | Toll Free : 18002002244 | To Know more : sms RESO at 56677 Website : www.resonance.ac.in | Email : contact@resonance.ac.in

This solution was download from Resonance JEE ADVANCED 2014 Solution portal
(A) 3
(B) 2
$\begin{array}{lllll}\text { (C) } & 3 & 2 & 1 & 4\end{array}$
$\begin{array}{lllll}\text { (D) } & 2 & 3 & 1 & 4\end{array}$
Ans. (D)
Sol. (P) Let $f(x)=a x^{2}+b x, a, b \in W \quad(a s f(0)=0)$

$$
\int_{0}^{1} a x^{2}+b c=\frac{a}{3}+\frac{b}{2}=1 \Rightarrow 2 a+3 b=6
$$

$\Rightarrow \quad(a, b) \equiv(3,0),(0,2)$
Number of such polynomials = 2
(Q) $\quad f(x)=\sqrt{2} \sin \left(x^{2}+\frac{\pi}{4}\right)$
$x^{2}+\frac{\pi}{4}=2 n \pi+\frac{\pi}{2} \quad$ if $f(x)$ is maximum
$x^{2}=2 n \pi+\frac{\pi}{4}$
for $n=0,1 \quad x^{2} \in[0,13]$
(R)
$\int_{-2}^{2} \frac{3 x^{2}}{1+e^{x}} d x=\int_{0}^{2} 3 x^{2}\left(\frac{1}{1+e^{x}}+\frac{1}{1+e^{-x}}\right) d x\left\{\int_{-a}^{a} f(x) d x=\int_{0}^{a}(f(x)+f(-x)) d x\right\}$
$=\int_{0}^{2} 3 x^{2}\left(\frac{1}{1+e^{x}}+\frac{e^{x}}{1+e^{x}}\right) d x=\int_{0}^{2} 3 x^{2} d x=\left.x^{3}\right|_{0} ^{2}=8$
(S)
$\int_{-1 / 2}^{1 / 2} \cos 2 x \ln \left(\frac{1+x}{1-x}\right) d x=0 \quad$ (as it is an odd function)
Hence $P \rightarrow 2, Q \rightarrow 3, R \rightarrow 1, S \rightarrow 4$
(D) Ans.

Hindi. (P) माना $f(x)=a x^{2}+b x, a, b \in W \quad$ (चूंकि $\left.f(0)=0\right)$
$\int_{0}^{1} a x^{2}+b c=\frac{a}{3}+\frac{b}{2}=1 \Rightarrow 2 a+3 b=6$
$\Rightarrow \quad(a, b) \equiv(3,0),(0,2)$
इस प्रकार बहुपदों की संख्या $=2$
(Q) $\quad f(x)=\sqrt{2} \sin \left(x^{2}+\frac{\pi}{4}\right)$
$x^{2}+\frac{\pi}{4}=2 n \pi+\frac{\pi}{2}$ यदि $f(x)$ अधिकतम है ।

Resonance Eduventures Pvt. Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Tel. No. : 0744-3192222, 3012222, 3022222 | Toll Free : 18002002244 | To Know more : sms RESO at 56677 Website : www.resonance.ac.in | Email : contact@resonance.ac.in
$x^{2}=2 n \pi+\frac{\pi}{4}$
$\mathrm{n}=0,1$ के लिए $\mathrm{x}^{2} \in[0,13]$
(R)
$\int_{-2}^{2} \frac{3 x^{2}}{1+e^{x}} d x=\int_{0}^{2} 3 x^{2}\left(\frac{1}{1+e^{x}}+\frac{1}{1+e^{-x}}\right) d x\left\{\int_{-a}^{a} f(x) d x=\int_{0}^{a}(f(x)+f(-x)) d x\right\}$
$=\int_{0}^{2} 3 x^{2}\left(\frac{1}{1+e^{x}}+\frac{e^{x}}{1+e^{x}}\right) d x=\int_{0}^{2} 3 x^{2} d x=\left.x^{3}\right|_{0} ^{2}=8$
(S)
$\int_{-1 / 2}^{1 / 2} \cos 2 x \ln \left(\frac{1+x}{1-x}\right) d x=0$ (चूंकि यह एक विषम फलन है)
अतः $\mathrm{P} \rightarrow 2, \mathrm{Q} \rightarrow 3, \mathrm{R} \rightarrow 1, \mathrm{~S} \rightarrow 4$
58.

List I

List II

P. Let $y(x)=\cos \left(3 \cos ^{-1} x\right), x \in[-1,1], x \neq \pm \frac{\sqrt{3}}{2}$. Then
$\frac{1}{y(x)}\left\{\left(x^{2}-1\right) \frac{d^{2} y(x)}{d x^{2}}+x \frac{d y(x)}{d x}\right\}$ equals
Q. Let $A_{1}, A_{2}, \ldots \ldots, A_{n}(n>2)$ be the vertices of a regular polygon of n sides with its centre at the origin. Let \vec{a}_{k} be the position vector of the point $A_{k}, k=1,2, \ldots, n$. If $\left|\sum_{k=1}^{n-1}\left(\overrightarrow{a_{k}} \times \overrightarrow{a_{k+1}}\right)\right|=\left|\sum_{k=1}^{n-1}\left(\overrightarrow{a_{k}} \cdot \overrightarrow{a_{k+1}}\right)\right|$, then
the minimum value of n is
R. If the normal from the point $P(h, 1)$ on the ellipse $\frac{x^{2}}{6}+\frac{y^{2}}{3}=1$ is
3. 8
perpendicular to the line $x+y=8$, then the value of h is
S. Number of positive solutions satisfying the equation
2. 2
$\tan ^{-1}\left(\frac{1}{2 x+1}\right)+\tan ^{-1}\left(\frac{1}{4 x+1}\right)=\tan ^{-1}\left(\frac{2}{x^{2}}\right)$ is
4. 9

Resonance Eduventures Pvt. Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Tel. No. : 0744-3192222, 3012222, 3022222 | Toll Free : 18002002244 | To Know more : sms RESO at 56677

सूची-।

P. मानाकि $y(x)=\cos \left(3 \cos ^{-1} x\right), x \in[-1,1], x \neq \pm \frac{\sqrt{3}}{2}$, तो
$\frac{1}{y(x)}\left\{\left(x^{2}-1\right) \frac{d^{2} y(x)}{d x^{2}}+x \frac{d y(x)}{d x}\right\}$ का मान है-
Q. मानाकि $A_{1}, A_{2}, \ldots ., A_{n}(n>2)$ एक n भुजीय समबहुभुज (regular polygon) के शीर्ष (vertices) है जिसका केन्द्र मूलबिन्दु में है। माना कि \vec{a}_{k} बिन्दु
$A_{k}, k=1,2, \ldots, n$ का रिथति सदिश (position vector) है। यदि
$\left|\sum_{k=1}^{n-1}\left(\overrightarrow{a_{k}} \times \overrightarrow{a_{k+1}}\right)\right|=\left|\sum_{k=1}^{n-1}\left(\overrightarrow{a_{k}} \cdot \overrightarrow{a_{k+1}}\right)\right|$ है, तब n का न्यूनतम मान है-
R. यदि दीर्घवृत्त (ellipse) $\frac{x^{2}}{6}+\frac{y^{2}}{3}=1$ पर बिन्दु $P(h, 1)$ से खींचा गया अभिलम्ब रेखा $x+y=8$ पर लम्बवत् है, तो h का मान है -
S. समीकरण $\tan ^{-1}\left(\frac{1}{2 x+1}\right)+\tan ^{-1}\left(\frac{1}{4 x+1}\right)=\tan ^{-1}\left(\frac{2}{x^{2}}\right)$ को संतुष्ट करने वाले
2. 2
3. 8
4. 9 धनात्मक हलों की संख्या है-

	\mathbf{P}	\mathbf{Q}	\mathbf{R}	\mathbf{S}
(A)	4	3	2	1
(B)	2	4	3	1
(C)	4	3	1	2
(D)	2	4	1	3

Ans. (A)

Sol. (P) $\quad y=4 x^{3}-3 x \quad$ where $\cos (0=x$
$\frac{d y}{d x}=12 x^{2}-3$
$\frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}=\left(x^{2}-1\right) \cdot 24 x+x\left(12 x^{2}-3\right)=36 x^{3}-27 x=9\left(4 x^{3}-3 x\right)=9 y$
Hence $\frac{1}{y}\left\{\left(x^{2}-1\right) \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}\right\}=9$
(Q) $\quad\left|\vec{a}_{1} \times \vec{a}_{2}+\vec{a}_{2} \times \vec{a}_{3}+\ldots+\vec{a}_{n-1} \times \vec{a}_{n}\right|=\left|\vec{a}_{1} \cdot \vec{a}_{2}+\vec{a}_{2} \cdot \vec{a}_{3}+\ldots+\vec{a}_{n-1} \cdot \vec{a}_{n}\right|$ Let $\left|\vec{a}_{1}\right|=\left|\overrightarrow{\mathrm{a}}_{2}\right|=\ldots \ldots=\left|\overrightarrow{\mathrm{a}}_{\mathrm{n}}\right|=\lambda$ (as centre is origin)

More over angle between 2 consecutive \vec{a}_{i} 's is $\frac{2 \pi}{n}$

Resonance Eduventures Pvt. Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Tel. No. : 0744-3192222, 3012222, 3022222 | Toll Free : 18002002244 | To Know more : sms RESO at 56677 Website : www.resonance.ac.in | Email : contact@resonance.ac.in

Hence given equation reduces to
$(n-1) \lambda^{2} \sin \left(\frac{2 \pi}{n}\right)=(n-1) \lambda^{2} \cos \left(\frac{2 \pi}{n}\right)$
$\Rightarrow \quad \tan \left(\frac{2 \pi}{n}\right)=1 \quad \Rightarrow \quad \frac{2 \pi}{n}=\frac{\pi}{4} \quad \Rightarrow \quad n=8$
(R) Equation of normal $\frac{6 x}{h}-\frac{3 y}{1}=3\left(\right.$ Equation of normal is $\left.\frac{a^{2} x}{x_{1}}-\frac{b^{2} y}{y_{1}}=a^{2}-b^{2}\right)$
slope $=\frac{6}{3 h}=1($ as it is perpendicular to $z+y=1) \quad \Rightarrow \quad h=2$
(S) $\quad \tan ^{-1}\left(\frac{1}{2 x+1}\right)+\tan ^{-1}\left(\frac{1}{4 x+1}\right)+\tan ^{-1}\left(\frac{2}{x^{2}}\right)$

$$
\begin{aligned}
& \Rightarrow \quad \frac{\frac{1}{2 x+1}+\frac{1}{4 x+1}}{1-\frac{1}{(2 x+1)(4 x+1)}}=\frac{2}{x^{2}} \quad \Rightarrow \quad \frac{6 x+2}{8 x^{2}+6 x}=\frac{2}{x^{2}} \\
& \Rightarrow \quad 3 x^{3}+x^{2}=8 x^{2}+6 x \quad \Rightarrow \quad 3 x^{3}-7 x^{2}-6 x=0 \\
& \Rightarrow \quad 3 x^{2}-7 x+6=0(\text { as } x \neq 0) \\
& \Rightarrow \\
& \\
& \Rightarrow(x-3)(3 x+2)=0 \quad \Rightarrow \quad x=-\frac{2}{3}, 3 \quad\left(-\frac{2}{3} \text { is rejected }\right)
\end{aligned}
$$

Hindi. (P) $y=4 x^{3}-3 x$ जहाँ $\cos \theta=x$
$\frac{d y}{d x}=12 x^{2}-3$
$\frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}=\left(x^{2}-1\right) \cdot 24 x+x\left(12 x^{2}-3\right)$
$=36 x^{3}-27 x=9\left(4 x^{3}-3 x\right)=9 y$
अतः $\frac{1}{y}\left\{\left(x^{2}-1\right) \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}\right\}=9$
(Q) $\quad\left|\vec{a}_{1} \times \vec{a}_{2}+\vec{a}_{2} \times \vec{a}_{3}+\ldots+\vec{a}_{n-1} \times \vec{a}_{n}\right|$
$=\left|\vec{a}_{1} \cdot \vec{a}_{2}+\vec{a}_{2} \cdot \vec{a}_{3}+\ldots+\vec{a}_{n-1} \cdot \vec{a}_{n}\right|$
माना $\left|\vec{a}_{1}\right|=\left|\vec{a}_{2}\right|=\ldots \ldots=\left|\vec{a}_{n}\right|=\lambda$ (चूंकि केन्द्र, मूल बिन्दु है)
दो क्रमागत $\overrightarrow{\mathrm{a}}_{\mathrm{i}}$'s के मध्य कोण $\left|\frac{2 \pi}{\mathrm{n}}\right|$ है
अतः दिए गऐ समीकरण होती है

Resonance Eduventures Pvt. Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Tel. No. : 0744-3192222, 3012222, 3022222 | Toll Free : 18002002244 | To Know more : sms RESO at 56677 Website : www.resonance.ac.in | Email : contact@resonance.ac.in

$$
(n-1) \lambda^{2} \sin \left(\frac{2 \pi}{n}\right)=(n-1) \lambda^{2} \cos \left(\frac{2 \pi}{n}\right)
$$

$$
\Rightarrow \quad \tan \left(\frac{2 \pi}{n}\right)=1 \quad \Rightarrow \quad \frac{2 \pi}{n}=\frac{\pi}{4} \quad \Rightarrow \quad n=8
$$

(R) अभिलम्ब का समीकरण $\frac{6 x}{h}-\frac{3 y}{1}=3 \quad\left(\right.$ Equation of normal is $\left.\frac{a^{2} x}{x_{1}}-\frac{b^{2} y}{y_{1}}=a^{2}-b^{2}\right)$

$$
\text { प्रवणता }=\frac{6}{3 h}=1 \text { (चूंकि यह } z+y=1 \text { के लम्बवत् है) } \Rightarrow \quad h=2
$$

(S) $\quad \tan ^{-1}\left(\frac{1}{2 x+1}\right)+\tan ^{-1}\left(\frac{1}{4 x+1}\right)+\tan ^{-1}\left(\frac{2}{x^{2}}\right)$
$\Rightarrow \frac{\frac{1}{2 x+1}+\frac{1}{4 x+1}}{1-\frac{1}{(2 x+1)(4 x+1)}}=\frac{2}{x^{2}} \quad \Rightarrow \quad \frac{6 x+2}{8 x^{2}+6 x}=\frac{2}{x^{2}}$
$\Rightarrow \quad 3 x^{3}+x^{2}=8 x^{2}+6 x \quad \Rightarrow \quad 3 x^{3}-7 x^{2}-6 x=0$
$\Rightarrow \quad 3 x^{2}-7 x+6=0($ चूंकि $x \neq 0)$
$\Rightarrow \quad(x-3)(3 x+2)=0 \quad \Rightarrow \quad x=-\frac{2}{3}, 3 \quad\left(-\frac{2}{3}\right.$ is rejected $)$
59. Let $f_{1}: R \rightarrow R, f_{2}:[0, \infty) \rightarrow R, f_{3}: R \rightarrow R$ and $f_{4}: R \rightarrow[0, \infty)$ be defined by
$f_{1}(x)=\left\{\begin{array}{lll}|x| & \text { if } & x<0, \\ e^{x} & \text { if } & x \geq 0 ;\end{array}\right.$
$f_{2}(x)=x^{2}$;
$f_{3}(x)=\left\{\begin{array}{ccc}\sin x & \text { if } & x<0, \\ x & \text { if } & x \geq 0\end{array}\right.$
and
$f_{4}(x)=\left\{\begin{array}{ccc}f_{2}\left(f_{1}(x)\right) & \text { if } & x<0, \\ f_{2}\left(f_{1}(x)\right)-1 & \text { if } & x \geq 0\end{array}\right.$

List I

P. $\quad f_{4}$ is
Q. $\quad f_{3}$ is
R. $\quad f_{2} \circ f_{1}$ is
S. $\quad f_{2}$ is

List II

1. onto but not one-one
2. neither continuous nor one-one
3. differentiable but not one-one
4. continuous and one-one

Resonance Eduventures Pvt. Ltd.

मानाकि $f_{1}: R \rightarrow R, f_{2}:[0, \infty) \rightarrow R, f_{3}: R \rightarrow R$ और $f_{4}: R \rightarrow[0, \infty)$ निम्नानुसार
$f_{1}(x)= \begin{cases}|x| & \text { यदि } x<0, \\ e^{x} & \text { यदि } x \geq 0 ;\end{cases}$
$\mathrm{f}_{2}(\mathrm{x})=\mathrm{x}^{2}$;
$f_{3}(x)=\left\{\begin{array}{ccc}\sin x & \text { यदि } & x<0, \\ x & \text { यदि } & x \geq 0\end{array}\right.$
तथा
$f_{4}(x)=\left\{\begin{array}{ll}f_{2}\left(f_{1}(x)\right) & \text { यदि } x<0, \\ f_{2}\left(f_{1}(x)\right)-1 & \text { यदि } \\ x \geq 0\end{array}\right.$ परिभाषित है।

सूची- I
P. $\quad f_{4}$
Q. $\quad f_{3}$
R. $\quad f_{2} \circ f_{1}$
S. $\quad f_{2}$

$\begin{array}{llll}\mathbf{P} & \mathbf{Q} & \mathbf{R} & \mathbf{S}\end{array}$

$\begin{array}{lllll}\text { (A) } & 3 & 1 & 4 & 2\end{array}$
$\begin{array}{lllll}\text { (B) } & 1 & 3 & 4 & 2\end{array}$
$\begin{array}{lllll}\text { (C) } & 3 & 1 & 2 & 4\end{array}$
$\begin{array}{lllll}\text { (D) } & 1 & 3 & 2 & 4\end{array}$

Ans. (D)

Sol. $\quad f_{2}\left(f_{1}(x)\right)=\left(f_{1}(x)\right)^{2}-\left[\begin{array}{cc}x^{2} & x<0 \\ e^{2 x} & x \geq 0\end{array}\right.$
$f_{4}(x)\left[\begin{array}{cc}x^{2} & x<0 \\ e^{2 x}-1 & x \geq 0\end{array}\right.$

सूची - II

1. आच्छादक (onto) है परन्तु एकैकी (one-one) नहीं है।
2. न संतत (continuous) है न ही एकैकी है।
3. अवकलनीय (differentiable) है परन्तु एकैकी नहीं है।
4. संतत (continuous) और एकैकी है।

$\mathrm{f}_{4}(\mathrm{x})$ is many-one onto, continuous and non-derivable
$f_{3}(x)$ is many-one, into, continuous and derivable
$\mathrm{f}_{2}(x)$ is one-one, into, differentiable
$\mathrm{f}_{4}(\mathrm{x})$ बहुएकैकी आच्छादक, सतत् और अवकलनीय नही
$f_{3}(x)$ बहुएकैकी, अर्न्तक्षेपी, सतत्, अवकलनीय
$\mathrm{f}_{2}(\mathrm{x})$ एकैकी, अर्न्तक्षेपी, अवकलनीय
Hence अतः $R \rightarrow 2$
so अतः (D)
$p \rightarrow 1, q \rightarrow 3, R \rightarrow 2, S \rightarrow 4$
5. Let $z_{k}=\cos \left(\frac{2 k \pi}{10}\right)+i \sin \left(\frac{2 k \pi}{10}\right) ; k=1,2, \ldots 9$.

List I

P. For each z_{k} there exists a z_{j} such that $\mathrm{z}_{\mathrm{k}} . \mathrm{z}_{\mathrm{j}}=1$
Q. There exists a $k \in\{1,2, \ldots, 9\}$ such that $z_{1 .}$. $z=z_{k}$ has no solution z in the set of complex numbers.
R. $\frac{\left|1-z_{1}\right|\left|1-z_{2}\right| \ldots .\left|1-z_{9}\right|}{10}$ equals
S. $1-\sum_{k=1}^{9} \cos \left(\frac{2 k \pi}{10}\right)$ equals

मानाकि $z_{k}=\cos \left(\frac{2 k \pi}{10}\right)+i \sin \left(\frac{2 k \pi}{10}\right) ; k=1,2, \ldots 9$.

सूची-I

P. प्रत्येक z_{k} के लिए एक ऐसा z_{j} है जिसके लिये $z_{k} \cdot z_{j}=1$
Q. $\{1,2, \ldots, 9\}$ में एक ऐसा k है कि $\mathrm{z}_{1 .} . \mathrm{z}=\mathrm{z}_{\mathrm{k}}$ का कोई हल z सम्मिश्र संख्याओं (complex numbers) में नहीं है
R. $\frac{\left|1-z_{1}\right|\left|1-z_{2}\right| \ldots . .\left|1-z_{9}\right|}{10}$ का मान है-
S. $1-\sum_{\mathrm{k}=1}^{9} \cos \left(\frac{2 \mathrm{k} \pi}{10}\right)$ का मान है-

List II

1. True
2. False
3. 1
4. 2

सूची-II

1. सत्य
2. असत्य
3. 1
4. 2

Resonance Eduventures Pvt. Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Tel. No. : 0744-3192222, 3012222, 3022222 | Toll Free : 18002002244 | To Know more : sms RESO at 56677

(A)	1	2	4	3

$\begin{array}{lllll}\text { (B) } & 2 & 1 & 3 & 4\end{array}$
$\begin{array}{lllll}\text { (C) } & 1 & 2 & 3 & 4\end{array}$
$\begin{array}{lllll}\text { (D) } & 2 & 1 & 4 & 3\end{array}$

Ans. (C)

Sol. (P) $\quad z_{k} z_{j}=1 \quad \Rightarrow \quad z_{j}=z_{10-k}$
Hence for each $k \in\{1,2,3, \ldots, 9\}$ there exists z_{j} such that $z_{k} \cdot z_{j}=1$ True
(Q) $\quad z_{1} \cdot z=z_{k} \quad \Rightarrow \quad z=z_{k-1}$ for $k=2,3,4, \ldots, 9$ \&

$$
z=1 \text { for } k=1 \quad \text { False }
$$

(R) $\quad z_{1}, z_{2}, \ldots, z_{9}$ are roots of the equation $z^{10}=1$ other then unity, hence
$\frac{z^{10}-1}{z-1}=1+z+\ldots+z^{9}=\left(z-z_{1}\right)\left(z-z_{2}\right) \ldots\left(z-z_{9}\right)$
Substituting $z=1$, we get $\frac{\left(1-z_{1}\right)\left(1-z_{2}\right) \ldots\left(1-z_{9}\right)}{10}=\frac{10}{10}=1$
(S) $\quad 1-\sum_{\mathrm{k}=1}^{9} \cos \left(\frac{2 \mathrm{k} \pi}{10}\right)=1-\left\{\right.$ sum of real parts of roots of $\mathrm{z}^{10}=1$ except 1$\}$
$=1-(-1)=2$
$\left(\right.$ as $\left.1+z_{1}+z_{2}+\ldots+z_{9}=0\right) \Rightarrow \quad \sum \operatorname{Re}\left(z_{k}\right)+1=0$
Hindi. (P
$z_{k} z_{j}=1 \quad \Rightarrow \quad z_{j}=z_{10-k}$
अतः प्रत्येक k के लिए $\{1,2,3, \ldots, 9\}$ इस प्रकार विद्यमान z_{j} इस प्रकार है कि $z_{k} \cdot z_{j}=1$ सत्य
(Q) $\quad z_{1} \cdot z=z_{k} \quad \Rightarrow \quad z=z_{k-1} k=2,3,4, \ldots, 9 \&$ के लिए तथा

$$
z=1, k=1 \text { के लिए गलत }
$$

(R) $\mathrm{z}_{1}, \mathrm{z}_{2}, \ldots, \mathrm{z}_{9}$ समीकरण $\mathrm{z}^{10}=1$ के मूल है अतः
$\frac{z^{10}-1}{z-1}=1+z+\ldots+z^{9}=\left(z-z_{1}\right)\left(z-z_{2}\right) \ldots\left(z-z_{9}\right)$
$z=1$ के प्रतिस्थापन से $\frac{\left(1-z_{1}\right)\left(1-z_{2}\right) \ldots\left(1-z_{9}\right)}{10}=\frac{10}{10}=1$
(S) $1-\sum_{\mathrm{k}=1}^{9} \cos \left(\frac{2 \mathrm{k} \pi}{10}\right)=1-\left\{1\right.$ को छोड़कर $\mathrm{z}^{10}=1$ के मूलों के वास्तविक भागों का योगफल $\}$
$=1-(-1)=2$
(चूंकि $\left.1+z_{1}+z_{2}+\ldots+z_{9}=0\right) \Rightarrow \quad\left(\sum \operatorname{Re}\left(z_{k}\right)+1=0\right)$

Resonance Eduventures Pvt. Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Tel. No. : 0744-3192222, 3012222, 3022222 | Toll Free : 18002002244 | To Know more : sms RESO at 56677 Website : www.resonance.ac.in | Email : contact@resonance.ac.in

Appropriate way of darkening the bubble for your answer to be evaluated : आपके उत्तर के मूल्यांकन के लिए बुलबुले को काला करने का उपयुक्त तरीका :

Answer will not be evaluated no marks, no negative marks उत्तर का मूल्यांकन नहीं होगा कोई अंक नहीं, कोई ऋणात्मक अंक नहीं

Figure-1 : Correct way of bubbling for valid answer and a few examples of invalid answer. Any other form of partial marking such as ticking or crossing the bubble will be considered invalid.

चित्र-1 : वैद्य उत्तर के लिए बुलबुला भरने का सही तरीका और अवैद्य उत्तरों के कुछ उदाहरण। आंशिक अंकन के अन्य तरीके जैसे बुलबुले को टिक करना या क्रॉस करना गलत होगा।

Figure-2 : Correct way of Bubbling your Roll Number on the ORS. (Example Roll Number : 5045231) चित्र-2 : ओ.आर.एस. (ORS.) पर आपके रोल नम्बर के बबल को भरने का सही तरीका (उदाहरण रोल नम्बर : 5045231)

Name of the Candidate

परीक्षार्थी का नाम
\square

I have read all instructions and shall abide by them.
मैंने सभी निर्देशों का पढ़ लिया है और मैं उनका अवश्य पालन करूँगा/करूँगी।

Signature of the Candidate परीक्षार्थी के हस्ताक्षर

Roll Number
रोल नम्बर

I have verified all the information filled by the candidate.
परीक्षार्थी द्वारा भरी गई सारी जानकारी को मैनें जाँच लिया है।

Signature of the Invigilator परीक्षक के हस्ताक्षर

Resonance Eduventures Pvt. Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Tel. No. : 0744-3192222, 3012222, 3022222 | Toll Free : 18002002244 | To Know more : sms RESO at 56677 Website : www.resonance.ac.in | Email : contact@resonance.ac.in
This solution was download from Resonance JEE ADVANCED 2014 Solution portal

[^0]: This solution was download from Resonance JEE ADVANCED 2014 Solution portal

[^1]: This solution was download from Resonance JEE ADVANCED 2014 Solution portal

