Questions \& Solutions

PAPER-1 | SUBJECT : MATHEMATICS

PAPER-1 : INSTRUCTIONS TO CANDIDATES

\author{

- Question Paper-1 has three (03) parts: Physics, Chemistry and Mathematics.
 - Each part has a total eighteen (18) questions divided into three (03) sections (Section-1, Section-2 and Section-3)
 - Total number of questions in Question Paper-1 are Fifty Four (54) and Maximum Marks are One Hundred Ninety Eight (198).
}

Type of Questions and Marking Schemes

SECTION-1 (Maximum Marks : 18)

- This section contains SIX (06) questions.
- Each question has FOUR options. ONLY ONE of these four options is the correct answer.
- For each question, choose the correct option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks

+3 If ONLY the correct option is chosen ;
Zero Marks : 0 lf none of the options is chosen (i.e. the question is unanswered).
Negative Marks

- $\mathbf{1}$ In all other cases.
- This section contains SIX (06) questions.
- Each question has FOUR options. ONE OR MORE THAN ONE of these four option(s) is (are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme.

Full Marks :	$+\mathbf{+ 4}$ If only (all) the correct option(s) is (are) chosen.
Partial Marks :	$\mathbf{+ 3}$ If all the four options are correct but ONLY three options are chosen.
Partial Marks :	$+\mathbf{+ 2}$ If three or more options are correct but ONLY two options are chosen and both of which are correct.
Partial Marks :	$\mathbf{+ 1}$ If two or more options are correct but ONLY one option is chosen and it is a correct option.
Zero Marks :	$\mathbf{0}$ If none of the options is chosen (i.e. the question is unanswered).
Negative Marks:	$\mathbf{- 2}$ In all other cases.

SECTION-3 (Maximum Marks : 24)

- This section contains SIX (06) questions. The answer to each question is a NUMERICAL VALUE.
- For each question, enter the correct numerical value of the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer. If the numerical value has more than two decimal places truncate/round-off the value to TWO decimal placed.
- Answer to each question will be evaluated according to the following marking scheme :

Full Marks : $\quad \mathbf{+ 4}$ If ONLY the correct numerical value is entered.
Zero Marks : 0 In all other cases.

Resonance Eduventures Limited

REGISTERED \& CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph.No. : 0744-2777777, 0744-2777700 | Toll Free : 18002585555 | FAX No. : +91-022-39167222 | To Know more : sms RESO at 56677

Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

This solution was download from Resonance JEE (ADVANCED) 2020 Solution portal

Many Dreamers... Many Achievers...

TARGET
JEE (Main+Advanced) 2021

COURSE
 VП

TARGET
JEE (Main) 2021
COURSE
$\triangle A$

TARGET

NEET 2021
COURSE

on JEE (Main) Rank, NEET \%ile Score \& Board\%
 Scholarship upto 90\%

Salient features

Live
Interactive Classes \& Recorded Lectures

Online Study Material \& DPPs (Daily Practice Problems)

Discussion \& Doubt Clearing Classes (Every week for each subject)

To know your scholarship: sms RESO <space> SCH \& send it to 56677

*Presently classes would be offered Online and Offline classes would resume as per Government Guidelines.

MATHEMATICS

SECTION-1 (Maximum Marks : 18)

- This section contains SIX (06) questions.
- Each question has FOUR options. ONLY ONE of these four options is the correct answer.
- For each question, choose the correct option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks	$:$	$\mathbf{+ 3}$ If ONLY the correct option is chosen ;
Zero Marks	$:$	0 If none of the options is chosen (i.e. the question is unanswered).
Negative Marks	$:$	$\mathbf{- 1}$ In all other cases.

1. Suppose a, b denote the distinct real roots of the quadratic polynomial $x^{2}+20 x-2020$ and suppose c, d denote the distinct complex roots of the quadratic polynomial $x^{2}-20 x+2020$, then the value of

$$
a c(a-c)+a d(a-d)+b c(b-c)+b d(b-d) \text { is }
$$

(A) 0
(B) 8000
(C) 8080
(D) 16000

Ans. (D)
Sol. Now $a c(a-c)+a d(a-d)+b c(b-c)+b d(b-d)$
$=a^{2}(c+d)-a\left(c^{2}+d^{2}\right)+b^{2}(c+d)-b\left(c^{2}+d^{2}\right)$
$=\left(a^{2}+b^{2}\right)(c+d)-(a+b)\left(c^{2}+d^{2}\right)$
$=\left\{(a+b)^{2}-2 a b\right\}(c+d)-\left(a+b\left\{(c+d)^{2}-2 c d\right\}\right.$
$=16000$
2. If the function $f: R \rightarrow R$ is defined by $f(x)=|x|(x-\sin x)$, then which of the following statements is TRUE ?
(A) f is one-one, but NOT onto
(B) f is onto, but NOT one-one
(C) f is BOTH one-one and onto
(D) f is NEITHER one-one NOR onto

Ans. (C)
Sol. $f(x)=|x|(x-\sin x)$ is odd function
$\because f(-x)=-f(x)$
Now $f(x)=x^{2}-x \sin x \quad x \geq 0$
$f^{\prime}(x)=2 x-x \cos x-\sin x$
$f^{\prime}(x)=(x-\sin x)+x(1-\cos x)>0$
\therefore graph of $y=f(x)$ is

one-one and onto
3. Let the functions : R $\rightarrow \mathrm{R}$ and $g: \mathrm{R} \rightarrow \mathrm{R}$ be defined by
$f(x)=e^{x-1}-e^{-|x-1|}$ and $g(x)=\frac{1}{2}\left(e^{x-1}+e^{1-x}\right)$
Then the area of the region in the first quadrant bounded by the curves $y=\mathrm{f}(x), y=\mathrm{g}(x)$
and $x=0$ is
(A) $(2-\sqrt{3})+\frac{1}{2}\left(\mathrm{e}-\mathrm{e}^{-1}\right)$
(B) $(2+\sqrt{3})+\frac{1}{2}\left(e-e^{-1}\right)$
(C) $(2-\sqrt{3})+\frac{1}{2}\left(e+e^{-1}\right)$
(D) $(2+\sqrt{3})+\frac{1}{2}\left(\mathrm{e}+\mathrm{e}^{-1}\right)$

Ans. (A)

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLCO24029
Toll Free : 180025855557340010333 ffacebook.com/ResonanceEdu \triangle twitter.com/Resonanceedu 㘣 www.youtube.com/resowatch Θ blog.resonanace.ac.in

Sol.

$$
\begin{aligned}
& =\int_{0}^{2=g(x)} \\
& =\int_{0}^{1} g(x) d x+\int_{1}^{1+\ln \sqrt{3}}\{g(x)-f(x)\} d x \\
& =\int_{0}^{1} \frac{1}{2}\left(e^{x-1}+e^{1-x}\right) d x+\int_{1}^{1+\ln \sqrt{3}}\left\{\frac{1}{2}\left(e^{x-1}+e^{1-x}\right)-\left(e^{x-1}-e^{1-x}\right)\right\} d x \\
& =\frac{1}{2} \int_{0}^{1}\left(e^{x-1}+e^{1-x}\right) d x+\frac{1}{2} \int_{1}^{1+\ln \sqrt{3}}\left(3 e^{1-x}-e^{x-1}\right) d x \\
& \frac{1}{2}\left[e^{x-1}-e^{1-x} \int_{0}^{1}-\frac{1}{2}\left[3 e^{1-x}+e^{x-1}\right]_{1}^{1+\ln \sqrt{3}}\right. \\
& \frac{1}{2}\left(e-e^{-1}\right)-\frac{1}{2}[2 \sqrt{3}-4]=\frac{e-e^{1-x}}{2}+2-\sqrt{3}
\end{aligned}
$$

4. Let a, b and λ be positive real numbers. Suppose P is an end point of the latus rectum of the parabola $y^{2}=4 \lambda x$, and suppose the ellipse $\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1$ passes through the point P. If the tangents to the parabola and the ellipse at the point P are perpendicular to each other, then the eccentricity of the ellipse is
(A) $\frac{1}{\sqrt{2}}$
(B) $\frac{1}{2}$
(C) $\frac{1}{3}$
(D) $\frac{2}{5}$

Ans. (A)
Sol.

$$
\begin{aligned}
& y^{2}=4 \lambda x \Rightarrow\left(\frac{d y}{d x}\right)_{A}=1=m_{1} \\
& \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \Rightarrow\left(\frac{d y}{d x}\right)_{A}=\frac{-b^{2}}{2 a^{2}}=m_{2} \\
& \Rightarrow m_{1} \cdot m_{2}=-1 \Rightarrow b^{2}=2 a^{2} \\
& \text { and } a^{2}=b^{2}\left(1-e^{2}\right) \\
& \Rightarrow 1=2\left(1-e^{2}\right) \\
& \qquad e=\frac{1}{\sqrt{2}}
\end{aligned}
$$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
5. Let C_{1} and C_{2} be two biased coins such that the probabilities of getting head in a single toss are $\frac{2}{3}$ and $\frac{1}{3}$, respectively. Suppose α is the number of heads that appear when C_{1} is tossed twice, independently, and suppose β is the number of heads that appear when C_{2} is tossed twice, independently. Then the probability that the roots of the quadratic polynomial $x^{2}-\alpha x+\beta$ are real and equal, is
(A) $\frac{40}{81}$
(B) $\frac{20}{81}$
(C) $\frac{1}{2}$
(D) $\frac{1}{4}$

Ans. (B)
Sol. Roots of equation $x^{2}-\alpha x+\beta=0$ are real and equal
when $\mathrm{D}=0$
$\alpha^{2}-4 \beta=0$
$\alpha^{2}=4 \beta$
$(\alpha=0, \beta=0)$ or $(\alpha=2, \beta=1)$
prob. ${ }^{2} \mathrm{C}_{0}\left(\frac{1}{3}\right)^{2} \cdot{ }^{2} \mathrm{C}_{0}\left(\frac{2}{3}\right)^{2}+{ }^{2} \mathrm{C}_{2}\left(\frac{2}{3}\right)^{2} \mathrm{C}_{1}\left(\frac{1}{3}\right)^{1}\left(\frac{2}{3}\right)$
$=\frac{1}{9} \times \frac{4}{9}+\frac{4}{9} \times \frac{4}{9}=\frac{20}{81}$
6. Consider all rectangles lying in the region
$\left\{(x, y) \in R \times R: 0 \leq x \leq \frac{\pi}{2}\right.$ and $\left.0 \leq y \leq 2 \sin (2 x)\right\}$
and having one side on the x -axis. The area of the rectangle which has the maximum perimeter among all such rectangles, is
(A) $\frac{3 \pi}{2}$
(B) π
(C) $\frac{\pi}{2 \sqrt{3}}$
(D) $\frac{\pi \sqrt{3}}{2}$

Ans. (C)
Sol.

$2 \sin 2 \theta_{1}=2 \sin 2 \theta_{2}$
$2 \theta_{1}=\pi-2 \theta_{2}$
$\theta_{2}=\frac{\pi}{2}-\theta_{1}$
Now perimeter $p\left(\theta_{1}, \theta_{2}\right)=2\left\{\left(\theta_{2}-\theta_{1}\right)+2 \sin 2 \theta_{1}\right\}$
$p\left(\theta_{1}\right)=2\left[\frac{\pi}{2}-2 \theta_{1}+2 \sin 2 \theta_{1}\right]$
$\mathrm{p}^{\prime}\left(\theta_{1}\right)=2\left(-2+4 \cos 2 \theta_{1}\right)$
$p^{\prime \prime}\left(\theta_{1}\right)=2\left(-8 \sin 2 \theta_{1}\right)$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
for maximum perimeter
$\mathrm{p}^{\prime}\left(\theta_{1}\right)=0$ and $\mathrm{P}^{\prime \prime}\left(\theta_{1}\right)<0$
$\cos 2 \theta_{1}=\frac{1}{2} \Rightarrow 2 \theta_{1}=\frac{\pi}{3} \quad \Rightarrow \quad \theta_{1}=\frac{\pi}{6}$
Now area at $\theta_{1}=\frac{\pi}{6}$
$=\left(\theta_{2}-\theta_{1}\right) \times 2 \sin 2 \theta_{1}$
$=\left(\frac{\pi}{2}-2 \theta_{1}\right) \cdot 2 \sin 2 \theta_{1}$
$=\left(\frac{\pi}{2}-\frac{\pi}{3}\right) \times 2 \sin \frac{\pi}{3}=\frac{\pi}{6} \cdot \sqrt{3}=\frac{\pi}{2 \sqrt{3}}$

SECTION-2 (Maximum Marks : 24)

- This section contains SIX (06) questions.
- Each question has FOUR options. ONE OR MORE THAN ONE of these four option(s) is (are) correct answer(s)
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme.

Full Marks $:$	$\mathbf{+ 4}$ If only (all) the correct option(s) is (are) chosen.
Partial Marks :	$\mathbf{+ 3}$ If all the four options are correct but ONLY three options are chosen.
Partial Marks :	$\mathbf{+ 2}$ If three or more options are correct but ONLY two options are chosen and both of which are correct.
Partial Marks :	$\mathbf{+ 1}$ If two or more options are correct but ONLY one option is chosen and it is a correct option.
Zero Marks :	$\mathbf{0}$ If none of the options is chosen (i.e. the question is unanswered).
Negative Marks :	$\mathbf{- 2}$ In all other cases.

7. Let the function $f: \mathrm{R} \rightarrow \mathrm{R}$ be defined by $\mathrm{f}(x)=x^{3}-x^{2}+(x-1) \sin x$ and let $g: \mathrm{R} \rightarrow \mathrm{R}$ be an arbitrary function. Let $\mathrm{f} g: \mathrm{R} \rightarrow \mathrm{R}$ be the product function defined by $(f g)(x)=f(x) g(x)$. Then which of the following statements is/are TRUE?
(A) If g is continuous at $x=1$, then $f g$ is differentiable at $x=1$
(B) If $f g$ is differentiable at $x=1$, then g is continuous at $x=1$
(C) If g is differentiable at $x=1$, then f g is differentiable at $x=1$
(D) If $f g$ is differentiable at $x=1$, then g is differentiable at $x=1$

Ans. (A,C)
Sol. Differentiability of fg at $\mathrm{x}=1$
$(f g)^{\prime}(1)=\lim _{h \rightarrow 0} \frac{f g(1+h)-f g(1)}{h}$
$\lim _{h \rightarrow 0} \frac{\left\{(1+h)^{3}(1+h)^{2}+h \sin (1+h)\right\} g(1+h)-0}{h}$
$\lim _{h \rightarrow 0}\left\{(1+h)^{2}+\sin (1+h)\right\} g(1+h)$
If $g(x)$ is continuous at $x=1$
then $\lim _{h \rightarrow 0} g(1+h)=g(1)$
so $\lim _{h \rightarrow 0}(f g)^{\prime}(1)=(1+\sin 1) g(1)$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

Rescmance

8. Let M be a 3×3 invertible matrix with real entries and let I denote the 3×3 identity matrix. If $\mathrm{M}^{-1}=\operatorname{adj}(\operatorname{adj} M)$, then which of the following statements is/are ALWAYS TRUE?
(A) $M=I$
(B) $\operatorname{det} \mathrm{M}=1$
(C) $\mathrm{M}^{2}=\mathrm{I}$
(D) $(\operatorname{adj} M)^{2}=I$

Ans. (BCD)
Sol. $\quad \mathrm{M}^{-1}=\operatorname{Adj}(\operatorname{Adj} \mathrm{M})$
Adj M.M ${ }^{-1}=$ Adj M. Adj (AdjM)
Adj M . $\mathrm{M}^{-1}=|\operatorname{Adj} \mathrm{M}| \mathrm{I}$
Adj $\mathrm{M}=|\mathrm{M}|^{2} \mathrm{M}$
$|\operatorname{Adj} \mathrm{M}|=\left||\mathrm{M}|^{2} \mathrm{M}\right|=|\mathrm{M}|^{6}|\mathrm{M}|$
$|M|^{2}=|M|^{7} \Rightarrow|M| \neq 0,|M|=1$
by equation (1)
Adj M = M
M.AdjM= M^{2}
$|\mathrm{M}| \mathrm{I}=\mathrm{M}^{2} \Rightarrow \mathrm{M}^{2}=\mathrm{I}$
again by (1) (2) Adj $M=M$
$(\operatorname{Adj} \mathrm{M})^{2}=\mathrm{M}^{2}=\mathrm{I}$
9. Let S be the set of all complex numbers Z satisfying $\left|z^{2}+z+1\right|=1$. Then which of the following statements is/are TRUE?
(A) $\left|z+\frac{1}{2}\right| \leq \frac{1}{2}$ for all $z \in S$
(B) $|z| \leq 2$ for all $z \in S$
(C) $\left|z+\frac{1}{2}\right| \geq \frac{1}{2}$ for all $z \in S$
(D) The set S has exactly four elements.

Ans. (BC)
Sol. $Z^{2}+Z+1=e^{i \theta} \quad \theta \in(-\pi, \pi]$
$Z^{2}+Z+1-e^{i \theta}=0$
$Z=\frac{-1 \pm \sqrt{4 e^{i \theta}-3}}{2}$
$Z+\frac{1}{2}= \pm \sqrt{(4 \cos \theta-3)+i 4 \sin \theta}$
$\left|Z+\frac{1}{2}\right|=\left[(4 \cos \theta-3)^{2}+(4 \sin \theta)^{2}\right]^{1 / 4}$
Now $|25-24 \cos \theta|^{1 / 4} \in[1, \sqrt{7}]$
$\left|Z+\frac{1}{2}\right| \in[1, \sqrt{7}] \quad$ option (C) correct
By equation (i)
$|2 Z| \leq 1+\sqrt{\left|4 \mathrm{e}^{\mathrm{i} \mathrm{\theta}}-3\right|}$
$|2 Z| \leq 1+(25-24 \cos \theta)^{1 / 4}$
$|2 Z| \leq 1+\sqrt{7}<4$
$|Z| \leq 2$ option (B) is correct

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

入Resinnancea

10. Let x, y and z be positive real numbers. Suppose x, y and z are the lengths of the sides of a triangle opposite to its angles X, Y and Z, respectively. If

$$
\tan \frac{x}{2}+\tan \frac{z}{2}=\frac{2 y}{x+y+z}
$$

then which of the following statements is/are TRUE?
(A) $2 Y=X+Z$
(B) $Y=X+Z$
(C) $\tan \frac{x}{2}=\frac{x}{y+z}$
(D) $x^{2}+z^{2}-y^{2}=x z$

Ans. (BC)
Sol. $\tan \frac{X}{2}+\tan \frac{z}{2}=\frac{2 y}{x+y+z}$
$\frac{\Delta}{s(s-x)}+\frac{\Delta}{s(s-z)}=\frac{y}{s} \Rightarrow \Delta=(s-x)(s-z)$
$\Delta^{2}=\mathrm{s}(\mathrm{s}-\mathrm{x})(\mathrm{s}-\mathrm{y})(\mathrm{s}-\mathrm{z})=(\mathrm{s}-\mathrm{x})^{2}(\mathrm{~s}-\mathrm{z})^{2}$
$\Rightarrow y^{2}=x^{2}+z^{2} \Rightarrow \angle Y=90^{\circ}$
$\angle \mathrm{Y}=\angle \mathrm{X}+\angle \mathrm{Z}$ option B is correct
Now $\tan \frac{x}{2}=\frac{\Delta}{s(s-x)}=\frac{4 \Delta}{(y+z+x)(y+z-x)}=\frac{4 \times \frac{1}{2} x z}{(y+z)^{2}-x^{2}}$
$=\frac{2 x z}{2 z^{2}+2 y z}=\frac{x}{z+y}$ option C is correct
11. Let L_{1} and L_{2} be the following straight lines.
$L_{1}: \frac{x-1}{1}=\frac{y}{-1}=\frac{z-1}{3}$ and $L_{2}: \frac{x-1}{-3}=\frac{y}{-1}=\frac{z-1}{1}$
Suppose the straight line $L: \frac{x-\alpha}{\ell}=\frac{y-1}{m}=\frac{z-\gamma}{-2}$ lies in the plane containing L_{1} and L_{2}, and passes through the point of intersection of L_{1} and L_{2}. If the line L bisects the acute angle between the lines L_{1} and L_{2}, then which of the following statements is/are TRUE?
(A) $\alpha-\gamma=3$
(B) $\ell+\mathrm{m}=2$
(C) $\alpha-\gamma=1$
(D) $\ell+m=0$

Ans. (AB)

Sol. $\quad L_{1}: \frac{x-1}{1}=\frac{y}{-1}=\frac{z-1}{3}=\lambda \Rightarrow(\lambda+1,-\lambda 3 \lambda+1)$
\& $\frac{x-1}{-3}=\frac{y}{-1}=\frac{z-1}{1}=\mu \Rightarrow(-3 \mu+1,-\mu, \mu+1)$
Both interacts $\Rightarrow(\lambda+1,-\lambda, 3 \lambda+1)=(-3 \mu+1,-\mu, \mu+1)$

$$
\Rightarrow \lambda+3 \mu=0
$$

$$
\lambda=\mu \quad \Rightarrow \lambda=\mu=0 \quad \text { and } 3 \lambda=\mu
$$

Both line passes through ($1,0,1$)
Direction ratio of the acute angle bisector between two lines is $(-1,-1,-2)$
Hence equation of acute angle bisector between two lines $L_{1} \& L_{2}$

$$
\begin{aligned}
& \frac{x-1}{-1}=\frac{y-0}{-1}=\frac{z-1}{2} \Rightarrow \frac{x-\alpha}{\ell}=\frac{y-1}{m}=\frac{z-\gamma}{-2} \\
& \Rightarrow \alpha=2 \& \gamma=-1 \\
& \text { and } \ell=1, m=1 \Rightarrow \alpha-\gamma=3, \ell+m=2 \\
& \text { A \& B correct. }
\end{aligned}
$$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
12. Which of the following inequalities is/are TRUE ?
(A) $\int_{0}^{1} x \cos x d x \geq \frac{3}{8}$
(B) $\int_{0}^{1} x \sin x d x \geq \frac{3}{10}$
(C) $\int_{0}^{1} x^{2} \cos x d x \geq \frac{1}{2}$
(D) $\int_{0}^{1} x^{2} \sin x d x \geq \frac{2}{9}$

Ans. (ABD)
Sol. $\cos x \approx 1-\frac{x^{2}}{2}+\frac{x^{4}}{4}$
$\Rightarrow \cos x \geq 1-\frac{x^{2}}{2}$
$x \cos x \geq x-\frac{x^{3}}{2}$
$\int_{0}^{1} x \cos x d x \geq \frac{1}{2}-\frac{1}{8}=\frac{3}{8} \quad$ (A) correct
Now
$\sin x \cong x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}$
$\sin x \geq x-\frac{x^{3}}{3!}$
$x \sin x \geq x^{2}-\frac{x^{4}}{6}$
$\int_{0}^{1} x \sin x d x \geq \frac{1}{3}-\frac{1}{6} \frac{1}{5}=\frac{9}{30}=\frac{3}{10}$
(B) correct
$x^{2} \cos x \geq x^{2}\left(1-\frac{x^{2}}{2}\right)$
$x^{2} \cos x \geq x^{2}-\frac{1}{2} x^{4}$
$\int_{0}^{1} x^{2} \cos x d x \geq \frac{1}{3}-\frac{1}{2} \frac{1}{5}=\frac{7}{30}$
(C) Wrong

Now $x^{2} \sin x \geq x^{2}\left(x-\frac{x^{3}}{3!}\right)$
$\int_{0}^{1} x^{2} \sin x d x \geq \frac{1}{4}-\frac{1}{6} \frac{1}{6}=\frac{8}{36}=\frac{2}{9}$ (D) Correct s

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

SECTION-3 (Maximum Marks : 24)

- This section contains SIX (06) questions. The answer to each question is a NUMERICAL VALUE.
- For each question, enter the correct numerical value of the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer. If the numerical value has more than two decimal places truncate/round-off the value to TWO decimal placed.
- Answer to each question will be evaluated according to the following marking scheme :

Full Marks : +4 If ONLY the correct numerical value is entered.
Zero Marks : 0 In all other cases.
13. Let m be the minimum possible value of $\log _{3}\left(3^{y_{1}}+3^{y_{2}}+3^{y_{3}}\right)$, where y_{1}, y_{2}, y_{3} are real numbers for which $y_{1}+y_{2}+y_{3}=9$. Let M be the maximum possible value of $\left(\log _{3} x_{1}+\log _{3} x_{2}+\log _{3} x_{3}\right)$, where x_{1}, x_{2}, x_{3} are positive real numbers for which $x_{1}+x_{2}+x_{3}=9$. Then the value of $\log _{2}\left(m^{3}\right)+\log _{3}\left(M^{2}\right)$ is \qquad -.
Ans. 8
Sol. $\quad\left(\frac{3^{y_{1}}+3^{y_{2}}+3^{y_{3}}}{3}\right) \geq\left(3^{y_{1}} \cdot 3^{y_{2}} \cdot 3^{y_{3}}\right)^{1 / 3}=\left(3^{y_{1}+y_{2}+y_{3}}\right)^{1 / 3}$
$\Rightarrow \quad 3^{y_{1}+y_{2}+y_{3}} \geq 81$ so $m=\log _{3}(81)=4$
\Rightarrow

$$
\log _{3} x_{1}+\log _{3} x_{2}+\log _{3} x_{3}=\log _{3}\left(x_{1} \cdot x_{2} \cdot x_{3}\right)
$$

$$
\frac{x_{1}+x_{2}+x_{3}}{3} \geq\left(x_{1} \cdot x_{2} \cdot x_{3}\right)^{1 / 3} \Rightarrow x_{1} x_{2} x_{3} \leq 27
$$

$M=\log _{3} 27=3$
so $\log _{2}\left(\mathrm{~m}^{3}\right)+\log _{3}\left(\mathrm{M}^{2}\right)=8$
14. Let $a_{1}, a_{2}, a_{3}, \ldots$ be a sequence of positive integers in arithmetic progression with common difference 2. Also, let $b_{1}, b_{2}, b_{3}, \ldots$. be a sequence of positive integers in geometric progression with common ratio 2. If $a_{1}=b_{1}=c$, then the number of all possible values of c, for which the equality

$$
2\left(a_{1}+a_{2}+\ldots . .+a_{n}\right)=b_{1}+b_{2}+\ldots \ldots+b_{n}
$$

holds for some positive integer n, is \qquad
Ans. 1
Sol. $2\left[a_{1}+a_{2}+\ldots \ldots .+a_{n}\right]=b_{1}+b_{2}+\ldots . .+b_{n}$

$$
\begin{array}{ll}
\Rightarrow & 2 \frac{n}{2}\left[2 a_{1}+(n-1) \cdot 2\right]=\frac{b \cdot\left(2^{n}-1\right)}{2-1} \\
\Rightarrow & n[2 c+2 n-2]=c\left(2^{n}-1\right) \\
\Rightarrow & 2 n[c+n-1]=c\left(2^{n}-1\right) \\
\Rightarrow & c\left(2^{n}-2 n-1\right]=2 n^{2}-2 n \\
\Rightarrow & c=\frac{2 n^{2}-2 n}{2^{n}-2 n-1} \geq 1 \tag{1}\\
\Rightarrow & 2 n(n-1) \geq 2^{n}-2 n-1 \\
\Rightarrow & 2 n^{2}+1 \geq 2^{n} \quad \Rightarrow \quad n \leq 6
\end{array}
$$

now put $\mathrm{n}=1,2, . .6$ in equation (1) and using $\mathrm{c} \in \mathrm{I}$
we get $\mathrm{c}=12$, when $\mathrm{n}=3$ (only one value of c)

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
15. Let $f:[0,2] \rightarrow \mathbb{R}$ be the function defined by

$$
f(x)=(3-\sin (2 \pi x)) \sin \left(\pi x-\frac{\pi}{4}\right)-\sin \left(3 \pi x+\frac{\pi}{4}\right)
$$

If $\alpha, \beta \in[0,2]$ are such that $\{x \in[0,2]: f(x) \geq 0\}=[\alpha, \beta]$, then the value of $\beta-\alpha$ is \qquad .
Ans.
Sol. $\quad 3-\sin 2 \pi x>0 \quad \forall x$
$\Rightarrow \sin \left(\pi x-\frac{\pi}{4}\right)-\sin \left(3 \pi+\frac{\pi}{4}\right) \geq 0$
$\Rightarrow 2 \sin \left(-\pi \times-\frac{\pi}{4}\right) \cos (2 \pi x) \geq 0$
$\Rightarrow 2 \sin \left(\pi x+\frac{\pi}{4}\right) \cos 2 \pi \leq 0$
Case I $\sin \left(\pi x+\frac{\pi}{4}\right) \geq 0$ and $\cos 2 \pi x \leq 0$
$\pi \times+\frac{\pi}{4} \in\left[\frac{\pi}{4}, \pi\right] \cup\left[2 \pi, 2 \pi+\frac{\pi}{4}\right]$ and $\mathrm{x} \in\left[\frac{1}{4}, \frac{3}{4}\right] \cup\left[\frac{5}{4}, \frac{7}{4}\right]$
$\Rightarrow \mathrm{x} \in\left[0, \frac{3}{4}\right] \cup\left[\frac{7}{4}, 2\right]$ and $\mathrm{x} \in\left[\frac{1}{4}, \frac{3}{4}\right] \cup\left[\frac{5}{4}, \frac{7}{4}\right]$
$\Rightarrow \mathrm{x} \in\left[\frac{1}{4}, \frac{3}{4}\right]$
Case II $\sin \left(\pi x+\frac{\pi}{4}\right)<0$ and $\cos 2 \pi x>0$
$\Rightarrow x \in\left[\frac{3}{4}, \frac{7}{4}\right]$ and $\left[0, \frac{1}{4}\right] \cup\left[\frac{3}{4}, \frac{5}{4}\right] \cup\left[\frac{7}{4}, 2\right]$
$\Rightarrow \quad x \in\left(\frac{3}{4}, \frac{5}{4}\right)$
Hence $x \in\left[\frac{1}{4}, \frac{5}{4}\right]$
16. In a triangle $P Q R$, let $\vec{a}=\overrightarrow{Q R}, \vec{b}=\overrightarrow{R P}$ and $\vec{c}=\overrightarrow{P Q}$.

If $|\vec{a}|=3,|\vec{b}|=4$ and $\frac{\vec{a} \cdot(\vec{c}-\vec{b})}{\vec{c} .(\vec{a}-\vec{b})}=\frac{|\vec{a}|}{|\vec{a}|+|\vec{b}|}$,
then the value of $|\vec{a} \times \vec{b}|^{2}$ is \qquad .
Ans. 108
Sol. $\vec{a}+\vec{b}+\vec{c}=0$

$$
\frac{\vec{a} \cdot(\vec{c}-\vec{b})}{\vec{c} \cdot(\vec{a}-\vec{b})}=\frac{-(\vec{b}+\vec{c}) \cdot(\vec{c}-\vec{b})}{-(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})}=\frac{|\vec{a}|}{|\vec{a}|+|\vec{b}|}
$$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
$\Rightarrow \quad \frac{|\overrightarrow{\mathrm{c}}|^{2}-|\overrightarrow{\mathrm{b}}|^{2}}{|\overrightarrow{\mathrm{a}}|^{2}-|\overrightarrow{\mathrm{b}}|^{2}}=\frac{3}{3+4}=\frac{3}{7}$
$\Rightarrow \quad|\overrightarrow{\mathrm{c}}|^{2}=13$

$$
\vec{a}+\vec{b}=-\vec{c} \quad \Rightarrow \quad|\vec{a}+\vec{b}|^{2}=|-\vec{c}|^{2}
$$

$\Rightarrow \quad|\vec{a}|^{2}+|\vec{b}|^{2}+2 \vec{a} \cdot \vec{b}=|\vec{c}|^{2}$
$\Rightarrow \quad 9+16+2(\vec{a} \cdot \vec{b})=13$
$\vec{a} \cdot \vec{b}=-6$
$|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|^{2}+(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}})=|\overrightarrow{\mathrm{a}}|^{2} \cdot|\overrightarrow{\mathrm{~b}}|^{2}$
$|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|^{2}+36=(9)(16) \quad \Rightarrow \quad|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|^{2}=108$
17. For a polynomial $g(x)$ with real coefficients, let m_{g} denote the number of distinct real roots of $g(x)$. Suppose S is the set of polynomials with real coefficients defined by
$S=\left\{\left(x^{2}-1\right)^{2}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}\right): a_{0}, a_{1}, a_{2}, a_{3} \in \mathbb{R}\right\}$
For a polynomial f, let f^{\prime} and $f^{\prime \prime}$ denote its first and second order derivatives, respectively. Then the minimum possible value of ($\mathrm{m}_{\mathrm{f}^{\prime}}+\mathrm{m}_{\mathrm{f}^{\prime}}$), where $\mathrm{f} \in \mathrm{S}$, is \qquad .
Ans. 3
Sol. $f(x)$ is 7 degree polynomial in x
$f^{\prime}(x)=2\left(x^{2}-1\right) 2 x\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}\right)+\left(x^{2}-1\right)^{2}\left(a_{1}+2 a_{2} x+3 a_{3} x^{2}\right)$
$f^{\prime}(x)=\left(x^{2}-1\right)\left[4 x\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}\right)+\left(x^{2}-1\right)\left(a_{1}+2 a_{2} x+3 a_{3} x^{2}\right)\right] s$
$f^{\prime}(x)=0$ has at least 2 real roots
$f^{\prime}(x)$ is 6 degree polynomial in x
$f^{\prime \prime}(x)$ is 5 degree polynomial in x
has at least 1 real root.
so minimum value of $m+n=3$
18. Let e denote the base of the natural logarithm. The value of the real number a for which the right hand limit

$$
\lim _{x \rightarrow 0^{+}} \frac{(1-x)^{1 / x}-e^{-1}}{x^{2}}
$$

is equal to a nonzero real number, is \qquad .
Ans. 1

Sol.

$$
\begin{aligned}
& \operatorname{Lim}_{x \rightarrow 0^{+}} \frac{(1-x)^{1 / x}}{a x^{a-1}} \frac{d\left[\frac{\ln (1-x)}{x}\right]}{d x}=\operatorname{Lim}_{x \rightarrow 0^{+}} \frac{(1-x)^{1 / x}}{a x^{a-1}}\left[+\frac{1}{(x)(x-1)}-\frac{\ln (1-x)}{x^{2}}\right] \\
& =\operatorname{Lim}_{x \rightarrow 0^{+}} \frac{(1-x)^{1 / x}}{a x^{a-1}}\left[\frac{x-(x-1) \ln (1-x)}{x^{2}(x-1)}\right] \\
& \lim _{x \rightarrow 0^{+}} \frac{(1-x)^{1 / x}\left\{x+(x-1)\left(x+\frac{x^{2}}{2}+\frac{x^{3}}{3} \ldots \ldots\right\}\right.}{-a(1-x) x^{a+1}} \\
& =\lim _{x \rightarrow 0} \frac{(1-x)^{1 / x}\left\{\frac{x^{2}}{2}+x^{3}\left(\frac{1}{2}-\frac{1}{3}\right)+x^{4}\left(\frac{1}{3}-\frac{1}{4}\right)+\ldots \ldots . .\right\}}{-a(1-x) x^{a+1}}
\end{aligned}
$$

which is real number iff $a+1=2 \Rightarrow a=1$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

Few things remain unchanged forever...
So, is our tradition of delivering Self-Earned \& Owned Result

Classroom: 11047 | Distance: 3670

STUDENTS ELIGBLE FOR JEE CADVANCED 2020

ALL INDIA RANKS (AIRs) IN TOP-200 FROM CLASSROOM

