Questions \& Solutions

PAPER-2 | SUBJECT: CHEMISTRY

PAPER-2 : INSTRUCTIONS TO CANDIDATES

- Question Paper-2 has three (03) parts : Physics, Chemistry and Mathematics.
- Each part has a total of eighteen (18) questions divided into three (03) sections (Section-1, Section-2 and Section-3).
- Total number of questions in Question Paper-2 are : Fifty Four (54) and Maximum Marks are One Hundred Ninety Eight (198).

Type of Questions and Marking Schemes

SECTION-1 (Maximum Marks: 18)

- This section contains SIX (06) questions.
- The answer to each question is a SINGLE DIGIT INTEGER ranging from 0 to 9, BOTH INCLUSIVE.
- For each question, enter the correct numerical value of the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer. .
- Answer to each question will be evaluated according to the following marking scheme :

Full Marks : $\quad \mathbf{+ 3}$ If ONLY the correct numerical value is entered.
Zero Marks :
Negative Marks :
$\mathbf{- 1}$ If the question is unanswered.

SECTION 2 (Maximum Marks: 24)

- This section contains SIX (06) questions.
- Each question has FOUR options ONE OR MORE THAN ONE of these four option(s) is(are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme.
Full Marks
+4 If only (all) the correct option(s) is (are) chosen.
Partial Marks :
+3 If all the four options are correct but ONLY three options are chosen.
Partial Marks: +2 If three or more options are correct but ONLY two options are chosen and both of which are correct.
Partial Marks: +1 If two or more options are correct but ONLY one option is chosen and it is a correct option.
Zero Marks : $\quad 0$ If none of the options is chosen (i.e. the question is unanswered).
Negative Marks: $\mathbf{- 2}$ In all other cases.

SECTION 3 (Maximum Marks : 24)

- This section contains SIX (06) questions. The answer to each question is a NUMERICAL VALUE.
- For each question, enter the correct numerical value of the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer. If the numerical value has more than two decimal places, truncate/round-off the value to TWO decimal places.
- Answer to each question will be evaluated according to the following marking scheme :
$\begin{array}{ll}\text { Full Marks }: & \mathbf{+ 4} \text { If ONLY the correct numerical value is entered. } \\ \text { Zero Marks : } & \mathbf{0} \text { In all other cases. }\end{array}$

Resonance Eduventures Limited

REGISTERED \& CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph.No. : 0744-2777777, 0744-2777700 | Toll Free : 18002585555 |FAX No. : +91-022-39167222| To Know more : sms RESO at 56677

Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

This solution was download from Resonance JEE (ADVANCED) 2020 Solution portal

Many Dreamers... Many Achievers...

TARGET
JEE (Main+Advanced) 2021

COURSE
 VП

TARGET
JEE (Main) 2021
COURSE
$\triangle A$

TARGET

NEET 2021
COURSE

on JEE (Main) Rank, NEET \%ile Score \& Board\%
 Scholarship upto 90\%

Salient features

Learatio
For Class
$7^{\text {th }}$ to $12^{\text {th }}+$

Live
Interactive Classes \& Recorded Lectures

Online Study Material \& DPPs (Daily Practice Problems)

Discussion \& Doubt Clearing Classes (Every week for each subject)

CBT -
Computer Based Test \& Performance Analysis
*Presently classes would be offered Online and Offline classes would resume as per Government Guidelines.

CHEMISTRY

SECTION 1 (Maximum Marks : 18)

- This section contains SIX (06) questions.
- The answer to each question is a SINGLE DIGIT INTEGER ranging from O TO 9. BOTH INCLUSIVE.
- For each question, enter the correct integer corresponding to the answer using the mouse and the onscreen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks: $\quad+3$ If ONLY the correct integer is entered:
Zero Marks : $\mathbf{0}$ If the question is unanswered;
Negative Marks: $\mathbf{- 1}$ In all other cases.

1. The $1^{\text {ST }}$, $2^{\text {nd }}$, and the $3^{\text {rd }}$ ionization enthalpies, I_{1}, I_{2}, and I_{3}, of four atoms with atomic numbers $n, n+1$, $n+2$, and $n+3$, where $n<10$, are tabulated below. What is the value of n ?

Atomic number	Ionization Enthalpy (kJ/mol)		
	I_{1}	I_{2}	I_{3}
n	1681	3374	6050
$n+1$	2081	3952	6122
$n+2$	496	4562	6910
$n+3$	738	1451	7733

Ans. (9)
Sol. From given data $(\mathrm{n}+2)$ atom is alkali metal which is sodium.
As $\mathrm{n}+2$ =
11 so $n=9$
2. Consider the following compounds in the liquid form:
$\mathrm{O}_{2}, \mathrm{HF}, \mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{CCl}_{4}, \mathrm{CHCl}_{3}, \mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$.
When a charged comb is brought near their flowing stream, how many of them show deflection as per the following figure?

Ans. (6)
Sol. Polar compound show deflection by charged comb
So $\mathrm{HF}, \mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{CHCl}_{3}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$ shows deflection by charged comb.
3. In the chemical reaction between stoichiometric quantities of KMnO_{4} and KI in weakly basic solution, what is the number of moles of l_{2} released for 4 moles of KMnO_{4} consumed?
Ans. (6)

Sol. $\underset{4 \text { mole }}{2 \mathrm{MnO}_{4}^{-}}+6 \mathrm{I}^{-} \longrightarrow \underset{6 \text { mole }}{3 \mathrm{I}_{2}}+2 \mathrm{MnO}_{2}$
4. An acidified solution of potassium chromate was layered with an equal volume of amyl alcohol. When it was shaken after the addition of 1 mL of $3 \% \mathrm{H}_{2} \mathrm{O}_{2}$, a blue alcohol layer was obtained. The blue color is due to the formation of a chromium (VI) compound ' \mathbf{X} '. What is the number of oxygen atoms bonded to chromium through only single bonds in a molecule of \mathbf{X} ?
Ans. (4)
Sol. $\mathrm{K}_{2} \mathrm{CrO}_{4} \xrightarrow{\mathrm{H}^{+} / \mathrm{H}_{2} \mathrm{O}_{2}} \mathrm{CrO}_{5}$
(Deep Blue solution)

No. of oxygen atom bonded with chromium with single bond is (4)
5. The structure of a peptide is given below.

If the absolute values of the net charge of the peptide at $\mathrm{pH}=2, \mathrm{pH}=6$, and $\mathrm{pH}=11$ are $\left|\mathrm{z}_{1}\right|,\left|\mathrm{z}_{2}\right|$, and $\left|z_{3}\right|$, respectively, then what is $\left|z_{1}\right|+\left|z_{2}\right|+\left|z_{3}\right|$?
Ans. (5)
Sol. The structure of tripeptide will be as followed at $\mathrm{PH}=2$ (in highly acidic medium)

hence $\left|z_{1}\right|=2$ at $\mathrm{pH}=6$ (in approximately neutral solution it will be

Hence $\left|\mathrm{z}_{2}\right|=0$ at $\mathrm{pH}=11$ (in highly basic medium) the structure will be

Hence $\left|z_{3}\right|$ will be 3.
Therefore $\left|z_{1}\right|+\left|z_{2}\right|+\left|z_{3}\right|=2+0+3=5$
6. An organic compound $\left(\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{2}\right)$ rotates plane-polarized light. It produces pink color with neutral FeCl_{3} solution. What is the total number of all the possible isomers for this compound?
Ans. (6)
Sol. Since compound $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{2}$ corresponds positively to neutral FeCl_{3} hence it will be a phenolic compound the possible structures which are optically active are as followed

hence total optically active isomers will be 6 .

SECTION 2 (Maximum Marks : 24)

- This section contains SIX (06) questions.
- Each question has FOUR options ONE OR MORE THAN ONE of these four option(s) is(are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme.

Full Marks $\quad:+4$ If only (all) the correct option(s) is (are) chosen.
Partial Marks : +3 If all the four options are correct but ONLY three options are chosen.
Partial Marks : +2 If three or more options are correct but ONLY two options are chosen and both of which are correct.
Partial Marks : +1 If two or more options are correct but ONLY one option is chosen and it is a correct option.
Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered).
Negative Marks : - $\mathbf{1}$ In all other cases.
7. In an experiment, m grams of a compound \mathbf{X} (gas/liquid/solid) taken in a container is loaded in a balance as shown in figure \mathbf{I} below. In the presence of a magnetic field, the pan with \mathbf{X} is either deflected upwards (figure II), or deflected downwards (figure III), depending on the compound \mathbf{X}. Identify the correct statement(s).

(I)
Balanced;
Magnetic field absent

(II)
Upward deflection; Magnetic field present
(III)

Downward deflection; Magnetic field present

(A) If \mathbf{X} is $\mathrm{H}_{2} \mathrm{O}(\mathrm{O}$, deflection of the pan is upwards.
(B) If \mathbf{X} is $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right](s)$, deflection of the pan is upwards.
(C) If \mathbf{X} is $\mathrm{O}_{2}(g)$, deflection of the pan is downwards.
(D) If \mathbf{X} is $\mathrm{C}_{6} \mathrm{H}_{6}(\Lambda$, deflection of the pan is downwards

Ans. (ABC)
Sol. Paramagnetic substance attracted by magnetic field so magnetic balance show downward deflection.
While diamagnetic substance show repulsion in magnetic field show magnetic balance show upward deflection

	Compound	Magnetic Nature	Deflection
(a)	$\mathrm{H}_{2} \mathrm{O}$	Diamagnetic	Upward
(b)	$\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$	Diamagnetic	Upward
(c)	$\mathrm{O}_{2}(g)$	Paramagnetic	Downward
(d)	$\mathrm{C}_{6} \mathrm{H}_{6}$	Diamagnetic	Upward

8. Which of the following plots is(are) correct for the given reaction?
($[P]_{0}$ is the initial concentration of \mathbf{P})

(C) $\overline{[P]_{0}}$

(D) $\ln \left(\frac{[P]}{[P]_{0}}\right.$

Ans. (A)
Sol.

this is $1^{\text {st }}$ order reaction
For $1^{\text {st }}$ order $\mathrm{T}_{1 / 2}=\frac{0.693}{\mathrm{k}}$
So independent of initial concentration

$$
\begin{gathered}
\mathrm{C}=\mathrm{C}_{0} \mathrm{e}^{-\mathrm{kt}} \Rightarrow \ln \left[\frac{\mathrm{C}}{\mathrm{C}_{0}}\right]=-\mathrm{kt} \\
\Rightarrow \ln \left[\frac{[\mathrm{P}]}{[\mathrm{P}]_{0}}\right]=-k t
\end{gathered}
$$

So graph D is incorrect.
9. Which among the following statement(s) is(are) true for the extraction of aluminium from bauxite?
(A) Hydrated $\mathrm{Al}_{2} \mathrm{O}_{3}$ precipitates, when CO_{2} is bubbled through a solution of sodium aluminate.
(B) Addition of $\mathrm{Na}_{3} \mathrm{AlF}_{6}$ lowers the melting point of alumina.
(C) CO_{2} is evolved at the anode during electrolysis.
(D) The cathode is a steel vessel with a lining of carbon.

Ans. (ABCD)
Sol. (A) $2 \mathrm{NaA} \ell \mathrm{O}_{2}+3 \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \longrightarrow 2 \mathrm{~A} \ell(\mathrm{OH})_{3}+\mathrm{Na}_{2} \mathrm{CO}_{3}$
(B) In Hall-Heroult process $\mathrm{Na}_{3} \mathrm{Al} / \mathrm{F} 66$ and CaF_{2} is mixed with $\mathrm{A}_{2} \mathrm{O}_{3}$ to lower melting point \& increase conductivity.
(C) Anode C(s) $+2 \mathrm{O}^{2-}$ (melt) $\longrightarrow \mathrm{CO}_{2}$ (g) $+4 \mathrm{e}^{-}$
(D) Steel cathode with carbon lining \& graphite anode are used.
10. Choose the correct statement(s) among the following.
(A) $\mathrm{SnCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ is a reducing agent.
(B) SnO_{2} reacts with KOH to form $\mathrm{K}_{2}\left[\mathrm{Sn}(\mathrm{OH})_{6}\right]$.
(C) A solution of PbCl_{2} in HCl contains $\mathrm{Pb}^{2}+$ and Cl^{-}ions.
(D) The reaction of $\mathrm{Pb}_{3} \mathrm{O}_{4}$ with hot dilute nitric acid to give PbO_{2} is a redox reaction.

Ans. (AB)

Sol. (A) Sn^{2+} is a good reducing agent which gets oxidise into Sn^{4+}
(B) Amphoteric nature.
(C) $\mathrm{PbCl}_{2}+2 \mathrm{Cl}^{-} \longrightarrow\left[\mathrm{PbCl}_{4}\right]^{2-}$
(D) $\underset{\left(2 \mathrm{PbO}+\mathrm{PbO}_{2}\right)}{\mathrm{Pb}_{3} \mathrm{O}_{4}}+\underset{(\text { Conc. })}{4 \mathrm{HNO}_{3}} \longrightarrow \mathrm{PbO}_{2} \downarrow+2 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}+6 \mathrm{H}_{2} \mathrm{O}$
11. Consider the following four compounds I, II, III, and IV.

I

II

III

IV

Choose the correct statement(s).
(A) The order of basicity is II > I $>$ III $>$ IV.
(B) The magnitude of $\mathrm{p} \mathrm{K}_{\mathrm{b}}$ difference between I and II is more than that between III and IV.
(C) Resonance effect is more in III than in IV.
(D) Steric effect makes compound IV more basic than III

Ans. (CD)
Sol. The correct basic strength order is
(A) Kb_{b} : IV $>$ II $>$ I $>$ III ;

- IV is strongest base due to SIR effect.
- III is weakest base due to - M group of three nitro groups present at Ortho and Para positions.
- II is stronger than I since III is tertiary and I primary aromatic amine.
(B) IV is found to be 40,000 times more basic than III. While I \& II differ very little in basic strength.
(C,D) Due to SIR effect in IV both $-\mathrm{NO}_{2}$ and $-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$ will be out of plane hence resonance effect is more in III than in IV.

12. Consider the following transformations of a compound \mathbf{P}.

Choose the correct option(s)
(A) P is

(B) X is $\mathrm{Pd}-\mathrm{C} /$ quinoline $/ \mathrm{H}_{2}$
(C) P is

(D) R is

Ans. (BC)

Sol.

SECTION 3 (Maximum Marks : 24)

- This section contains SIX (06) questions. The answer to each question is a NUMERICAL VALUE.
- For each question, enter the correct numerical value of the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer. If the numerical value has more than two decimal places, truncate/round-off the value to TwO decimal places.
- Answer to each question will be evaluated according to the following marking scheme :

Full Marks : $\quad \mathbf{4}$ If ONLY the correct numerical value is entered.
Zero Marks : $0 \mathbf{I n}$ all other cases.
13. A solution of 0.1 M weak base (B) is titrated with 0.1 M of a strong acid (HA). The variation of pH of the solution with the volume of HA added is shown in the figure below. What is the $\mathrm{p} K_{\mathrm{b}}$ of the base? The neutralization reaction is given by $\mathrm{B}+\mathrm{HA} \rightarrow \mathrm{BH}^{+}+\mathrm{A}^{-}$.

Ans. (03.00)
Sol. At 3 ml pH of solution is 11
$\mathrm{B}+\mathrm{HA} \longrightarrow \mathrm{BH}^{+}+\mathrm{A}^{-}$
at 3 ml best buffer action is shown
So $\mathrm{P}_{\mathrm{OH}}=\mathrm{P}_{\mathrm{K}_{\mathrm{b}}}=3$ (As basic buffer is formed)
So $\mathrm{P}_{\mathrm{K}_{\mathrm{b}}}=3$
14. Liquids \mathbf{A} and \mathbf{B} form ideal solution for all compositions of \mathbf{A} and \mathbf{B} at $25^{\circ} \mathrm{C}$. Two such solutions with 0.25 and 0.50 mole fractions of \mathbf{A} have the total vapor pressures of 0.3 and 0.4 bar, respectively. What is the vapor pressure of pure liquid \mathbf{B} in bar?
Ans. (0.20)

Sol. $\quad \mathrm{P}_{\text {total }}=\mathrm{P}_{\mathrm{A}}^{0} \mathrm{X}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}}^{0} \mathrm{X}_{\mathrm{B}}$
(i) $0.3=\left(P_{A}^{\circ}\right) \frac{1}{4}+\left(\mathrm{P}_{\mathrm{B}}^{\circ}\right) \frac{3}{4}$

$$
P_{A}^{\circ}+P_{B}^{0}=1.2
$$

(ii) $0.4=\left(\mathrm{P}_{\mathrm{A}}^{\circ}\right) \frac{1}{2}+\left(\mathrm{P}_{\mathrm{B}}^{\circ}\right) \frac{1}{2}$

$$
P_{A}^{\circ}+P_{B}^{0}=0.8
$$

From equation (1) and equation (2)
$P_{B}^{0}=0.2$ bar and $P_{A}^{0}=0.6$ bar
15. The figure below is the plot of potential energy versus internuclear distance (d) of H_{2} molecule in the electronic ground state. What is the value of the net potential energy E_{0} (as indicated in the figure) in kJ mol^{-1}, for $d=d_{0}$ at which the electron-electron repulsion and the nucleus-nucleus repulsion energies are absent? As reference, the potential energy of H atom is taken as zero when its electron and the nucleus are infinitely far apart.
Use Avogadro constant as $6.023 \times 10^{23} \mathrm{~mol}^{-1}$.

Ans. (-5246.5)
Sol. For one H atom

$$
\begin{gathered}
\text { P.E. }=\frac{\mathrm{kq}_{1} q_{2}}{\mathrm{r}}=-\frac{9 \times 10^{9} \times\left[1.6 \times 10^{-19}\right]^{2}}{0.529 \times 10^{-10}} \\
=-\frac{9 \times 1.6 \times 1.6}{0.529} \times 10^{-19}
\end{gathered}
$$

Total potential energy for 2 H -atom (per mole)

$$
=-\frac{2 \times 9 \times 1.6 \times 1.6}{0.529} \times 10^{-19} \times 6 \times 10^{23}=-5246.5 \mathrm{KJ} / \mathrm{mole}
$$

Ans. -5246.5
16. Consider the reaction sequence from \mathbf{P} to \mathbf{Q} shown below. The overall yield of the major product \mathbf{Q} from \mathbf{P} is 75%. What is the amount in grams of \mathbf{Q} obtained from 9.3 mL of \mathbf{P} ? (Use density of $\mathbf{P}=1.00 \mathrm{~g}$ mL^{-1}; Molar mass of $\mathrm{C}=12.0, \mathrm{H}=1.0, \mathrm{O}=16.0$ and $\mathrm{N}=14.0 \mathrm{~g} \mathrm{~mol}^{-1}$)

(iii) $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H} / \mathrm{H}_{2} \mathrm{O}$

Ans. 18.60

Sol.

$\Rightarrow \quad$ Molar mass of 'P' $\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}\right)=93 \mathrm{~g}$
$\Rightarrow \quad$ Mole of 'P' $=\left(\frac{9.3 \mathrm{~g}}{\mathrm{ml}} \times 1 \mathrm{ml}\right) \times \frac{1}{93 \mathrm{~g}}=0.1$ mole
$\Rightarrow \quad$ Molar mass of ' Q ' $=248 \mathrm{~g}$
$\Rightarrow \quad$ Mole of ' Q ' produced $=0.1$ mole
Mass of ' Q ' produced $=(0.1 \times 248 \times 0.75) \mathrm{g}=18.60 \mathrm{~g}$
17. Tin is obtained from cassiterite by reduction with coke. Use the data given below to determine the minimum temperature (in K) at which the reduction of cassiterite by coke would take place.
At $298 \mathrm{~K}: \Delta_{f} H^{0}\left(\mathrm{SnO}_{2}(s)\right)=-581.0 \mathrm{~kJ} \mathrm{~mol}^{-1}, \Delta_{f} H^{0}\left(\mathrm{CO}_{2}(g)\right)=-394.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$,
$S^{0}\left(\mathrm{SnO}_{2}(\mathrm{~s})\right)=56.0 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}, S^{0}(\mathrm{Sn}(\mathrm{s}))=52.0 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$,
$S^{0}(\mathrm{C}(s))=6.0 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}, S^{0}\left(\mathrm{CO}_{2}(\mathrm{~g})\right)=210.0 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$.
Assume that the enthalpies and the entropies are temperature independent.
Ans. (935)
Sol. $\quad \mathrm{SnO}_{2}(\mathrm{~s})+\mathrm{C}(\mathrm{s}) \longrightarrow \mathrm{Sn}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
$\Delta H_{r x n}^{0}=\Delta H_{f}^{0}\left(\mathrm{CO}_{2}(\mathrm{~g})\right)-\Delta H_{\mathrm{f}}^{0}\left(\mathrm{SnO}_{2}, \mathrm{~s}\right)$
$=-394.0-[-581.0]$
$=187 \mathrm{KJ}$
$\Delta \mathrm{S}_{\mathrm{rxM}}^{0}=\mathrm{S}^{0}(\mathrm{sn}(\mathrm{s}))+\mathrm{S}^{0}\left(\mathrm{CO}_{2}(\mathrm{~g})\right)-\mathrm{S}^{0}\left(\mathrm{SnO}_{2},(\mathrm{~s})-\mathrm{S}^{0}(\mathrm{C}(\mathrm{s}))\right.$
$=52+210-56-6$
$=200 \mathrm{~J}$

$$
\Delta \mathrm{G}^{\circ}=\Delta \mathrm{H}^{\circ}-\mathrm{T} \Delta \mathrm{~S}^{\mathrm{o}}
$$

For reaction to be spontaneous
$\Delta \mathrm{G}^{\circ}<0$
$\Delta \mathrm{H}^{\circ}-\mathrm{T} \Delta \mathrm{S}^{\circ}<0$
$187 \times 1000-\mathrm{T} \times 200<0$

$$
\mathrm{T}>935 \mathrm{~K}
$$

18. An acidified solution of $0.05 \mathrm{M} \mathrm{Zn}^{2+}$ is saturated with 0.1 M H S . What is the minimum molar concentration (M) of H^{+}required to prevent the precipitation of ZnS ? Use $\mathrm{K}_{\mathrm{sp}}(\mathrm{ZnS})=1.25 \times 10^{-22}$ and overall dissociation constant of $\mathrm{H}_{2} \mathrm{~S}, \mathrm{~K}_{\mathrm{NET}}=\mathrm{K}_{1} \mathrm{~K}_{2}=1 \times 10^{-21}$.
Ans. (0.2)
Sol. For ZnS

$$
\begin{aligned}
\mathrm{K}_{\mathrm{sp}}(\mathrm{ZnS}) & =\left[\mathrm{Zn}^{2+}\right] \times\left[\mathrm{S}^{2-}\right]=1.25 \times 10^{-22} \\
& =0.05 \times\left[\mathrm{S}^{2-}\right]=1.25 \times 10^{-22}
\end{aligned}
$$

Few things remain unchanged forever...
So, is our tradition of delivering Self-Earned \& Owned Result

Classroom: 11047 | Distance: 3670

STUDENTS ELIGBLE FOR JEE CADVANCED 2020

ALL INDIA RANKS (AIRs) IN TOP-200 FROM CLASSROOM

