Questions \& Solutions

PAPER-2 | SUBJECT : MATHEMATICS

PAPER-2 : INSTRUCTIONS TO CANDIDATES

- Question Paper-2 has three (03) parts : Physics, Chemistry and Mathematics.
- Each part has a total of eighteen (18) questions divided into three (03) sections (Section-1, Section-2 and Section-3).
- Total number of questions in Question Paper-2 are : Fifty Four (54) and Maximum Marks are One Hundred Ninety Eight (198).

Type of Questions and Marking Schemes

SECTION-1 (Maximum Marks: 18)

- This section contains SIX (06) questions.
- The answer to each question is a SINGLE DIGIT INTEGER ranging from 0 to 9 , BOTH INCLUSIVE.
- For each question, enter the correct numerical value of the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer. .
- Answer to each question will be evaluated according to the following marking scheme :
Full Marks : $\quad \mathbf{+ 3}$ If ONLY the correct numerical value is entered.
Zero Marks :
Negative Marks : $\quad \mathbf{0}$ If the question is unanswered.

SECTION 2 (Maximum Marks: 24)

- This section contains SIX (06) questions.
- Each question has FOUR options ONE OR MORE THAN ONE of these four option(s) is(are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme.

Full Marks :	$\mathbf{+ 4}$ If only (all) the correct option(s) is (are) chosen.
Partial Marks :	$\mathbf{+ 3}$ If all the four options are correct but ONLY three options are chosen.
Partial Marks:	$\mathbf{+ 2}$ If three or more options are correct but ONLY two options are chosen and both of which are correct.
Partial Marks:	$\mathbf{+ 1}$ If two or more options are correct but ONLY one option is chosen and it is a correct option.
Zero Marks :	0 If none of the options is chosen (i.e. the question is unanswered).
Negative Marks :	$\mathbf{- 2}$ In all other cases.

SECTION 3 (Maximum Marks : 24)

- This section contains SIX (06) questions. The answer to each question is a NUMERICAL VALUE.
- For each question, enter the correct numerical value of the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer. If the numerical value has more than two decimal places, truncate/round-off the value to TWO decimal places.
- Answer to each question will be evaluated according to the following marking scheme :

| Full Marks $:$ | $\mathbf{+ 4}$ If ONLY the correct numerical value is entered. |
| :--- | :--- | ---: | :--- |
| Zero Marks : | $\mathbf{0}$ In all other cases. |

Resonance Eduventures Limited

REGISTERED \& CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph.No. : 0744-2777777, 0744-2777700 | Toll Free : 18002585555 |FAX No. : +91-022-39167222| To Know more : sms RESO at 56677

Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

This solution was download from Resonance JEE (ADVANCED) 2020 Solution portal

Many Dreamers... Many Achievers...

TARGET
JEE (Main+Advanced) 2021

COURSE
 VП

TARGET
JEE (Main) 2021
COURSE
$\triangle A$

TARGET

NEET 2021
COURSE
SAFAL

on JEE (Main) Rank, NEET \%ile Score \& Board\%
 Scholarship upto 90\%

Salient features

Live
Interactive Classes \& Recorded Lectures

To know your scholarship: sms RESO <space> SCH \& send it to 56677

 ,

CBT -
Computer Based Test \& Performance Analysis
*Presently classes would be offered Online and Offline classes would resume as per Government Guidelines.

PART : MATHEMATICS

SECTION-1 (Maximum Marks: 18)

- This section contains SIX (06) questions.
- The answer to each question is a SINGLE DIGIT INTEGER ranging from 0 to 9 , BOTH INCLUSIVE.
- For each question, enter the correct numerical value of the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme :

Full Marks : $\quad \mathbf{+ 3}$ If ONLY the correct numerical value is entered.
Zero Marks : 0 If the question is unanswered.
Negative Marks: -1 In all other cases.

1. For a complex number z, let $\operatorname{Re}(z)$ denote the real part of z. let S be the set of all complex numbers z satisfying $z^{4}-|z|^{4}=4 i z^{2}$, where $I=\sqrt{-1}$. Then the minimum possible value of $\left|z_{1}-z_{2}\right|^{2}$. where z_{1}, $z_{2} \in S$ with $\operatorname{Re}\left(z_{1}\right)>0$ and $\operatorname{Re}\left(z_{2}\right)<0$, is \ldots
Ans. 8
Sol. $\quad z^{4}-|z|^{4}=4 i z^{2} \quad \Rightarrow \quad z^{4}-\bar{z}^{2}=4 i z^{2}$
$\Rightarrow \quad z^{2}\left(z^{2}-\bar{z}^{2}\right)=4 i z^{2} \quad \Rightarrow \quad z^{2}-\bar{z}^{2}=4 i$
$\Rightarrow \quad(z+\bar{z})(z-\bar{z})=4 i$
$\Rightarrow \quad\left(\frac{z+\bar{z}}{2}\right)\left(\frac{z-\bar{z}}{2 i}\right)=1 \quad \Rightarrow \quad x y=1$
for $z_{1} \& z_{2} \quad \Rightarrow \quad x_{1} y_{1}=1 \quad$ and $\quad x_{2} y_{2}=1$
$x_{1} \& x_{2}$ are of opposite sign similarly
$y_{1} \& y_{2}$ are of opposite sign
$\Rightarrow \quad \mathrm{x}_{1}>0, \mathrm{y}_{1}>0, \mathrm{x}_{2}<0, \mathrm{y}_{2}<0$
Now

$$
\begin{aligned}
& \left|z_{1}-z_{2}\right|^{2}=\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2} \\
& =x_{1}^{2}+x_{2}^{2}+y_{1}^{2}+y_{2}^{2}-2 x_{1} x_{2}-2 y_{1} y_{2} \\
& =x_{1}^{2}+x_{2}^{2}+y_{1}^{2}+y_{2}^{2}+2 x_{1}\left(-x_{2}\right)+2 y_{1}\left(-y_{2}\right) \\
& \geq 8\left(x_{1}^{2} \cdot x_{2}^{2} \cdot y_{1}^{2} \cdot y_{2}^{2} \cdot 2 x_{1}\left(-x_{2}\right) \cdot 2 y_{1}\left(-y_{2}\right)^{1 / 8}\right. \\
& \geq 8\left(\left(x_{1} y_{1}\right)^{3}\left(x_{2} y_{2}\right)^{3}\right)^{1 / 8} \\
& \geq 8
\end{aligned}
$$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
2. The probability that a missile hits a target successfully is 0.75 . In order to destroy the target completely, at least three successful hits are required. Then the minimum number of missiles that have to be fired so that the probability of completely destroying the target is NOT less than 0.95 , is
Ans. 6
Sol. $\quad \mathrm{P}$ (of destroying the target) ≥ 0.95

$$
\begin{aligned}
& { }^{n} C_{3} \cdot\left(\frac{3}{4}\right)^{3} \cdot\left(\frac{1}{4}\right)^{n-3}+{ }^{n} C_{4}\left(\frac{3}{4}\right)^{4}\left(\frac{1}{4}\right)^{n-4}+\ldots . .+{ }^{n} C_{r}\left(\frac{3}{4}\right)^{n} \geq 0.95 \\
& 1-\left\{{ }^{n} C_{0}\left(\frac{3}{4}\right)^{0} \cdot\left(\frac{1}{4}\right)^{n}+{ }^{n} C_{1}\left(\frac{3}{4}\right)^{1} \cdot\left(\frac{1}{4}\right)^{n-1}+{ }^{n} C_{2}\left(\frac{3}{4}\right)^{2}\left(\frac{1}{4}\right)^{n-2}\right\} \geq 0.95 \\
& 1-\frac{95}{100} \geq \frac{1}{4^{n}}+\frac{3 n}{4^{n}}+\frac{n(n-1)}{2} \cdot \frac{9}{4^{n}} \\
& \frac{4^{n}}{20} \geq \frac{2+6 n+9 n^{2}-9 n}{2} \\
& \frac{2^{2 n-1}}{5} \geq 9 n^{2}-3 n+2 \\
& 2^{2 n-1} \geq 5\left(9 n^{2}-3 n+2\right) \\
& n=3 \Rightarrow 32 \geq 5 \times 74 \\
& n=4 \Rightarrow 128 \geq 5 \times 132 \\
& n=5 \Rightarrow 512 \geq 5 \times 212 \\
& n=5 \Rightarrow 2048 \geq 5 \times 308
\end{aligned}
$$

3. Let O be the centre of the circle $x^{2}+y^{2}=r^{2}$, where $r>\frac{\sqrt{5}}{2}$. Suppose $P Q$ is a chord of this circle and the equation of the line passing through P and Q is $2 x+4 y=5$. If the centre of the circumcircle of the triangle OPQ lies on the line $x+2 y=4$, then the value of r is \ldots.

Ans. 2
Sol.

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

Circumcentre C of $\Delta O P Q$ lies on $x+2 y=4$
Let $\mathrm{C} \equiv(4-2 \alpha, \alpha)$

$$
\begin{array}{llll}
\because \quad \mathrm{OC} \perp \mathrm{PQ} & \Rightarrow & \text { Moc.MPQ }=-1 \\
\Rightarrow & \left(\frac{\alpha}{4-2 \alpha}\right)\left(-\frac{2}{4}\right)=-1 & \Rightarrow & \alpha=\frac{8}{5} \quad \Rightarrow
\end{array}
$$

$$
\mathrm{OM}=\frac{|0+0-5|}{\sqrt{2^{2}+4^{2}}}=\frac{\sqrt{5}}{2}
$$

$$
\mathrm{CM}=\frac{\left|2\left(\frac{4}{5}\right)+4\left(\frac{8}{5}\right)-5\right|}{\sqrt{2^{2}+4^{2}}}=\frac{3}{2 \sqrt{5}}
$$

$$
\mathrm{OC}=\mathrm{PC}=\sqrt{\left(\frac{4}{5}\right)^{2}+\left(\frac{8}{5}\right)^{2}}=\frac{4}{\sqrt{5}}
$$

$$
\text { Now } \mathrm{PM}^{2}=\mathrm{OP}^{2}-\mathrm{OM}^{2}=\mathrm{PC}^{2}-\mathrm{CM}^{2} \quad \Rightarrow \quad \mathrm{r}^{2}-\frac{5}{4}=\frac{16}{5}-\frac{9}{20} \quad \Rightarrow \quad \mathrm{r}=2
$$

4. The trace of a square matrix is defined to be the sum of its diagonal entries. If A is a 2×2 matrix such that the trace of A is 3 and the trace of A^{3} is -18 , then the value of the determinant of A is \ldots.

Ans. 5
Sol. $A=\left[\begin{array}{cc}a & b \\ c & 3-a\end{array}\right] \quad|A|=3 a-a^{2}-b c=5$

$$
\begin{aligned}
A^{3} & =\left[\begin{array}{cc}
a & b \\
c & 3-a
\end{array}\right]\left[\begin{array}{cc}
a & b \\
c & 3-a
\end{array}\right]\left[\begin{array}{cc}
a & b \\
c & 3-a
\end{array}\right] \\
& =\left[\begin{array}{cc}
a^{2}+b c & a b+3 b-a b \\
a c+3 c-a c & c b+(3-a)^{2}
\end{array}\right]\left[\begin{array}{cc}
a & b \\
c & 3-a
\end{array}\right] \\
& =\left[\begin{array}{cc}
a^{2}+b c & 3 b \\
3 c & c b+(3-a)^{2}
\end{array}\right]\left[\begin{array}{cc}
a & b \\
c & 3-a
\end{array}\right]
\end{aligned}
$$

$\operatorname{tr}\left(A^{3}\right)=a^{3}+a b c+3 b c+3 b c+3 b c-a b c+(3-a)^{3}=-18$

$$
a^{3}+9 b c+(3-a)^{3}=-18
$$

$$
9 b c+27-3.3 a(3-a)=-18
$$

$$
b c+3-3 a+a^{2}=-2
$$

$$
3 a-a^{2}-b c=5 \quad \Rightarrow \quad|A|=5
$$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
5. Let the functions : $(-1,1) \rightarrow \mathrm{R}$ and $g:(-1,1) \rightarrow(-1,1)$ be defined by $f(x)=|2 x-1|+|2 x+1|$ and $g(x)=x-[x]$,
where $[\mathrm{x}$] denotes the greatest integer less than or equal to x . Let $f \circ g:(-1,1) \rightarrow \mathrm{R}$ be the composite function defined by $(f \circ g)(\mathrm{x})=f(g(\mathrm{x}))$. Suppose c is the number of points in the interval $(-1,1)$ at which $f \circ g$ is NOT continuous, and suppose d is the number of points in the interval $(-1,1)$ at which $f \circ g$ is NOT differentiable. Then the value of $c+$ is \qquad

Ans. 4
Sol. $f(x)=|2 x-1|+|2 x+1|=\left\{\begin{array}{cc}-4 x & , \quad x<-\frac{1}{2} \\ 2, & -\frac{1}{2} \leq x \leq \frac{1}{2} \\ 4 x & , \quad x>\frac{1}{2}\end{array}\right.$ $g(x)=\{x\}$

$$
f(g(x))=\left\{\begin{array}{cc}
-4 g(x) & , \quad g(x)<-\frac{1}{2} \\
2, & -\frac{1}{2} \leq g(x) \leq \frac{1}{2} \\
4 g(x) & , \quad g(x)>\frac{1}{2}
\end{array}\right.
$$

graph of $g(x)$

$$
f(g(x))=\left\{\begin{array}{ccc}
2, & x \in\left(-1,-\frac{1}{2}\right) \cup\left(0, \frac{1}{2}\right) \\
4(x+1), & x \in\left(-\frac{1}{2}, 0\right) \\
4 x, & x \in\left(\frac{1}{2}, 1\right)
\end{array}\right.
$$

$$
\begin{aligned}
& c=1, d=3 \\
\therefore \quad & c+d=4
\end{aligned}
$$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
6. The value of the limit

$$
\lim _{x \rightarrow \frac{\pi}{2}} \frac{4 \sqrt{2}(\sin 3 x+\sin x)}{\left(2 \sin 2 x \sin \frac{3 x}{2}+\cos \frac{5 x}{2}\right)-\left(\sqrt{2}+\sqrt{2} \cos 2 x+\cos \frac{3 x}{2}\right)}
$$

is \qquad
Ans. 8
Sol. $\lim \quad 8 \sqrt{2} \sin 2 x \cdot \cos x$

$$
\begin{aligned}
& \lim _{x \rightarrow \frac{\pi}{2}} \frac{x}{\cos \frac{x}{2}-\cos \frac{7 x}{2}+\cos \frac{5 x}{2}-\left(\sqrt{2} \cdot 2 \cos ^{2} x+\cos \frac{3 x}{2}\right)} \\
& =\lim _{x \rightarrow \frac{\pi}{2}} \frac{4 \sqrt{2} \cdot 2 \cdot 2 \sin x \cos x \cdot \cos x}{2 \sin x \sin \frac{x}{2}+2 \sin 3 x \sin \frac{x}{2}-2 \sqrt{2} \cos ^{2} x} \\
& =\lim _{x \rightarrow \frac{\pi}{2}} \frac{16 \sqrt{2} \sin x \cos ^{2} x}{2 \sin \frac{x}{2}(2 \sin 2 x \cdot \cos x)-2 \sqrt{2} \cos ^{2} x} \\
& =\lim _{x \rightarrow \frac{\pi}{2}} \frac{16 \sqrt{2} \sin x}{2 \sin \frac{x}{2} \cdot 4 \sin x-2 \sqrt{2}} \\
& =\frac{16 \sqrt{2}}{4 \sqrt{2}-2 \sqrt{2}}=\frac{16 \sqrt{2}}{2 \sqrt{2}}=8
\end{aligned}
$$

SECTION 2 (Maximum Marks: 24)

- This section contains SIX (06) questions.
- Each question has FOUR options ONE OR MORE THAN ONE of these four option(s) is(are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme.
Full Marks : +4 If only (all) the correct option(s) is (are) chosen.

Partial Marks: +3 If all the four options are correct but ONLY three options are chosen.
Partial Marks: $\quad+\mathbf{2}$ If three or more options are correct but ONLY two options are chosen and both of which are correct.
Partial Marks: $\quad+\mathbf{1}$ If two or more options are correct but ONLY one option is chosen and it is a correct option.
Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered).
Negative Marks: $\quad \mathbf{- 2}$ In all other cases.

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
7. Let b be a nonzero real number. Suppose $f: R \rightarrow R$ is a differentiable function such that $f(0)=1$. If the derivative f ' of f satisfies the equation
$f^{\prime}(x)=\frac{f(x)}{b^{2}+x^{2}}$
for all $x \in \mathbb{R}$, then which of the following statements is/are TRUE?
(A) If $b>0$, then f is an increasing function
(B) If $b<0$, then f is a decreasing function
(C) $f(x) f(-x)=1$ for all $x \in \mathbb{R}$
(D) $(x)-f(-x)=0$ for all $x \in \mathbb{R}$

Ans. (AC)
Sol. $\quad f^{\prime}(x)=\frac{f(x)}{b^{2}+x^{2}} \Rightarrow \frac{f^{\prime}(x)}{f(x)}=\frac{1}{b^{2}+x^{2}}$
$\Rightarrow \ell \operatorname{nf}(x)=\frac{1}{b} \tan ^{-1} \frac{x}{b}+C$
$\therefore \mathrm{f}(0)=1 \therefore 0=\mathrm{C} \Rightarrow \mathrm{C}=0$
$\therefore \operatorname{lnf}(x)=\frac{1}{6} \tan ^{-1} \frac{x}{b}$
$\Rightarrow f(x)=e^{\frac{1}{\mathrm{~b}} \tan ^{-1} \frac{\mathrm{x}}{\mathrm{b}}}$
$\therefore \mathrm{f}^{\prime}(\mathrm{x})=\mathrm{e}^{\frac{1}{\mathrm{~b}} \tan ^{-1} \frac{\mathrm{x}}{\mathrm{b}}} \cdot \frac{1}{\mathrm{~b}^{2}+\mathrm{x}^{2}}>0$ for $\mathrm{x} \in \mathrm{R}$
$\Rightarrow f(x)$ is increasing option (A)
$f(x) \cdot f(-x)=e^{\frac{1}{b} \tan ^{-1 \frac{x}{b}}-e^{-\frac{1}{b} \tan -\frac{x}{b}}} \neq 1$
8. Let a and b be positive real numbers such that $a>1$ and $b<a$. Let P be a point in the first quadrant that lies on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$. Suppose the tangent to the hyperbola at P passes through the point $(1,0)$, and suppose the normal to the hyperbola at P cuts off equal intercepts on the coordinate axes. Let Δ denote the area of the triangle formed by the tangent at P, the normal at P and the x-axis. If e denotes the eccentricity of the hyperbola, then which of the following statements is/are TRUE?
(A) $1<\mathrm{e}<\sqrt{2}$
(B) $\sqrt{2}<\mathrm{e}<2$
(C) $\Delta=a^{4}$
(D) $\Delta=b^{4}$

Ans. (AD)

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLCO24029
Toll Free : 180025855557340010333 fffacebook.com/ResonanceEdu Y twitter.com/Resonanceedu 婳 www.youtube.com/resowatch G blog.resonanace.ac.in

Sol.

Tangent at P

$$
\begin{aligned}
& \frac{x \sec \theta}{a}-\frac{y \tan \theta}{b}=1 \text { Passes through }(1,0) \\
& \sec \theta=a \\
& \text { Now slope of } A P=1 \\
& \frac{b \sec \theta}{a \tan \theta}=1 \Rightarrow b=\tan \theta \\
& \text { Now } b^{2}=a^{2}\left(e^{2}-1\right) \\
& \tan ^{2} \theta=\sec ^{2} \theta\left(e^{2}-1\right) \Rightarrow e^{2}-1=\sin ^{2} \theta \\
& e^{2}-1 \in[0,1] \because \theta \in\left(0, \frac{\pi}{2}\right) \\
& e^{2} \in[1,2] \Rightarrow 1<e<\sqrt{2}
\end{aligned}
$$

$$
\text { Now } A(1,0) \text { and } P(\operatorname{asec} \theta, b \tan \theta)=\left(\sec ^{2} \theta, \tan ^{2} \theta\right)
$$

$$
\begin{aligned}
& \mathrm{AP}=\sqrt{\tan ^{2} \theta+\tan ^{2} \theta} \Rightarrow \mathrm{AP}=\sqrt{2} \tan \theta \\
& \text { area }=\frac{1}{2}(\mathrm{AP})^{2}=\frac{1}{2} \times 2 \tan ^{4} \theta=\mathrm{b}^{4}
\end{aligned}
$$

9. Let $f: R \rightarrow R$ and $g: R \rightarrow R$ be functions satisfying
$f(x+y)=f(x)+f(y)+f(x) f(y)$ and $f(x)=x g(x)$
for all $x, y \in R$.If $\lim _{x \rightarrow 0} g(x)=1$, then which of the following statements is/are TRUE?
(A) f is differentiable at every $x \in R$
(B) If $\mathrm{g}(0)=1$, then g is differentiable at every $\mathrm{x} \in \mathrm{R}$
(C) The derivative $f^{\prime}(1)$ is equal to 1
(D) The derivative $f^{\prime}(0)$ is equal to 1

Ans. (ABD)

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

Sol. $\because \quad$ Put $x=y=0$ in given relation.

$$
\begin{array}{ll}
\Rightarrow & f(0)=f(0)+f(0)+f^{2}(0) \\
\Rightarrow & f(0)=0 \text { or }-1 \\
\because & f(x+y)=f(x)+f(y)+f(x) \cdot f(y) \\
\Rightarrow & \frac{f(x+y)-f(x)}{y}=\frac{f(y)(1+f(x))}{y} \\
\Rightarrow & \lim _{y \rightarrow 0}\left(\frac{f(x+y)-f(x)}{y}\right)=\lim _{y \rightarrow 0}(1+f(x)) \cdot \frac{f(y)}{y} \\
\Rightarrow & f^{\prime}(x)=1+f(x) \\
\Rightarrow & f^{\prime}(0)=1+f(0) \\
\Rightarrow & f^{\prime}(0)=1+0 \\
\Rightarrow & f^{\prime}(0)=1 \\
\because & \lim _{x \rightarrow 0} g(x)=\lim _{x \rightarrow 0} \frac{f(x)}{x}=1
\end{array}
$$

$$
\text { Again } \frac{f^{\prime}(x)}{1+f(x)}=1 \Rightarrow \int \frac{f^{\prime}(x) d x}{1+f(x)} d x=\int d x
$$

$$
\Rightarrow \ell n(1+f(x))=x+C
$$

$$
\Rightarrow \ln [1+f(x)]=x
$$

$$
\Rightarrow 1+\mathrm{f}(\mathrm{x}))=\mathrm{e}^{\mathrm{x}}
$$

$$
\Rightarrow f(x)=e^{x}-1 \Rightarrow f^{\prime}(x)=e^{x} s
$$

$$
\Rightarrow f^{\prime}(1)=e^{\prime}
$$

$$
g(x)=\frac{f(x)}{x}=\frac{e^{x}-1}{x} y^{\prime}\left(0^{+}\right)=\lim _{h \rightarrow 0} \frac{g(0+h)-g(0)}{h}
$$

If $g(0)=1$ then
$g^{\prime}\left(0^{+}\right)=\lim _{h \rightarrow 0} \frac{\frac{e^{h}-1}{h}-1}{h}=\lim _{h \rightarrow 0} \frac{e^{h}-1-h}{h^{2}}=\frac{1}{2}$
$g^{\prime}\left(0^{-}\right)=\lim _{h \rightarrow 0} \frac{g(0-h)-g(0)}{-h}=\lim _{h \rightarrow 0} \frac{e^{-h}-1}{-h}$
$\lim _{h \rightarrow 0} \frac{e^{-h}-1+h}{h^{2}}=\frac{1}{2}$
$g(x)$ is differentiable

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
10. Let $\alpha, \beta, \gamma, \delta$ be real numbers such that $\alpha^{2}+\beta^{2}+\gamma^{2} \neq 0$ and $\alpha+\gamma=1$. Suppose the point $(3,2,-1)$ is the mirror image of the point $(1,0,-1)$ with respect to the plane $\alpha x+\beta y+\gamma z=\delta$. Then which of the following statements is/are TRUE?
(A) $\alpha+\beta=2$
(B) $-\gamma=3$
(C) $\delta+\beta=4$
(D) $\alpha+\beta+\gamma=\delta$

Ans. (ABC)
Sol.

Find point at

$$
\begin{aligned}
& \text { int at } \mathrm{AA}^{\prime}=\mathrm{B}(2,1,-1) \\
& 2 \alpha+\beta-\gamma=\delta \ldots(1) \\
& \alpha+\gamma=1 \quad \ldots(2) \\
& {\text { dr's of } \mathrm{AA}^{\prime}(2,2,0)}^{\alpha} \frac{\beta}{2}=\frac{\beta}{2}=\frac{\gamma}{0}=\lambda \\
& \therefore 2 \lambda+0=1 \quad \alpha=2 \lambda, \beta=2 \lambda, \gamma=0 \\
& \\
& \gamma=\frac{1}{2} \\
& \therefore \alpha=1, \beta=1, \gamma=0, \delta=3 \\
& \text { (A) } \alpha+\beta+\gamma=1+1+0=2 \neq \delta \\
& \text { (B) } \alpha+\beta+1+1+=2 \\
& \text { (C) } \gamma+\delta=0+3=3 \\
& \text { (D) } \delta+\gamma=-3-0=3
\end{aligned}
$$

Now (A) $\alpha+\beta+\gamma=1+1+0=2 \neq \delta$
11. Let a and b be positive real numbers. Suppose $\overrightarrow{P Q}=a \hat{i}+b \hat{j}$ and $\overrightarrow{P S}=a \hat{i}-b \hat{j}$ are adjacent sides of a parallelogram PQRS. Let \vec{u} and \vec{v} be the projection vectors of $\vec{w}=\hat{i}+\hat{j}$ along $\overrightarrow{P Q}$ and $\overrightarrow{P S}$, respectively. If $|\vec{u}|+|\vec{v}|=|\vec{w}|$ and if the area of the parallelogram PQRS is 8 , then which of the following statements is/are TRUE?
(A) $a+b=4$
(B) $a-b=2$
(C) The length of the diagonal $P R$ of the parallelogram $P Q R S$ is 4
(D) \vec{w} is an angle bisector of the vectors $\overrightarrow{P Q}$ and $\overrightarrow{P S}$

Ans. (AC)

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

Sol.

$$
\begin{aligned}
& a \hat{i}+b \hat{j} \\
& \vec{x}=\left\{(\hat{i}+\hat{j}) \cdot \frac{a \hat{i}+b \hat{j}}{\sqrt{a^{2}+b^{2}}}\right\} \frac{a \hat{i}+b \hat{j}}{\sqrt{a^{2}+b^{2}}}=\frac{(a+b)}{\sqrt{a^{2}+b^{2}}} \cdot \frac{a \hat{i}+b \hat{j}}{\sqrt{a^{2}+b^{2}}} \\
& \vec{v}=\left\{(\hat{i}+\hat{j}) \cdot \frac{a \hat{i}-b \hat{j}}{\sqrt{a^{2}+b^{2}}}\right\} \frac{a \hat{i}-b \hat{j}}{\sqrt{a^{2}+b^{2}}}=\frac{a-b}{\sqrt{a^{2}+b^{2}}} \times \frac{a \hat{i}-b \hat{j}}{\sqrt{a^{2}+b^{2}}} \\
& \operatorname{given}\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
a & b & 0 \\
a & -b & 0
\end{array}\right|=8 \\
& |\hat{k}(-a b-a b)|=8 \\
& a b=4 \\
& \text { Given }|\vec{x}|+|\vec{v}|=\vec{w} \\
& \frac{a+b}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}} \frac{|\mathrm{a}-\mathrm{b}|}{\sqrt{\mathrm{a}^{2}+\mathrm{B}^{2}}}=\sqrt{2} \\
& a>b \\
& 2 \mathrm{a}=\sqrt{2} \sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}} \\
& 2 \mathrm{a}^{2}=\mathrm{a}^{2}+\mathrm{b}^{2} \quad \mathrm{a}<\mathrm{b} \\
& a+b=4 \\
& 2 \mathrm{a}=\sqrt{2} \sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}} \\
& \mathrm{a}-\mathrm{b}=0 \text { diagonal }=\overrightarrow{\mathrm{PS}}+\overrightarrow{\mathrm{PQ}}=2 \mathrm{a} \hat{\mathrm{i}} \\
& a^{2}=b^{2} \Rightarrow \quad a=b=2
\end{aligned}
$$

length $=2 \mathrm{a}=4$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
12. For nonnegative integers s and r, let
$\binom{s}{r}=\left\{\begin{array}{cc}\frac{s!}{r!(s-r)!} & \text { if } r \leq s \\ 0 & \text { if } r>s\end{array}\right.$
For positive integers m and n, let
$g(m, n)=\sum_{p=0}^{m+n} \frac{f(m, n, p)}{\binom{n+p}{p}}$
where for any nonnegative integer p,

$$
f(m, n, p)=\sum_{i=0}^{p}\binom{m}{i}\binom{n+i}{p}\binom{p+n}{p-i}
$$

Then which of the following statements is/are TRUE?
(A) $g(m, n)=g(n, m)$ for all positive integers m, n
(B) $g(m, n+1)=g(m+1, n)$ for all positive integers m, n
(C) $g(2 m, 2 n)=2 g(m, n)$ for all positive integers m, n
(D) $(2 m, 2 n)=(g(m, n))^{2}$ for all positive integers m, n

Ans. (ABD)

Sol. $\frac{m!}{(m-1)!2!} \times \frac{n(+1)!}{(n+i-p)!} \times \frac{(p+n)!}{(p-1)!(n+1)!}$
$\frac{m!}{(m-1)!2!} \times \frac{(p+n)!}{p!n!} \times \frac{n!}{(n+1-p)!(p-1)!}$
$\frac{m!}{(m-1)!2!} \times{ }^{p+n} C_{p} \cdot{ }^{n} C_{p-i}$
${ }^{p+n} C_{p} \cdot \sum_{i=0}^{p}{ }^{m} C_{1} \cdot{ }^{n} C_{p-i}$
${ }^{p+n} C_{p} \cdot\left\lfloor{ }^{m} C_{0} \cdot{ }^{n} C_{p}+{ }^{m} C_{1} \cdot{ }^{m} C_{p-1}+{ }^{m} C_{2} \cdot{ }^{n} C_{p-2}+\ldots . \cdot \cdot{ }^{m} C_{p} \cdot{ }^{n} C_{0}\right\rfloor$
$(1+x)^{m} \cdot(1+x)^{n}$
$=\left({ }^{m} C_{0}+{ }^{m} C_{1} \cdot x+{ }^{m} C_{2} x \ldots ..\right)\left({ }^{n} C_{0}+{ }^{n} C_{1} x+\ldots+{ }^{n} C_{p} x^{p}+\ldots .{ }^{p+n} C_{p} \cdot{ }^{m+n} C_{p}\right)$
$g(m, n)=\sum_{p=0}^{m+n}{ }^{m+n} C_{p}=2^{m+n}$
(A) $g(2 m, 2 n)=2^{2 m+2 n}$

$$
2 \mathrm{~g}(\mathrm{~m}, \mathrm{n})=2.2^{\mathrm{m}+\mathrm{n}}
$$

(B) $g(m, n)=2^{m+n H}=g(m H, n)$
(C) $g(2 m, 2 n)=2^{2 m+2 n}=\left(2^{m+n}\right)^{2}=(g(m, n))^{2}$
(D) $g(m, n)=g(n, m)$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

SECTION 3 (Maximum Marks : 24)

- This section contains SIX (06) questions. The answer to each question is a NUMERICAL VALUE.
- For each question, enter the correct numerical value of the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer. If the numerical value has more than two decimal places, truncate/round-off the value to TWO decimal places.
- Answer to each question will be evaluated according to the following marking scheme :

| Full Marks $:$ | $\mathbf{+ 4}$ If ONLY the correct numerical value is entered. |
| :--- | :--- | :--- |
| Zero Marks $:$ | $\mathbf{0}$ In all other cases. |

13. An engineer is required to visit a factory for exactly four days during the first 15 days of every month and it is mandatory that no two visits take place on consecutive days. Then the number of all possible ways in which such visits to the factory can be made by the engineer during 1-15 June 2021 is \qquad
Ans. 495
Sol. $\quad{ }^{15-4+1} \mathrm{C}_{4}={ }^{12} \mathrm{C}_{4}=\frac{12 \cdot 11 \cdot 10 \cdot 9}{4 \cdot 3 \cdot 2 \cdot 1}=495$
14. In a hotel, four rooms are available. Six persons are to be accommodated in these four rooms in such a way that each of these rooms contains at least one person and at most two persons. Then the number of all possible ways in which this can be done is \qquad
Ans. 1080
Sol.

$$
\begin{aligned}
& 6 \rightarrow 1,1.2 .2 \frac{6!}{(1!1!2!2!)(2!2!)} \times 4! \\
& \frac{=180 \times 24}{16}=1080
\end{aligned}
$$

15. Two fair dice, each with faces numbered 1, 2, 3,4,5 and 6, are rolled together and the sum of the numbers on the faces is observed. This process is repeated till the sum is either a prime number or a perfect square. Suppose the sum turns out to be a perfect square before it turns out to be a prime number. If is the probability that this perfect square is an odd number, then the value of $14 p$ is \qquad

Ans. 8

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

Sol. \quad Square $\rightarrow 4$ or $9 \rightarrow(1,3),(3,1)(2,2),(6,3)(3,6),(5,4),(4,5)$
Prime $\rightarrow 2$ or 3 or 5 or 7 or 11
$\rightarrow(1,1),(1,2),(2,1),(1,4),(4,1),(2,3),(3,2),(1,6),(6,1),(5,2),(2,5),(3,4),(4,3),(6,5),(5,6)$
$P($ square or prime $)=\frac{22}{36}$
$P\left(\frac{\text { Perfect squreisodd }}{\text { perfect squarebefore prime }}\right)=\frac{\frac{4}{36}+\frac{14}{36} \cdot \frac{4}{36}+\frac{14}{36} \cdot \frac{14}{36} \cdot \frac{14}{36} \cdot \frac{4}{36}+\ldots \ldots}{\frac{7}{36}+\frac{14}{36} \cdot \frac{7}{36}+\frac{14}{36} \cdot \frac{14}{36} \cdot \frac{7}{36}+\ldots \ldots}$
$\frac{\left(\frac{=\frac{4}{36}}{1-\frac{14}{36}}\right)}{\left(\frac{\frac{7}{36}}{1-\frac{14}{36}}\right)}=\frac{4}{7}=P$
$\Rightarrow 14 \mathrm{P}=8$
16. Let the function $f:[0,1] \rightarrow \mathrm{R}$ be defined by
$f(x)=\frac{4^{x}}{4^{x}+2}$
Then the value of
$f\left(\frac{1}{40}\right)+f\left(\frac{2}{40}\right)+f\left(\frac{3}{40}\right)+\ldots \ldots+f\left(\frac{39}{40}\right)-f\left(\frac{1}{2}\right)$
is \qquad

Ans. 19

Sol. $f(x)=\frac{4 x}{4 x+2}, f(1-x)=\frac{4^{1-x}}{4^{1-x}+2}=\frac{2}{4^{x}+2}$
$\Rightarrow \mathrm{f}(\mathrm{x})+\mathrm{f}(1-\mathrm{x})=1$
$f\left(\frac{1}{40}\right)+f\left(\frac{2}{40}\right)+\ldots . .+f\left(\frac{39}{40}\right)-f\left(\frac{1}{2}\right)$
$=\left(f\left(\frac{1}{40}\right)+f\left(\frac{39}{40}\right)+\left(f\left(\frac{2}{40}\right)+f\left(\frac{38}{40}\right)+\ldots .+f\left(\frac{19}{40}\right)+f\left(\frac{21}{40}\right)+f\left(\frac{20}{40}\right)-f\left(\frac{1}{2}\right)\right)\right)$
$\Rightarrow \underbrace{1+1+\ldots \ldots \ldots+1}_{19 \text { times }}+f\left(\frac{1}{2}\right)-f\left(\frac{1}{2}\right)=19$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
17. Let $: \mathrm{R} \rightarrow \mathrm{R}$ be a differentiable function such that its derivative f^{\prime} is continuous and $f(\pi)=-6$.

If $F:[0, \pi] \rightarrow R$ is defined by $F(x)=\int_{0}^{x} f(t) d t$, and if $\int_{0}^{\pi}\left(f^{\prime}(x)+F(x)\right) \cos x d x=2$
then the value of $f(0)$ is \qquad
Ans. 4
Sol. $\quad I=\int_{0}^{\pi}\left(f^{\prime}(x) \cdot \cos x+f(x) \cdot \cos x\right) d x=2$
$=\int_{0}^{\pi} f^{\prime}(x) \cdot \cos x \cdot d x+\int_{0}^{\pi} f(x) \cos x \cdot d x=2$
$=(\cos x \cdot f(x))_{0}^{\pi}-\int_{0}^{\pi}(-\sin x) \cdot f(x) d x+\int_{0}^{\pi} f(x) \cdot \cos x \cdot d x=2$
$\Rightarrow \quad(\cos \pi \cdot f(\pi)-\cos)+\int_{0}^{\pi} \sin x \cdot f^{\prime}(x) d x+\int_{0}^{\pi} f(x) \cdot \cos x d x=2$
$\Rightarrow \quad(-1) \cdot(-6)-f(0))++(\sin x \cdot f(x))_{0}^{\pi}-\int_{0}^{\pi} \cos x \cdot f(x) d x+\int_{0}^{\pi} f(x) \cdot \cos x \cdot d x=2$
$\Rightarrow \quad 6-f(0)+(\sin \pi-f(p)-\sin 0 . f(0))=2$
$\Rightarrow \quad f(0)=4$
18. Let the function $f:(0, \pi) \rightarrow \mathbb{R}$ be defined by $f(\theta)=(\sin \theta+\cos \theta)^{2}+(\sin \theta-\cos \theta)^{4}$.

Suppose the function f has a local minimum at θ precisely when $\theta \in\left\{\lambda_{1} \pi, \ldots, \lambda_{r} \pi\right\}$, where $0<\lambda_{1}<\cdots<\lambda_{r}<1$. Then the value of $\lambda_{1}+\cdots+\lambda_{r}$ is \qquad
Ans. 0.5
Sol. $f(\theta)=1+\sin 2 \theta+(1-\sin 2 \theta)^{2}$

$$
\begin{aligned}
& =\sin ^{2} 2 \theta-\sin 2 \theta+2 \\
& =\left(\sin 2 \theta-\frac{1}{2}\right)^{2}+\frac{7}{4}
\end{aligned}
$$

minima when $\sin 2 \theta=\frac{1}{2}=\sin \frac{\pi}{6}$

$$
\begin{aligned}
& \theta(10, \pi) \\
& 2 \theta=\frac{\pi}{6}, \frac{5 \pi}{6} \\
& \theta=\frac{\pi}{12}, \frac{5 \pi}{12} \\
& \lambda_{1}=\frac{1}{12}, \lambda_{2}=\frac{5}{12} \\
& \text { sum }=\frac{1}{2}
\end{aligned}
$$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

Few things remain unchanged forever...
So, is our tradition of delivering Self-Earned \& Owned Result

Classroom: 11047 | Distance: 3670

STUDENTS ELIGBLE FOR JEE CADVANCED 2020

ALL INDIA RANKS (AIRs) IN TOP-200 FROM CLASSROOM

