KAPREKAR CONTEST - FINAL - SUB JUNIOR
 Classes VII \& VIII
 AMTI - Saturday, 2nd November_2019.

Instructions:

1. Answer as many questions as possible.
2. Elegant and novel solutions will get extra credits.
3. Diagrams and explanations should be given wherever necessary.
4. Fill in FACE SLIP and your rough working should be in the answer book.
5. Maximum time allowed is THREE hours.
6. All questions carry equal marks.
7. Let a_{n} be the units place of $1^{2}+2^{2}+3^{2}+\ldots+n^{2}$. Prove that the decimal $0 . a_{1} a_{2} a_{3} \ldots a_{n} \ldots$ is a rational number and represent it as $\frac{p}{q}$, where p and q are natural numbers.
Sol. For $1^{2}+2^{2}+3^{2}+\ldots+n^{2}$

$a_{1}=1$	$a_{11}=6$	$a_{21}=1$
$a_{2}=5$	$a_{12}=0$	$a_{22}=5$
$a_{3}=4$	$a_{13}=9$	$a_{23}=4$
$a_{4}=0$	$a_{14}=5$	$a_{24}=0$
$a_{5}=5$	$a_{15}=0$	$a_{25}=5$
$a_{6}=1$	$a_{16}=6$	$a_{26}=1$
$a_{7}=0$	$a_{17}=5$	$a_{27}=0$
$a_{8}=4$	$a_{18}=9$	$a_{28}=4$
$a_{9}=5$	$a_{19}=0$	$a_{29}=5$
$a_{10}=5$	$a_{20}=0$	$a_{30}=5$

\therefore given number $0 . \mathrm{a}_{1} \mathrm{a}_{2} \mathrm{a}_{3} \ldots \mathrm{a}_{\mathrm{n}}=0 . \overline{15405104556095065900}$
\therefore given number is non-terminating and repeating.
\therefore it is a rational number and can be represent in the form of $\frac{p}{q}$.
2. (a) Find the positive integers m, n such that $\frac{1}{m}+\frac{1}{n}=\frac{3}{17}$.
(b) Find the positive integers m, n, p such that $\frac{1}{m}+\frac{1}{n}+\frac{1}{p}=\frac{3}{17}$.
(c) Using this idea, prove that we can find for any positive integer k, k distinct integers, $n_{1}, n_{2} \ldots . . n_{k}$ such that $\frac{1}{\mathrm{n}_{1}}+\frac{1}{\mathrm{n}_{2}}+\ldots \frac{1}{\mathrm{n}_{\mathrm{k}}}=\frac{3}{17}$.

Sol.
(a) We know

If $\frac{1}{x}+\frac{1}{y}=\frac{1}{a}$
then, $(x-a)(y-a)=a^{2}$
so, $\frac{1}{m}+\frac{1}{n}=\frac{3}{17}$

$$
\begin{aligned}
& \frac{1}{3 m}+\frac{1}{3 n}=\frac{1}{17} \\
& \begin{aligned}
(3 m-17)(3 n-17) & =289 \\
& =289 \times 1 \\
& =17 \times 17 \\
& =1 \times 289
\end{aligned}
\end{aligned}
$$

If $(3 m-17)=289$ and $3 n-17=1$
$m=102 \quad n=6$
so, $\quad(m, n)=(102,6)$
If $3 m-17=17$ and $3 n-17=17$
$\mathrm{m}=\frac{34}{3} \quad \mathrm{n}=\frac{34}{3}$
not integer so reject
If $(3 m-17)=1$ and $3 n-17=289$
$m=6 \quad n=102$
so, $\quad(m, n)=(6,102)$
so, $\frac{1}{6}+\frac{1}{102}=\frac{3}{17}$
(b) Now,

If $\frac{1}{6}=\frac{1}{x}+\frac{1}{y}$
$(x-6)(y-6)=36$

$$
\begin{aligned}
& =1 \times 36 \text { or } 36 \times 1 \\
& =2 \times 18 \text { or } 18 \times 2 \\
& =3 \times 12 \text { or } 12 \times 3 \\
& =4 \times 9 \text { or } 9 \times 4 \\
& =6 \times 6
\end{aligned}
$$

so, $(x, y)=(7,42)(8,24),(9,18),(10,15)(12,12)$
so from equation (i)

$$
\begin{aligned}
& \frac{1}{7}+\frac{1}{42}+\frac{1}{102}=\frac{3}{17} \\
& \frac{1}{8}+\frac{1}{24}+\frac{1}{102}=\frac{3}{17}
\end{aligned}
$$

and $\quad \frac{1}{102}=\frac{1}{w}+\frac{1}{z}$
$(w-102)(z-102)=(102)^{2}$

$$
\begin{aligned}
& =1 \times 10404 \\
& =2 \times 5202 \\
& =: \quad: \\
& =: \\
& =102 \times 102
\end{aligned}
$$

Total 27 in which 13 are repeated so total 14 different pais.
so pairs of $(w, z)=(103,10506),(104,5304)$. \qquad $(204,204)$
so total 14 pairs
from equation (i)
$\frac{1}{6}+\frac{1}{103}+\frac{1}{10506}=\frac{3}{17}$
$\frac{1}{6}+\frac{1}{104}+\frac{1}{5304}=\frac{3}{17}$
: :
: :
Total $5+14=19$ pairs.
(c) $\quad \because \quad \frac{1}{a}=\frac{1}{a+1}+\frac{1}{a(a+1)}$

We convert every rational number into definite unit fractions so we can find for any positive integer k.
Such that $\frac{1}{\mathrm{n}_{1}}+\frac{1}{\mathrm{n}_{2}}+\frac{1}{\mathrm{n}_{3}}+\ldots \ldots+\frac{1}{\mathrm{n}_{\mathrm{k}}}=\frac{3}{17}$.
3. Does there exist a positive integer which is a multiple of 2019 and whose sum of the digits is 2019? If no, prove it. If yes, give one such number.

Sol.

Sum of digits

$1 \times 2019=2019$
12
$2 \times 2019=4038$
15
$3 \times 2019=6057$
18
$4 \times 2019=8076$
$5 \times 2019=10095$
16
$6 \times 2019=12114$
9
So, sum of digits of number $20196057=30$
If we take 67 times 20196057 and 1 time 12114 then sum of digits is 2019 and number is also divisible by 2019.
Number is 20196057 20196057...... 12114
67 times
other number is $40384038 \ldots . .12114$.
134 times
4. In a triangle $X Y Z$, the medians drawn through X and Y are perpendicular. Then show that $X Y$ is the smallest side of XYZ .
Sol.

$\because X P \perp Y Q, X P$ and $Y Q$ intersect at G
Let $X Y=2 a$
$Y Z=2 b$
$X Z=2 c \quad \& X G=2 y$
$G P=y$ and $Y G=2 x$
$G Q=x$
In $\triangle X G Q$
$c^{2}=4 y^{2}+x^{2}$
$c=\sqrt{4 y^{2}+x^{2}}$
In Δ YGP
$b^{2}=4 x^{2}+y^{2}$
$b=\sqrt{4 x^{2}+y^{2}}$
In $\triangle X G Y$
$4 a^{2}=4 x^{2}+4 y^{2}$
$a^{2}=x^{2}+y^{2}$
$a=\sqrt{x^{2}+y^{2}}$
from eq.(1) \& (3)
$a<c \Rightarrow 2 a<2 c \Rightarrow X Y<X Z$
From eq. (2) \& (3)
$a<b$
$2 a<2 b$
$\Rightarrow X Y<Y Z \ldots$...(5)
From eq. (4) \& (5) we can say that $X Y$ is the smallest side.
5. Let $\triangle P Q R$ be a triangle of area $1 \mathrm{~cm}^{2}$. Extend $Q R$ to X such that $Q R=R X ; R P$ to Y such that $R P=P Y$ and $P Q$ to Z such that $P Q=Q Z$. Find the area of $\triangle X Y Z$.

Sol.

area $\triangle P R Q=$ area $\triangle P X R$
$1=\operatorname{area} \triangle P X R$
area $\triangle \mathrm{PXR}=$ area $\triangle \mathrm{PXY}$
$1=$ area $\triangle P X Y$
area $\triangle P Q Y=$ area $\triangle P R Q$
area $\triangle P Q Y=1$
area $\triangle Q Y Z=$ area $\triangle P Q Y$
(PR is a median)
(PX is a median)
($P Q$ is a median)
(YQ is a median)
area RQZ $=$ area $\triangle P R Q$
area $\triangle R Q Z=1$
area $\triangle R Q Z=$ area $\Delta R Z X$
$1=\operatorname{area} \Delta R Z X$
\therefore area $\triangle X Y Z=7 \mathrm{~cm}^{2}$
6. Find the real numbers x and y given that $x-y=\frac{3}{2}$ and $x^{4}+y^{4}=\frac{2657}{16}$.

Sol. $\quad x^{4}+y^{4}=\frac{2657}{16}$
$\left(x^{2}\right)^{2}+\left(y^{2}\right)^{2}=\frac{2657}{16}$
$\left(x^{2}+y^{2}\right)^{2}-2 x^{2} y^{2}=\frac{2657}{16}$
$\left(x^{2}+y^{2}\right)^{2}-2(x y)^{2}=\frac{2657}{16}$
$\left((x-y)^{2}+2 x y\right)^{2}-2(x y)^{2}=\frac{2657}{16}$
$x y=t$
$x-y=\frac{3}{2}$
$\left(\left(\frac{3}{2}\right)^{2}+2 t\right)^{2}-2 t^{2}=\frac{2657}{16}$
$\frac{81}{16}+4 t^{2}+9 t-2 t^{2}=\frac{2657}{16}$
$2 t^{2}+9 t=\frac{2576}{16}$
$2 t^{2}+9 t-161=0$
$2 t^{2}+23 t-14 t-161=0$
$t(2 t+23)-7(2 t+23)=0$
$(2 t+23)(t-7)=0$
$t=7, t=\frac{-23}{2}$
$x y=7$ or $x y=\frac{-23}{2}$
when $x y=7$
$y=\frac{7}{x}$
$x-y=\frac{3}{2}$
$x-\frac{7}{x}=\frac{3}{2}$
$\frac{x^{2}-7}{x}=\frac{3}{2}$
$2 x^{2}-14=3 x$
$2 x^{2}-3 x-14=0$
$2 x^{2}-7 x+4 x-14=0$
$x(2 x-7)+2(2 x-7)=0$
$(2 x-7)(x+2)=0$
$x=\frac{7}{2}, x=-2$
when $\mathrm{x}=\frac{7}{2}$
$y=2$
when $x=-2$
$y=\frac{-7}{2}$
when $x y=\frac{-23}{2}$
$y=\frac{-23}{2 x}$
$x-y=\frac{3}{2}$
$\frac{x}{1}+\frac{23}{2 x}=\frac{3}{2}$
$\frac{2 x^{2}+23}{2 x}=\frac{3}{2}$
$2 x^{2}-3 x+23=0$
D = -ve
No real value
7. The difference of the eight digit number ABCDEFGH and the eight digit number GHEFCDAB is divisible by 481. Prove that $C=E$ and $D=F$.
Sol. Difference of ABCDEFGH - GHEFCDAB is k.
$k=1000000 A B+10000 C D+100 E F+G H-1000000 G H-10000 E F-100 C D-A B$
$\mathrm{k}=999999(\mathrm{AB}-\mathrm{GH})+9900(\mathrm{CD}-\mathrm{EF})$
here 999999 is divisible by 481 so 9900(CD - EF) should be divisible by 481.
9900 (10C + D - 10E - F) = 481x
$99000(C-E)+9900(D-F)=481 x$
It is possible when $C-E$ or $D-F$ should be multiple of 37 or 0 .
$\Rightarrow \mathrm{C}-\mathrm{E}=0 \quad, \mathrm{D}-\mathrm{F}=0$
$C=E \quad D=F$
8. $A B C D$ is a parallelogram with area $36 \mathrm{~cm}^{2}$. O is the intersection point of the diagonals of the parallelogram. M is a point on $D C$. The intersection point of $A M$ and $B D$ is E and the intersection point of $B M$ and $A C$ is F. The sum of the areas of triangles AED and BFC is $12 \mathrm{~cm}^{2}$. What is the area of the quadrilateral EOFM ?

Sol. area of parallelogram $A B C D=36$
area $\triangle A O D=$ area $\triangle A O B=$ area $\triangle B O C=$ area $\triangle D O C=\frac{1}{4}$ area $A B C D=\frac{1}{4} \times 36=9$
area $\triangle \mathrm{AMB}=\frac{1}{2}$ area $\mathrm{ABCD}=\frac{1}{2} \times 36=18$
let area $A E D=x$
\therefore area $\triangle B F C=12-x$
area $B O F=$ area $\triangle B O C-$ area $\triangle B F C=9-(12-x)=x-3$
area $A O E=$ area $\triangle A O D-$ area $\triangle A E D=9-x$
area $\triangle \mathrm{AMB}=$ area $\triangle \mathrm{AEO}+$ area $\triangle \mathrm{AOB}+$ area $\triangle \mathrm{BOF}+$ area quadrilateral EOFM $18=9-x+9+x-3+$ area quadrilateral EOFM or quadrilateral EOFM \Rightarrow area of quadrilateral EOFM $=3 \mathrm{~cm}^{2}$.

