

	CBSE XII Examination - 2023 28-02-2023
	esonance' Resona SET-3 Resonanc
Series HFG1E/2	Code No. 56/2/3
	परिक्षार्थी प्रंश्न – पत्र कोड को उत्तर पुस्तिका
Roll No.	के मुख – पृष्ठ पर अवश्य लिखे। Candidates must write the Q.P. Code on the title page of the answer-book
Resonance" Resonance	ान विज्ञान (सैद्धांतिक)
Res	Resonance Educating for bartier tomot
Resonance CHEM	ISTRY (Theory)
नेर्धारित समय : 3 घण्टे	अधिकतम अंक : 70
Time allowed : 3 Hours	Maximum Marks : 70
	Resonance Educating for better lamor
 कृपया जाँच कर ले कि इस प्रश्न–पत्र में म् 	गुद्रित पृष्ठ 23 है। स्वय स्वय के स्वय के स्वय के स्वय स्वय के स्वय
प्रिश्न पत्र म दाहिन हथि की आर दिए गए कार्या जॉन कर ले कि इस प्रभन-पत्र में 3	प्रश्न – पत्र कांड का पराक्षांथा उत्तर–पुरस्तका क मुख – पृष्ठ पर लिख। 35 प्रण्न है।
कपया पश्न का उत्तर लिखना शुरू करने र	भे पहले . उत्तर-परितका में पश्न का कमांक अवश्य लिखे।
 इस प्रश्न पत्र को पढने के लिए 15 मिनल 	ट का समय दिया गया है। प्रश्न पत्र का वितरण पूर्वान्ह में 10.15 बजे किर
जाएगा । 10.15 बजे से 10.30 बजे तक	े परीक्षार्थी केवल प्रश्न – पत्र को पढ़ेगे और इस अवधि के दौरान वे उत्तर
पुस्तिका पर कोई उत्तर नही लिखेगे ।	
 Please check that this question pape 	r contains 23 printed pages.
Q.P.Code given on the right hand si answer-book by the candidate.	ide of the question paper should be written on the title page of the
Please check that this question pape	er contains 35 questions.
 Please write down the serial num 	iber of the questi <mark>on i</mark> n the answer book b <mark>efo</mark> re attempting i
• 15 minute time has been allotted to	read this question paper. The question paper will be distributed a
10.15 a.m. From 10.15 a.m. to 10.30) a.m., the candidates will read the question paper only and will no k during this period.
while any answer on the answer-boo	
	nce Eduventures I td
Reg. Office & Corp. Office : CG Tower, A-4	Ce Eduventures Ltd. 6 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Rai.) - 324005
Reg. Office & Corp. Office : CG Tower, A-4 Ph. No.: +91-744-27 To Know more : sms RESO at 56677 Website : www.re	Ce Eduventures Ltd. 6 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 77777, 2777700 FAX No. : +91-022-39167222 sonance.ac.in E-mail : contact@resonance.ac.in CIN : U80302RJ2007PLC024029

	General Instructi	ons:					
	Read the following	g instructions	very carefull	y and follow	them:		
(i)	This Question Par	per contains :	35 questions.	All question	is are compuls	ory.	
(ii)	Question Paper is	divided into	FIVE sections	s - Section A	A, B, C, D and	ance"	
(iii)	In section A - que	estion numbe	er 1 to 18 are	Multiple Cho	ice (MCQ) type	e questions o	carrying 1 mark each.
(<mark>iv</mark>)	In section B - que	estion numbe	er 19 to 25 are	<mark>e Ve</mark> ry Short	Answer (VSA)	type question	ons carrying., 2 marks
(v)	In section C - que	estion numbe	er 26 to 30 are	e Short Ansv	ver (SA) type q	uestions car	rying 3 marks each
(vi)	In section D - que	estion numbe	er 31 & 32 are	case-based	d questions car	<mark>ryin</mark> g 4 mark	s each.
(vii)	In section E - que	estion numbe	er 33 to 35 are	e Long Answ	ver (LA) questic	ons carrying	<mark>5 m</mark> arks each.
(viii)	There is no overal	I choice. How	wever, an inte	rnal choice l	has been provi	ded in 2 que	s <mark>tions in Section B, 2</mark>
	questions in Section	on C , 2 ques	tions in Section	on D and 2 o	questions in Se	ction E.	
(ix)	U <mark>se o</mark> f calculator i	s NOT allow	ed.				
	सामान्य निर्देश :						
	निम्नलिखित निर्देशो	को ध्यान से प	ाढ़े और उनका	सख्ती से पाल	न करें :		
(i)	इस प्रश्न – पत्र में व	हुल 35 प्रश्न है	। सभी प्रश्न अ	निवार्य है।			
(ii)	प्रश्न – पत्र पाँच खण्	डो में विभाजित	। है– खण्ड क, र	ख ,ग, घ , तथा	. ड		
(iii)	ख <mark>ण्ड क</mark> – प्रश्न संख	व्या 1 से 18 त	ाक बहुविकल्पीय	प्रकार के एक	० – एक अंक के	प्रश्न है।	
(iv)	खण्ड ख – प्रश्न संर	ब्या 19 से 25	तक अति उत्तरी	ोय प्रकार के द	रो – दो अंको के	प्रश्न है।	
(v)	खण्ड ग – प्रश्न संख	या 26 से 30	तक लघु उत्तरी	य प्रकार के ती	ान — तीन अंको	के प्रश्न है।	
(vi)	खण्ड घ – प्रश्न संख	या 31 से 32	केस आधारित च	वार – चार अं	को के प्रश्न है।		
(vii)	खण्ड ङ – प्रश्न संख	या 33 से 35	तक दीर्घ उत्तरी	ाय प्रकार के पं	ाँच – पाँच अंको	के प्रश्न है।	
(viii)	प्र <mark>श्न प</mark> त्र में समग्र वि	कल्प नही दिय	ग गया है। यद्य	पि , खण्ड ख ं	के 2 प्रश्नो में ख	ण्ड ग के 2 प्र	ग <mark>श्नो</mark> में , खण्ड घ के 2
	प्रश्नो मे तथा खण्ड र	ङ के 2 प्रश्नो	में आंतरिक वि	कल्प का प्रावध	ान दिया गया है।		
(ix)	कैल्कुलेटर का उपयो	ग वर्जित है।					
	Resona	Reso	nance	Eduver	ntures Lt	d.	Resonance Educating for better tomorr
	Reg. Office & Corp. O	ffice : CG Tow	er, A-46 & 52,	<mark>IPIA</mark> , Near Cit	y Mall, Jhalawar	Road, Kota (Raj.) - 324005
		Ph. No.: +91-	744-2777777, 2	777700 FAX	No.:+91-022-391	67222	

5	When D alugese reacts with HL it forms	
5.	(a) Glucopic acid'	(b) p-boyano
	(a) Succharic acid	(d) Iodobevane
	(c) Sacchanc acid जब D —ग्लकोस HI के साथ अभिक्रिया करता है तो	यह निर्मित करता है
	(a) गूलकोनिक अम्ल नापट Resona	n (b) n - हैक्सेन esonance Resonanc
	(c) मैकैरिक अस्त	(d) आगरहोडेक्सेन
Sol.	(b)	
6.	Inversion of configuration occurs in	tomorrow Resonance Resonance Educating for better tomorrow
	(a) S _N 2reaction	(b) S _N 1 reaction
	(c) Neither S _N 2 n <mark>or</mark> S _N 1	(d) S _N 1 as well as S _N 2reaction
	वि <mark>न्यास</mark> मे प्रतिलोमन होता है	
	(a) SN2 अभिक्रिया मे	(b) S _N 1 अभिक्रिया मे
	(c) न तो SN2 मे और न ही SN1 अभिक्रिया मे	(d) Sы1 और Sы2 दोनो अभिक्रियाओ मे
Sol		Resonance
501.	(a) Optically active alkyl balide undergo inversion	of configuration in Sv2 reaction
	Oplically active alkyr halide undergo inversion	
7.	Solubility of gas in liquid decreases with incre	ase in 1
	(a <mark>) Pr</mark> essure	(b) Temperature
	(c) Volume	(d) Number of solute molecules
	निम्नलिखित में से किसकी वृद्धि के साथ गैस की द्रव	मे विलेयता घटती है?
	(a) <u>दा</u> ब	(b) ताप
	(c) आयतन	(d) विलेय अणओ की संख्या
Sol.	(b) nance	ande"
	Which of the following relations is incorrect 2	Resonance
D.	भगाता of the following relations is incorrect?	Educating for better former
	गिनालाखरा न से फोन सा संबंध गलरा हु!	hance*
	(a) $R = \frac{1}{-} \begin{pmatrix} I \\ - \end{pmatrix}$	(b) $G = k \left(\frac{a}{a}\right)$
	k (a)	(I) Resonance
	(c) $G = k \begin{pmatrix} 1 \\ - \end{pmatrix}$	(d) $\wedge \mu = \frac{k}{2}$
	$\left(c \right) = \kappa \left(\frac{a}{a} \right)$	
Sol.	(c) Resonance - Resona	
	The reagent that can be used to distinguish a	temperature and become and become is
RE	(a) 2 4 – dinitrophenyl hydrazine	(b) aqueous NaHSO
	(c) Fehling solution	(d) l ₂ and NaOH
	एसीटोफीनोन और बेन्जोफीनोन में विभेद करने के लि	ए निम्नलिखित में से कौनासा अभिकारक प्र <mark>यक्त</mark> किया जा सकता है
	(a) 2.4 डाईनाइटोफेनिल हाइडैजीन	(b) जलीय NaHSO3
	(م) للمكتب المحتاج (م) المحتاج (م) المحتاج (م)	(d) L 21 T NOOU
2-1		
501.	(a) Educating for belier tomorrow Educating for belier	
	Methyl ketone give lodofom test	
- ANIICI		
	Resonance E	duventures Ltd.
	Reg. Office & Corp. Office : CG Tower, A-46 & 52, IP	IA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
	Ph. No.: +91-744-2777777, 27	77700 FAX No. : +91-022-39167222

10.	Which of the followin	g reactions are feasibl	e ?		1
	नि <mark>म्नल</mark> िखित अभिक्रियाओ	ो में से क <mark>ौन सी</mark> संभव है?			
	(a) CH₃CH₂Br + <mark>Na⁺</mark>	$O^-C(CH_3)_3 \rightarrow CH_3 CH_3$	<mark>₂ – O</mark> – C (CH₃)₃		
	(b <mark>) (C</mark> H₃)₃ C– CI + N	a⁺ O ⁻ C <mark>H₂ C</mark> H₃ → CH₃	3 CH2 – O – <mark>C(CH</mark> 3)3		
	(c <mark>) Both (a) and (b)</mark>				
	(d) neither (a) no <mark>r (b</mark>	Resonance Educating for better tomorrow			
Sol.	(a) Resonan				
	CH ₃ CH ₂ Br + Na ⁺ O [−]	C(CH3)3 →CH3 CH2 – (O – C (CH ₃) ₃ is feasible :	as alkyl halide is	s primary.
	(Wiliamsons synth	esis method)			
11.	Which of the followin	g compounds will und	ergo self-condensation ir	n the presence of	of dilute
	NaOH solution				nance 1
	नि <mark>म्नल</mark> िखित यौगिको में	से कौन तनु NaOH विलय	पन की उपस्थिति मे स्व–संघ	नन करेगा ?	
	(a) C₀H₅CHO		(b) CH ₃ CH ₂ CHO		
	(c) (CH ₃) ₃ C – CHO		(d) H – CHO		
Sol.	(b) Res				
Re	For the reaction 24	> 2P rate of reaction	d[A]		hance*
2.	For the reaction SA -		dt		Resonanc
	अभिक्रिया 3A→ 2B के	लिए अभिक्रिया वेग – d[A] बराबर है		
	250nance	dt			
	$(a) \frac{+3}{2} \frac{d[B]}{dt}$		(b) $\frac{+2}{2} \frac{d[B]}{dt}$		
	(c) $\frac{\mp 1}{3} \frac{d[b]}{dt}$		(d) $\frac{+1}{2} \frac{d[b]}{dt}$		
Sol.	(a) Res				
3.	Which of the followin	g transition metals sho	ows + 1 and +2 oxidation	states ?	nance*
	नि <mark>म्नल</mark> िखित संक्रमण धा	ु तुओं में स <mark>े कौन</mark> +1 और +	2 ऑक्सीकरण अवस्थाएँ प्रद	र्शित करती है?	
	(a) Mn	(b) Zn	(c) Sc	(d) Cu	
Sol.	(d)				
	M <mark>n ²⁺ t</mark> o Mn ⁷⁺ , Zn ²⁺	, Sc ³⁺ , Cu ²⁺ and Cu ⁺			
4.	The formula of the co	omplex Iron (III) hexac	y <mark>anid</mark> oferrate (II) is :		nance [®] 1
	सं <mark>कुल</mark> आयरन (III) हेक्स	गासइनिडोफेरेट (II) का सूत्र	त्र हैः		
	(a) Fe ₂ [Fe(CN ₆)] ₃	(b) Fe4[Fe(CN6)]3	(c) Fe ₂ [Fe(CN ₆)]	(d) Fe₃[F	e(CN ₆)] ₂
Sol.	(b)				
	Peconan	Distant Parat	Estal	Inchara ²	Permann
	Educating for better to	Resonance	Eduventures	Lta.	Educating for better tomor
	Reg. Office & Corp. Offic	ce : CG Tower, A-46 & 52 Ph. No.: +91-744-2777777	, IPIA, Near City Mall, Jhala 2777700 FAX No · +91-022-	war Road, Kota (F -3916722	(aj.) - 324005
	ow more , cmc DESO at E667	7 Wobsito : www.rosopaps	as in LE mail : contact@rosons		020201200701 0024020

	Given below are two statements labelled as Assertion (A) and Reason (R).
	Select the most appropriate answer from the options given below :
	 (a) Both (A) and (R) are true and (R) is the Correct explanation of (A). (b) Both (A) and (R) are true, but (R) is not the correct explanation of (A). (c) (A) is true but (R) is false.
	(d) (A) is false , but (R) is true अभिकथन (A) और कारण (R) से अंकित नीचे दो कथन दिए गए हैं। निम्नलिखित विकल्पो में से सर्वाधिक उपयुक्त उत्तर का चयन कीजिए :
	(a) (A) और (R) दोनों सत्य है तथा (R), (A) की सही व्याख्या है। (b) (A) और (R) दोनों सत्य है तथा (R), (A) की सही व्याख्या नही है।
	(c) (A) सत्य (R), लेकिन (R) असत्य है। (d) (A) असत्य है, लेकिन (R) सत्य है
15. Re	Assertion (A) : The enthalpy of mixing Δ_{max} H is equal to zero for an ideal solution. 1 Reason (R): For an ideal solution the interaction between solute and solved molecules is stronger than the interactions between solute – solute or solvent – solvent molecules
	अभिकथन (A) एक आदर्श विलयन के लिए मिश्रण बनाने की एन्थैल्पी $\Delta_{ m H_{NMV}}$ H शून्य के बराबर होती है।
	कारण (R) एक आदर्श विलयन के लिए विलेय —विलेय और विलायक —विलायक अणूओ के मध्य अन्योन्यक्रियाओ की तुलन मे विलेय —विलायक अणुओ के मध्य अन्योन्य क्रियाएँ मजबूत होती है।
Sol.	(c) Educating for better tomorr
<mark>16</mark> .	Assertion (A) : Molar conductivity decreases with increase in concentration. 1 Reason (R) : When concentration approaches zero. the molar conductivity is known as limiting molar conductivity
	अभिकथन (A) : सांद्रता में वृद्धि के साथ मोलर चालकता घटती है।
Sol.	कारण (R) : जब सांद्रता शून्य की ओर पहुँचने लगती है तब मोलर चालकता सीमांत मोलर चालकता कहलाती है। (b)
17.00	Assertion (A) : Transition metals show their highest oxidation state with oxygen.
COURCE	Reason (R) : The ability of oxygen to form multiple bonds to metals.
	कार्या (A) राष्ट्रभाग पासुर जायसाजन के साथ जयना उच्यसन जायसायरन जयस्यार प्रयासा करता है। कार्या (B) भावओं के साथ ऑक्सीजन की बह आबंध बनाने की श्रमता होना ।
Sol.	(a)
18.	Assertion (A) : Chlorobenzene is resistant to nucleophilic substitution reaction at room temperature : 1 Reason (R) : C – Cl bond gets weaker due to resonance.
	अभिकथन (A) कक्ष ताप पर, नाभिकरागी प्रतिस्थापन अभिक्रियाओं के लिए क्लोरोबेन्जीन प्रतिरोधी होती है।
	कारण (R) अनुनाद के कारण C-Cl आबंध अधिक दुर्बल हो जाता है।
Sol.	Educating for better tomorrow.
Re	Sonance [®] Resonance [®] Resonance [®] Resonance [®] Resonance [®] Resonance [®]
	Resonance Eduventures Ltd.
Re	Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 FAX No. : +91-022-39167222
To Kno	w more : sms RESO at 566// Website : www.resonance.ac.in E-mail : contact@resonance.ac.in CIN : U80302RJ2007PLC024029

		CBSE XII Examination - 2023 28-02-2023
23. Re	The vapour pressure of pure liquid X and p respectively. If equal moles of N and Y are mix of the solution.	oure liquid Y at 25 °C are 120 mm Hg and 160 mm Hg xed to form an ideal solution, calculate the vapour pressure
	25° पर शहर दव X और शहर दव Y का वाष्ट्र दाब	कमञ: 120 mm Ha और 160 mm Ha है रादि X और Y के समार
Re		
Sol.	Given $P_x^0 = 120 \text{ mm Hg}$, $P_y^0 = 160 \text{ mm Hg}$	
	$\Pi_{\mathbf{X}} = \Pi_{\mathbf{Y}} \equiv \mathbf{L}_{\text{tring for better tonionov}}$ Educating for better	
	$x_x = x_y = \frac{1}{2}$	
	$P_s = P_x + P_y$	
	$= x_x P_x^0 + x_y P_y^0$	
	$=\frac{1}{1} \times 120 + \frac{1}{1} \times 160$	
	2 Educatin 2	
	= 60 + 80	
	= 140 mm Hg	
24.	(a) Give reasons	
	(i) Mercury cell delivers a constant potential d	uring its life time.
	(ii) In the experimental determination of electr	olytic conductance Direct C'urrent (DC) is not used.
	Define final call with an average. What advan	OR
(<mark>U</mark>)	batteries ?	lages do the rue cells have over phimary and secondar
(a)	कारण दीजिए :	
	(i) मर्क्यूरी सेल अपने संपूर्ण कार्य अवधि मे स्थिर विभ	व प्रदान करता है।
	(ii <mark>) वैध</mark> ुत–अपघटनी चालकत्व के प्रायोगिक निर्धारण मे	दिष्ट धारा (DC) प्रयुक्त नही की जाती है।
	esonance ating for better tomorrow	अथवा nance
b)	एक उदाहरण सहित ईंधन सेल को परिभाषित कीजिए	र । प्राथमिक और संचायक बैटरियों की तलना में ईधन सेल के क्य
Re	लाभ है?	Resonance' Resonance'
Sol.	ating for better tomorrow Educating for better tomorrow	
(a)	(i) The cell potential is approximately 1.35 V	and remains constant during its life as the overall reactio
	does not involve any ion in solution whose co	ncentration can change d <mark>urin</mark> g its life time.
	(ii) passing direct current (DC) changes the co	omposition of the solution.
		OR ow Educating for better tomorrow
	Resonance F	duventures Ltd
	Reg. Office & Corp. Office : CG Tower, A-46 & 52. IP	A Near City Mall, Jhalawar Road, Kota (Rai.) - 324005
	Ph. No.: +91-744-2777777, 277	77700 FAX No. : +91-022-39167222
	now more : sms RESO at 56677 Website : www.resonance.ac	in E-mail · contact@resonance ac in CIN · U80302R12007PI C024029

Edu	ucating for better tomorrow	Educating for botter ternorrest	Educating for	setter temperou	Consthing for builtin termorrow
(b)	Fuel cells are galva	nic cells which convert e	energy of com	bustion of fuel dired	ctly into electrical energy
	Example - H ₂ – O ₂ fu	uel cell.			
	Advantages of the fu	uel cells -	Reso Educating for		ducating for better tomorrow
	(i) Fuel cells have ve	ery high efficiency of 70	% as against	40% efficiency of a	thermal power plant.
	(II) The by-products	of H ₂ –O ₂ fuel cell is H ₂	O which is not	polluting.	
25.					
(a)		2+			
	(i) [C0(N13)5(CNC)]				
			OR		
(b)	(i) What is a chelate	complex ? Give one ex	xample		
	(ii) What are heterol	eptic complexes ? Give	e one example	.	
	Res				
(a)	निम्नलिखित के आई यू	पी ए सी नाम लिखिएः			
Educ	(i) [Co(NH₂)₅(ONO)]	2+			
	(ii) <mark>K₂[NiCl₄]</mark>				
			अथवा		
(b)	(i <mark>) कील</mark> ेट संकुल क्या है	? एक उदाहरण दीजिए।			
	(ii <mark>) हेटे</mark> रोलेप्टिक संकुल	क्या है? एक उदाहरण दीजि	जेए ।		
Sol.					
(a)	(i) Pentaamminenitr	itocobalt(III) ion			
	(ii) Potassium tetrac	hloride nickelate (II)	0.5		
(b)	 (i) When a di- or pol to be a chelate liga complexes, called c (ii) Complexes in w 	ydentate ligand uses its and. The number of suc- helate complexes nich a metal is bound to	two or more ch ligating gro o more than o	donor atoms to bind oups is called the d one kind of donor a	a single metal ion, it is said enticity of the ligand. Such
	are known as beter	lentic			
	Resonat	ice Resor			
			mana'.		e" Resonanc
Re	Resonar	Resonance	Fallver	ITTES I IA	
Re	Resonan	Resonance	EQUVER	Mall Ibalawar Board	Kota (Rai) - 324005
Re	Reg. Office & Corp. Offi	Resonance ce : CG Tower, A-46 & 52, Ph. No.: +91-744-2777777.	EQUVER , IPIA, Near City 2777700 FAX N	Mall, Jhalawar Road	, Kota (Raj.) - 324005

-	and be perfection and the second		Clomotrow	Educating for britter temorrow	Educating for bottor tomorrow	_
0.	When 19.5 g of F in freezing point is	$-CH_2 - COOH$ s observed to b er =1.86 K kg m	(Molar mass = $\frac{1}{2}$ e 1°C Calculate	78 g mol ^{_1}), is dissolved the de <mark>gree</mark> of dissociat	in 500 g of water, the de ion of F– C <mark>H₂ -</mark> COOH.	pressio 3
	$F - CH_2 - COOH$	(मोलर द्रव्यमान) =		9.5g को 500h जल मे घो	लने पर हिमांक मे 1°C का	उ अवनम
	देखा गया। F–CH	2−COOH के लिए	र वियोजन–मात्रा प	गरिकलित कीजिए।	Eductures for better tonion ow	
	(दिया है: जल के लि	नए K₁ = 1.86 K k	a mol ⁻¹)	ce" Resona		
ol.	Here, $w_{0} = 19.5$ d	$w_{1} = 500 \text{ g}$ K	G = 1.86 K ka m	ol^{-1} , $(\Delta T_{c})_{cha} = 1.0^{\circ}$		
	ating for better tomorrow	1000K w	r tomorrow	Educating for bottler tomotrow		
	$\therefore M_2^{=}$ (observed	$=\frac{1}{W_{1}\Delta T_{2}}$				
	(10 <mark>00 aka⁻¹) (1.8</mark>	$36 \text{K} \text{kamol}^{-1}$ (19)	5 α)			
	$=\frac{(1000 \text{ g/sg})(1000 \text{ g/sg})}{(5000 \text{ g/sg})}$)g)(1.0K)				
	= 72.54 g mol ⁻¹	S/				
	van't Hoff factor ($(M_2)_{cal} - $	78			
		$(M_2)_{obs} = \frac{1}{7}$	72.54			
	= 1.0753.				efter tomorrow	
	Calculation of dis		ant. Suppose de	egree dissociation at the	given concentration is a	anc
	Initial ($\sum_{n=1}^{\infty} COO(1) \leq COO(1) \leq COO(1) \leq COO(1)$	0			
	At eqbm.	$C(1 - \alpha)$	Čα	Čα		
	$C(1+\alpha)$					
	I = I	+α				
	or $\alpha = i - 1 = 1.0$	753 – 1				
	= 0.0753					
			SECTION -	D / खण्ड —घ		
	The following que that follow:	estions are case	based question	ns. Read the passage ca	refully and answer the q	uestion
		gen double bon	id is polarised in arefore they unc	n aldenydes and ketone lergo nucleophilic additio	s due to higher electron on reactions with. a num	egativi
1. Re	The carbon - oxy of oxygen relative nucleophiles such are easily oxidise acid does not of g than alcohols and Answer the follow	e-to carbon. The h as HCN, NaH ed by mild oxidis give reactions of d most of simple ving: f the product wh	SO ₃ , alcohols. a sing agents as f aldehydes and phenols.	ammonia derivatives an compared to ketones. T I ketones. Carboxylic ac	d Grignard reagents. Ale he carbonyl group of ca ds are considerably mo	iber dehyde arboxyl re acid
1. Ra	The carbon - oxy of oxygen relative nucleophiles such are easily oxidise acid does not of g than alcohols and Answer the follow Write the name o	e-to carbon. The h as HCN, NaH ed by mild oxidis give reactions of d most of simple ving: f the product wh	SO ₃ , alcohols. sing agents as f aldehydes and phenols.	ammonia derivatives an compared to ketones. T I ketones. Carboxylic ac e reacts with excess alc	d Grignard reagents. Ald he carbonyl group of ca ds are considerably mo phol in presence of dry H	iber dehyde arboxyli re acid HCI.
1. a) a)	The carbon - oxy of oxygen relative nucleophiles such are easily oxidise acid does not of g than alcohols and Answer the follow Write the name o Why carboxylic a	e-to carbon. The h as HCN, NaH ed by mild oxidis give reactions of d most of simple ving: f the product wh cid is a stronge	SO ₃ , alcohols. a sing agents as f aldehydes and phenols. nen an aldehyde r acid than pher	ammonia derivatives an compared to ketones. T I ketones. Carboxylic ac e reacts with excess alco nol?	d Grignard reagents. Ale he carbonyl group of ca ds are considerably mo phol in presence of dry H	iber dehyde arboxyli re acid HCI.
a) (2) (2)	The carbon - oxy of oxygen relative nucleophiles such are easily oxidise acid does not of g than alcohols and Answer the follow Write the name o Why carboxylic a (i) Arrange the fol	e-to carbon. The h as HCN, NaH ed by mild oxidis give reactions of d most of simple ving: f the product wh cid is a stronged llowing compou	SO ₃ , alcohols. a sing agents as f aldehydes and phenols. nen an aldehyde r acid than pher nds in increasir	ammonia derivatives an compared to ketones. T I ketones. Carboxylic ac e reacts with excess alconol?	d Grignard reagents. Ald he carbonyl group of ca ds are considerably mo phol in presence of dry H	iber dehyde arboxyli re acid HCI.
1. (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)	The carbon - oxy of oxygen relative nucleophiles such are easily oxidise acid does not of g than alcohols and Answer the follow Write the name o Why carboxylic a (i) Arrange the fol CH ₃ CHO, (CH ₃) ₃	e-to carbon. The h as HCN, NaH ed by mild oxidis give reactions of d most of simple ving: f the product wh cid is a strongen llowing compou C C CH	SO ₃ , alcohols. a sing agents as f aldehydes and phenols. nen an aldehyde r acid than pher nds in increasir 3, CH ₃ — C —	ammonia derivatives an compared to ketones. T I ketones. Carboxylic ac e reacts with excess alco nol? ng order of their reactivit CH ₃	d Grignard reagents. Ald the carbonyl group of ca ds are considerably mo phol in presence of dry H y towards CH ₃ MgBr :	iber dehyde arboxyl re acid HCI.
a)	The carbon - oxy of oxygen relative nucleophiles such are easily oxidise acid does not of g than alcohols and Answer the follow Write the name o Why carboxylic a (i) Arrange the fol CH ₃ CHO, (CH ₃) ₃	e-to carbon. The h as HCN, NaH ed by mild oxidis give reactions of d most of simple ving: f the product wh cid is a stronged llowing compou C - C - CH	SO ₃ , alcohols. a sing agents as f aldehydes and phenols. nen an aldehyde r acid than pher nds in increasir 3, CH ₃ — C — O	ammonia derivatives an compared to ketones. T I ketones. Carboxylic ac e reacts with excess alco nol? ng order of their reactivit CH ₃	d Grignard reagents. All he carbonyl group of ca ds are considerably mo phol in presence of dry H y towards CH ₃ MgBr :	iber dehyde arboxyl re acid HCI.
1. () () () () () () () () () () () () ()	The carbon - oxy of oxygen relative nucleophiles such are easily oxidise acid does not of g than alcohols and Answer the follow Write the name o Why carboxylic a (i) Arrange the fol CH ₃ CHO, (CH ₃) ₃	e-to carbon. The h as HCN, NaH ed by mild oxidis give reactions of d most of simple ving: f the product wh cid is a stronged llowing compou C — C — CH O	SO ₃ , alcohols. a sing agents as f aldehydes and phenols. nen an aldehyde r acid than pher nds in increasir 3, CH ₃ — C U guish between	ammonia derivatives an compared to ketones. T I ketones. Carboxylic ac e reacts with excess alco nol? ng order of their reactivit CH ₃	d Grignard reagents. All the carbonyl group of ca ds are considerably mor phol in presence of dry H y towards CH ₃ MgBr : 2 x 1	iber dehyde arboxyl re acid HCI.
1. Reference a) Reference b) (2) Reference Referen	The carbon - oxy of oxygen relative nucleophiles such are easily oxidise acid does not of g than alcohols and Answer the follow Write the name o Why carboxylic a (i) Arrange the fol CH ₃ CHO, (CH ₃) ₃	e-to carbon. The h as HCN, NaH ed by mild oxidis give reactions of d most of simple ving: f the product wh cid is a stronge llowing compou C — C — CH 0 cal test to distin	SO ₃ , alcohols. a sing agents as f aldehydes and phenols. Then an aldehyde r acid than pher nds in increasir 3, CH ₃ — C — O guish between	ammonia derivatives an compared to ketones. T I ketones. Carboxylic ac e reacts with excess alcong order of their reactivit CH ₃	d Grignard reagents. Ale the carbonyl group of ca ds are considerably mor ohol in presence of dry H y towards CH ₃ MgBr : 2 x 1	iber dehyde arboxyl re acid HCI.
1. () () () () () () () () () () () () ()	The carbon - oxy of oxygen relative nucleophiles such are easily oxidise acid does not of g than alcohols and Answer the follow Write the name o Why carboxylic a (i) Arrange the fol CH ₃ CHO, (CH ₃) ₃ (ii) Write a chemin	e-to carbon. The h as HCN, NaH ed by mild oxidis give reactions of d most of simple ving: f the product wh cid is a strongen llowing compou C — C — CH O	SO ₃ , alcohols. a sing agents as f aldehydes and phenols. nen an aldehyde r acid than pher nds in increasir 3, CH ₃ — C — O guish between	ammonia derivatives an compared to ketones. T I ketones. Carboxylic ac e reacts with excess alco nol? ng order of their reactivit CH ₃ propanal and propanone R	d Grignard reagents. All he carbonyl group of ca ids are considerably mo ohol in presence of dry H y towards CH ₃ MgBr : 2 x 1	iber dehyde arboxyl re acid HCI.
	The carbon - oxy of oxygen relative nucleophiles such are easily oxidise acid does not of g than alcohols and Answer the follow Write the name o Why carboxylic a (i) Arrange the fol CH ₃ CHO, (CH ₃) ₃ (ii) Write a chemin	e-to carbon. The h as HCN, NaH ed by mild oxidis give reactions of d most of simple ving: f the product wh cid is a stronger llowing compou C — C — CH O cal test to distin	SO ₃ , alcohols. a sing agents as f aldehydes and phenols. nen an aldehyde r acid than pher nds in increasir 3, CH ₃ — C — O guish between	ammonia derivatives an compared to ketones. T I ketones. Carboxylic ac e reacts with excess alconol? nol? g order of their reactivit CH ₃ propanal and propanone R	d Grignard reagents. Ale he carbonyl group of ca ids are considerably mor phol in presence of dry H y towards CH ₃ MgBr : 2 x 1	iber dehyde arboxyl re acid HCI.
	The carbon - oxy of oxygen relative nucleophiles such are easily oxidise acid does not of g than alcohols and Answer the follow Write the name o Why carboxylic a (i) Arrange the fol CH ₃ CHO, (CH ₃) ₃ (ii) Write a chemin	e-to carbon. The h as HCN, NaH ed by mild oxidis give reactions of d most of simple ving: f the product wh cid is a strongen lowing compou C — C — CH O cal test to distin	SO ₃ , alcohols. a sing agents as f aldehydes and phenols. nen an aldehyde r acid than pher nds in increasir 3, CH ₃ — C — O guish between	ammonia derivatives an compared to ketones. T I ketones. Carboxylic ac e reacts with excess alco nol? ng order of their reactivit CH ₃ propanal and propanone R	d Grignard reagents. Ale he carbonyl group of ca ids are considerably mo ohol in presence of dry H y towards CH ₃ MgBr : 2 x 1	iber dehyde arboxyl re acid HCI.
1. a) a) c) c) c) c) c) c) c) c) c) c) c) c) c)	The carbon - oxy of oxygen relative nucleophiles such are easily oxidise acid does not of g than alcohols and Answer the follow Write the name o Why carboxylic a (i) Arrange the fol CH ₃ CHO, (CH ₃) ₃ (ii) Write a chemin	e-to carbon. The h as HCN, NaH ed by mild oxidis give reactions of d most of simple ving: f the product wh cid is a stronger llowing compou C — C — CH 0 cal test to distin	SO ₃ , alcohols. a sing agents as f aldehydes and phenols. nen an aldehyde r acid than pher nds in increasir 3, CH ₃ — C — O guish between	ammonia derivatives an compared to ketones. T I ketones. Carboxylic ac e reacts with excess alcond nol? ng order of their reactivit CH ₃ propanal and propanone R	d Grignard reagents. Ale the carbonyl group of ca ds are considerably mod phol in presence of dry H y towards CH ₃ MgBr : 2 x 1	iber dehyde arboxyl re acid HCI.
	The carbon - oxy of oxygen relative nucleophiles such are easily oxidise acid does not of g than alcohols and Answer the follow Write the name o Why carboxylic a (i) Arrange the fol CH ₃ CHO, (CH ₃) ₃ (ii) Write a chemin Reg. Office & Corp. C	e-to carbon. The h as HCN, NaH ed by mild oxidis give reactions of d most of simple ving: f the product wh cid is a strongen llowing compou C - C - CH 0 cal test to distin	SO ₃ , alcohols. a sing agents as f aldehydes and phenols. nen an aldehyde r acid than pher nds in increasir 3, CH ₃ — C O guish between O ance Ed	ammonia derivatives an compared to ketones. T I ketones. Carboxylic ac e reacts with excess alcong order of their reactivity CH ₃ propanal and propanone R Iuventures Lto Near City Mall, Jhalawar F	d Grignard reagents. Ale he carbonyl group of ca ids are considerably mo phol in presence of dry H y towards CH ₃ MgBr : 2 x 1 2 x 1	HCI.
 a) b) c) c	The carbon - oxy of oxygen relative nucleophiles such are easily oxidise acid does not of g than alcohols and Answer the follow Write the name o Why carboxylic a (i) Arrange the fol CH ₃ CHO, (CH ₃) ₃ (ii) Write a chemic Reg. Office & Corp. C	e-to carbon. The h as HCN, NaH ed by mild oxidis give reactions of d most of simple ving: f the product wh cid is a stronger llowing compou C — C — CH O cal test to distin	SO ₃ , alcohols. a sing agents as f aldehydes and phenols. nen an aldehyde r acid than pher nds in increasir 3, CH ₃ — C — G guish between O Ance Ed , A-46 & 52, IPIA, 4-2777777, 27777	ammonia derivatives an compared to ketones. T I ketones. Carboxylic ac e reacts with excess alcond nol? ng order of their reactivit CH ₃ propanal and propanone R Iuventures Lto Near City Mall, Jhalawar f 00 FAX No. : +91-022-3916	d Grignard reagents. Ale he carbonyl group of ca ds are considerably mod bhol in presence of dry H y towards CH ₃ MgBr : 2 x 1 2 x 1 3 Coad, Kota (Raj.) - 324005 7222 cial CIN : U80302812007816	HCI.

	for ballar tomorrow	Education for botter tomorrow	Education for bottor temporow	Education for butter tomorrow
-	का <mark>र्बोहा</mark> इड्रेट, धुवण घ्	्ण्रक ऐल्हिाइ <mark>ड औ</mark> र कीटोन	होते है। उन्हें <mark>सेकैरा</mark> इड भी कहते	है। उन स <mark>भी कार्बाहाइडे</mark> टो को ज
	फेलिंग विलयन तथा	टॉलेन अभिक <mark>र्मक</mark> को अपचित	न कर देते है, अ <mark>पचा</mark> यी शर्करा कहते	है। ग्लूको <mark>स, जो</mark> कि स्तनधारियों व
Res	लिए ऊर्जा का प्रमु <mark>ख</mark>	स्रोत है, स्टार्च के जलअपघ	।ट <mark>न से</mark> प्राप्त होता है।विटामिन आहा	र मे आवश्यक सहायक भोज्यकारव
Concating	है। प्रोटीन ंα ऐमीनो	अम्लों के बहुलक है और जी	ी <mark>वधारियों मे विभिन्न</mark> संरचनात्मक एवं	गतिज क्रियाओ को संपादित करते
	है <mark>। विट</mark> ामिनो की कर्म	ो से अनेकों <mark>रोग</mark> हो जाते है	Her tomarrow Educating for better to	
a)	ग्लूकोस का पेन्टाऐसी	टेट, हाइड्रोक्सिलऐमीन के स	ा <mark>थ अ</mark> भिक्रिया नही करता है। यह क्य	ा इंगित करता है ?
b)	विटामिन C को हमारे	शरीर मे संचित क्यों नही वि	केया जा सकता है ?	
(c)	प्र <mark>ोटीनो</mark> से संबधित नि	म्नलिखित क <mark>ी परि</mark> भाषा लिरि		
	(i) पेप्टाइड बंध			
	(ii) विकृतिकरण			
			अथवा	
	ionance .			
(c)	कार्बोहाइड्रेटो से संबंधि	र्गत निम्नलिखित की परिभाषा	लिखिएः	
	(i) ऐनोमेर			
	(ii) ग्लाइकोसिडिक बंध	J		
Sol.				Degeneration
	(a) The pentaaceta	ate of glucose does not re	eact with hydroxylamine indicati	ing the absence of free —CHC
Res	group.			
	(b) Vitamin C is a	water soluble vitamin. It	is readily excreted in urine and	cannot be stored in our body
	(c <mark>) (i)</mark> proteins are	the polymers of α-amino	o acids and they are connected	to each other by peptide bone
Res	or peptide linkag	э.		
	(ii) When a protei	n in its native form, is a	subjected to physical change I	ike change in temperature o
	ch <mark>emi</mark> cal change I	ike change in pH, the hy	drogen bonds are disturbed. D	ue to this, <mark>glo</mark> bules unfold and
	helix get uncoiled	and protein loses its biol	ogical activity. This is called de	naturation of protein.
			OR	
	(i) The two cyclic h	emiacetal forms of gluco	ose differ only in the configuration	on of the h <mark>ydr</mark> oxyl group at C1
	called anomeric ca	arbon (the aldehyde cark	oon before cyclisation). Such iso	omers, i.e., α -form and β -form
Educating	are called anome	S.		
	(ii) The two mono	saccharides are joined	together by an oxide linkage f	ormed by the loss of a wate
	molecule. Such a	inkage between two mo	nosaccharide units through oxy	gen atom is called glycosidi
	linkage.			
	Resona			
Res	For better tomarrow	Resonance [®] Educating for botter tomorrow		Resonance* Educating for battur tomorrow
		Resonance	Eduventures Ltd.	
Red	Reg. Office & Corp. Of	fice : CG Tower, A-46 & 52	2 <mark>, IPIA</mark> , Near City Mall, Jhalawa <mark>r Ro</mark>	ad, Kota (Raj.) - 324005
Educating	for belter tomorrow	Ph. No.: +91-744-2777777,	2777700 FAX No. : +91-022-391672	22 ^{lucating for better tomorrow}
To Know	v more: sms RESO at 56	677 Website : www.resonanc	e.ac.in E-mail : contact@resonance.ac.i	n CIN : U80302RJ2007PLC024029

35.	ating for better tomorrow				
	(a) (I) Account for the following	ance"	Resona	nce"	3+2
i)	E° value for Mn ³⁺ / Mn ²⁺ couple is much more	e positive that	n that for Cr ³⁺ / (Cr ²⁺	
ii)	Sc ³⁺ is colourless whereas Ti ³⁺ is coloured in	an aqueous	solution.		
iii)	Actinoids show wide range of oxidation state	S.	Resona		
	Write the chemical equations for the prepara	tion of KMnC	04 from MnO2		
Educa	ling for better tomorrow	OR			ttar temernew
b)	(I) Account for the following:				2+2+1
Re	I ransition metals form alloys.				
Educa	Co4t is a strong ovidising agont				
1)					
Re	Write one similarity and one difference betwee	een chemistr	v of Lanthanoid	s and Actino	ids
,			y of Eanthanola		Resonanc
	Complete the following ionic equation:				
	$Cr_2O_7^{2-} + 2OH^- \longrightarrow$				
	िफालाल निम्नत्रिणित के कारणा टीजिग—				
Educa		、、、、	0	\ \\	
i)	Mn ^{3+/} Mn ²⁺ युग्म क लिए E° का मान Cr ^{3+/} Cr ²⁺	के मान से बहुत	न अधिक धनात्मक	होता है।	
(ii)	जलीय विलयन में Sc ³⁺ रंगहीन है जबकि Ti ³⁺ रंगीन	। है।			
(iii)	एक्टिनॉयड ऑक्सीकरण अवस्थाओ का विस्तृत परास	। प्रदर्शित करते	है।		
(II)	MnO2 से KMnO4 के विरचन के लिए रासयनिक स	ामीकरण लिखिए	[]		
		अथवा			
L)					
D) Re	() निम्नलिखत के कारण लिखिएः				
i)	संक्रमण धातुएँ मिश्रातुएँ बनाती है।				
(ii)	C <mark>e⁴⁺ ए</mark> क प्रबल ऑक्सीकारक है।				
(II)	लैन्धेनॉयडो और ऐक्टिनॉयडो के रसायन मे एक सम	<mark>ानता</mark> और एक	अंतर लिखिए		
	निस्त्रतियित भागनिक समीकण को पर्ण कीरियाः				
(:::)	निम्नालाखत आयानेक सनाकेल का पूर्ण कालिए				
(iii)					
	$Cr_2O_7^{2-} + 2OH^- \longrightarrow$				
	$Cr_2O_7^{2-} + 2OH^- \longrightarrow$				

	cating for better tomorrow	Educating for hollow tomorrow	Education for history termorow	Educating to	a builter fornorrow
i) Ba	(a) (i) The large posi because of the far and fully-filled cor	tive E° value for Mn ³⁺ /I ct that Mn ²⁺ has 3 <i>d</i> ⁵ cor figurations are very sta	Mn ²⁺ shows th <mark>at M</mark> n ²⁺ is in figuration. This means th ble. Thus, the third ionization	much more stab at the <i>d</i> -orbital i tion energy of M	ole than Mn ³⁺ . This i s half-filled. Half-fille In will be very high.
	(ii) In aqueous so which makes it co electron which ma	lution, the configuration lourless, but, Ti ⁺³ in aque akes it coloured.	n of Sc ⁺³ is 3d [°] 4s [°] , so it eous solution has outer co	does not have a	any unpaired electro 4s°, so it has unpaire
	(iii <mark>) Th</mark> ere are a gr 7s levels are of co	reater range of oxidatior	n states which <mark>is in</mark> part at	ttributed to the fa	act that the 5f, 6d an
	Potassium perma agent like KNO ₃ . solution to give per $2MnO_2 + 4KOH + 2MnO_2 = 1.4H+$	nganate is prepared by This produces the dark ermanganate. $O_2 \rightarrow 2K_2MnO_4 + 2H_2C_2MnO_5 + 2H_2C_2$	fusion of MnO₂ with an a k green K₂MnO₄ which di	lkali metal hydro sproportionates	oxide and an oxidisin in a neutral or acidi
	3111104- +411 →		OR		
b)					
	manganese are u	sed for the production o	of a variety of steels and s	tainiess steel.	
Educa Ref Educa	(ii) Ce ⁴⁺ (4f ⁰) in + electron so it beha Similarity : Both	sed for the production o 4 oxidation state tend to aves as strong oxidising are highly electropositiv	of a variety of steels and s o revert to the more stab g agent. re and very reactive in nat	le oxidation stat	e of +3 by gain of a
Educa Res II)	(ii) Ce ⁴⁺ (4f ⁰) in + electron so it beha Similarity : Both Difference : Lant	sed for the production o 4 oxidation state tend to aves as strong oxidising are highly electropositiv hanoids 4f orbital is prog	of a variety of steels and s o revert to the more stab g agent. re and very reactive in nat gressively filled but Actino	le oxidation stat ure. bids 5f orbital is	e of +3 by gain of a
Educa II) II) Ref	manganese are u (ii) $Ce^{4+}(4f^0)$ in + electron so it beha Similarity : Both Difference : Lant $Cr_2O_7^{2-} + 2OF$	sed for the production of 4 oxidation state tend to aves as strong oxidising are highly electropositiv hanoids 4f orbital is prog $H^- \longrightarrow 2CrO_4^{2-} + H^{-1}$	of a variety of steels and s o revert to the more stab g agent. re and very reactive in nat gressively filled but Actino 1 ₂ O	le oxidation stat ure. bids 5f orbital is	e of +3 by gain of a
Educa Ras II) II) Res III)	manganese are u (ii) $Ce^{4+}(4f^0)$ in + e^{4} electron so it beha Similarity : Both a Difference : Lant $Cr_2O_7^{2-} + 2OF$	sed for the production of 4 oxidation state tend to aves as strong oxidising are highly electropositiv hanoids 4f orbital is prop $H^- \longrightarrow 2CrO_4^{2-} + H$	of a variety of steels and s o revert to the more stab g agent. re and very reactive in nat gressively filled but Actino 4 ₂ O	le oxidation stat ure. bids 5f orbital is	e of +3 by gain of a
	manganese are u (ii) $Ce^{4+}(4f^0)$ in + 4 electron so it beha Similarity : Both 4 Difference : Lant $Cr_2O_7^{2-} + 2OF$	sed for the production of 4 oxidation state tend to aves as strong oxidising are highly electropositiv hanoids 4f orbital is prop $H^- \longrightarrow 2CrO_4^{2-} + H$	of a variety of steels and s o revert to the more stab g agent. re and very reactive in nat gressively filled but Actino 1 ₂ O	le oxidation stat ure. bids 5f orbital is	e of +3 by gain of a
	manganese are u (ii) $Ce^{4+}(4f^0)$ in + - electron so it beha Similarity : Both Difference : Lant $Cr_2O_7^{2-} + 2OF$	sed for the production of 4 oxidation state tend to aves as strong oxidising are highly electropositiv hanoids 4f orbital is prog $H^- \longrightarrow 2CrO_4^{2-} + H$	or evert to the more stab g agent. The and very reactive in nat gressively filled but Actino the and a state of the state	le oxidation stat ure. bids 5f orbital is	e of +3 by gain of a progressively filled.
	manganese are u (ii) $Ce^{4+}(4f^0)$ in + - electron so it beha Similarity : Both Difference : Lant $Cr_2O_7^{2-} + 2OF$	sed for the production of 4 oxidation state tend to aves as strong oxidising are highly electropositiv hanoids 4f orbital is pro- $H^- \longrightarrow 2CrO_4^{2-} + H$	o revert to the more stab g agent. re and very reactive in nat gressively filled but Actino 1 ₂ O	le oxidation stat ure. bids 5f orbital is	e of +3 by gain of a
	manganese are u (ii) $Ce^{4+}(4f^0)$ in + - electron so it beha Similarity : Both Difference : Lant $Cr_2O_7^{2-} + 2Ot$	sed for the production of 4 oxidation state tend to aves as strong oxidising are highly electropositiv hanoids 4f orbital is pro- $H^- \longrightarrow 2CrO_4^{2-} + H$	or evert to the more stab g agent. re and very reactive in nat gressively filled but Actino 1 ₂ O	le oxidation stat ure. bids 5f orbital is	e of +3 by gain of a
	manganese are u (ii) $Ce^{4+}(4f^0)$ in + - electron so it beha Similarity : Both Difference : Lant $Cr_2O_7^{2-} + 2Of$	sed for the production of 4 oxidation state tend to aves as strong oxidising are highly electropositiv hanoids 4f orbital is pro- $H^- \longrightarrow 2CrO_4^{2-} + H$	or revert to the more stab g agent. The and very reactive in nat gressively filled but Actino 1 ₂ O	le oxidation stat ure. bids 5f orbital is	e of +3 by gain of a progressively filled.
	manganese are u (ii) $Ce^{4+}(4f^0)$ in + - electron so it beha Similarity : Both Difference : Lant $Cr_2O_7^{2-} + 2Ot$	sed for the production of 4 oxidation state tend to aves as strong oxidising are highly electropositiv hanoids 4f orbital is pro- $H^- \longrightarrow 2CrO_4^{2-} + H$	o revert to the more stab g agent. re and very reactive in nat gressively filled but Actino 1 ₂ O	le oxidation stat ure. bids 5f orbital is	e of +3 by gain of a progressively filled.
	manganese are u (ii) $Ce^{4+}(4f^0)$ in + - electron so it beha Similarity : Both Difference : Lant $Cr_2O_7^{2-} + 2Ot$	sed for the production of 4 oxidation state tend to aves as strong oxidising are highly electropositiv hanoids 4f orbital is prop $H^- \longrightarrow 2 CrO_4^{2-} + H$	o revert to the more stab g agent. re and very reactive in nat gressively filled but Actino 1 ₂ O	le oxidation stat ure. bids 5f orbital is	e of +3 by gain of a
	manganese are u (ii) $Ce^{4+}(4f^0)$ in + - electron so it beha Similarity : Both Difference : Lant $Cr_2O_7^{2-} + 2Ot$	sed for the production of 4 oxidation state tend to aves as strong oxidising are highly electropositiv hanoids 4f orbital is pro- $H^- \longrightarrow 2 CrO_4^{2-} + H$	o revert to the more stab g agent. re and very reactive in nat gressively filled but Actino 1 ₂ O	le oxidation stat	e of +3 by gain of a progressively filled.
	manganese are u (ii) $Ce^{4+}(4f^0)$ in + - electron so it beha Similarity : Both Difference : Lant $Cr_2O_7^{2-} + 2Ot$	sed for the production of 4 oxidation state tend to aves as strong oxidising are highly electropositiv hanoids 4f orbital is pro- $H^- \longrightarrow 2 CrO_4^{2-} + H$	or revert to the more stab g agent. The and very reactive in nat gressively filled but Actino 1 ₂ O	le oxidation stat ure. bids 5f orbital is	e of +3 by gain of a progressively filled.
	manganese are u (ii) $Ce^{4+}(4f^0)$ in + - electron so it beha Similarity : Both Difference : Lant $Cr_2O_7^{2-} + 2Ot$	sed for the production of 4 oxidation state tend to aves as strong oxidising are highly electropositiv hanoids 4f orbital is pro- $H^- \longrightarrow 2 CrO_4^{2-} + H$	or revert to the more stab g agent. The and very reactive in nat gressively filled but Actino 1 ₂ O	Ltd.	e of +3 by gain of a
	manganese are u (ii) $Ce^{4+}(4f^0)$ in + - electron so it beha Similarity : Both - Difference : Lant $Cr_2O_7^{2-} + 2OF$	sed for the production of 4 oxidation state tend to aves as strong oxidising are highly electropositive hanoids 4f orbital is proved $H^- \longrightarrow 2 CrO_4^{2-} + H^{-}$	or revert to the more stab g agent. The and very reactive in nat gressively filled but Actino t ₂ O	Ltd. awar Road, Kota (2-39167222	e of +3 by gain of a progressively filled.

CUET (UG) 2023

Common University Entrance Test

About CUET (UG)

Common University Entrance Test (CUET) is the program that provides equal opportunity to all students from different Boards & different region.

- CUET, known as Common Universities Entrance Test (CUET), is a Computer Based All India Test for admission to various Undergraduate Programmes in 44
 Central Universities and other State Private + Deemed Universities of India.
- CUET (UG) is organized by National Testing Agency (NTA).
- Official Website: < www.samarth.cuet.ac.in > OR < www.cuet.nta.ac.in >

Points to Remember: CUET (UG) 2023

- Candidates can choose any Language/Domain Specific Subjects/General Test or a combination as per the requirements of the course in the specific University.
- The choice of Tests/Subjects depend on the course/s chosen by the candidate and the University/ies where admission is sought.
- A Candidate can take a maximum of **10 tests**.

	S.No.	SECTION	NO. OF QUESTIONS	QUESTIONS TO ATTEMPT	DURATION
A A A A A A A A A A A A A A A A A A A	1.	SECTION-I (A+B)	50	40	45 Minutes
	2.	SECTION-II	50/45	40/35	45 Minutes*
	3.	SECTION-III	60	50	45 Minutes*

Section IA – 13 Languages (As a medium and "Language")
 *Not yet announced by NTA.
 Assamese | Bengali | English | Gujarati | Hindi | Kannada | Malayalam | Marathi | Odia | Punjabi | Tamil | Telugu | Urdu

Section IB – 20 Languages

Arabic | Bodo | Chinese | Dogri | French | German | Persian | Russian | Sindhi | Tibetan | Italian | Japanese | Kashmiri | Konkani | Maithili | Manipuri | Nepali | Santhali | Spanish | Sanskrit

 Section II – 27 Domain-Specific Subjects
 There are 27 Domains specific Subjects being offered under this Section. Candidate may choose a maximum of Six (06) Domains as desired by the applicable University/Universities.

Section III – General Test

General Knowledge, Current Affairs, General Mental Ability, Numerical Ability, Quantitative Reasoning (Simple application of basic mathematical concepts arithmetic/algebra geometry/mensuration/stat taught till Grade 8).

- Candidates, from any Stream (Arts / Commerce / Science), who are appearing in Class12th Examination in 2022-23 OR who have Passed the class 12th or
 equivalent examination, irrespective of their age can appear in the CUET (UG)–2023.
- Students of Science stream can explore some unique courses of B. Tech/M. Tech/Bio-Tech courses through CUET exam at some renowned universities of India like DU/BHU etc.
- Candidates have to fulfil the age criteria if it is specified by a Particular University to which the candidate wishes to apply.

	PHASE-I	22 March to 30 April 2023	How to Apply	
ACADEMIC WORKSHOP (OTSAAN)	PHASE-II	15 April to 20 May 2023	Scan	
TEST SERIES (UMANG)	22 March 2023 Onwards		QR Code	

Resonance Eduventures Limited

Registered & Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Rajasthan) - 324005 Mob. No.: +91-77288 90101 | E-mail: cuet.ug@resonance.ac.in | Website: www.resonance.ac.in/cuet | CIN: U80302RJ2007PLC024029