Resonance®

| CBSE-2021-22 | DATE : 06-12-2021 | OFFICIAL PAPER | MATHEMATICS

CBSE 2021-22 (TERM-1)

DATE: 06-12-2021

Questions Paper

SERIES: SSJ/1 | CODE : 065/1/4 | SET-4 SUBJECT : MATHEMATICS

TIME ALLOWED: 90 MINUTES

MAXIMUM MARKS: 40

(i) Please check that this question paper contains 24 printed pages.

- (ii) Please check that this question paper contains 50 multiple choice questions MCQs.)
- (iii) QP Code given on the right hand side of the question paper should be written at the appropriate place of the OMR Sheet by the candidates.

NOTE

(iv) 20 minute additional time has been allotted to read this question paper prior to actual time of commencement of examination.

General Instructions:

- (i) This question paper contains 50 questions out of which 40 questions are to be attempted. All questions carry equal marks.
- (ii) This question paper consists of three Sections Section A, Section B and Section C.
- (iii) Section-A contains 20 questions. Attempt any 16 questions from Q. No. 1 to 20.
- (iv) Section–B also contains 20 questions. Attempt any 16 questions from Q. No. 21 to 40.
- (v) Section–C contains 10 questions including one Case Study. Attempt any 8 from Q. No. 41 to 50.
- (vi) There is only one correct option for every Multiple Choice Question (MCQ). Marks will not be awarded for answering more than one option.
- (vii) There is no negative marking.

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

八	Resonance [®] CBSE-2021-22 DATE : 06-12-2021 OFFICIAL PAPER MATHEMATICS
	SECTION - A In this Section, attempt any 16 questions out of Questions 1-20. Each question is of One mark.
1.	A relation R is defined on N. Which of the following is the reflexive relation ? (a) $R = \{(x,y) : x > y, x, y \in N\}$ (b) $R = \{(x,y) : x + y = 10 x, y \in N\}$ (c) $R = \{(x,y) : xy \text{ is the square number, } x, y \in N\}$ (d) $R = \{(x,y) : x + 4y = 10; x, y \in N\}$
Ans. Sol.	(c) R = {(x,y) : xy is the square number $x, y \in N$ } Here Reflexive (x,x) $\in R \forall a \in N$ $x \times x \Rightarrow x^2 \Rightarrow$ square number It is true for $x \in N$
2.	The function $f : R \to R$ defined by $f(x) = 4 + 3 \cos x$ is : (a) bijective (b) one-one but not onto (c) onto but not once (d) poither one one not onto
Ans. Sol.	(c) onto but not one-one (d) heither one-one nor onto (d) $f: R \rightarrow R$ f(x) = 4 + 3cosx Let $f(x_1) = f(x_2)$ $\Rightarrow 4 + 3cosx_1 = 4 + 3cosx_2$ $\Rightarrow cosx_1 = cosx_2$ $\Rightarrow x_1, x_2 \in R$ hence many one functions f(x) will not be onto function
3.	If $y = \cot^{-1}x$, $x < 0$, then : (a) $\frac{\pi}{2} < y \le \pi$ (b) $\frac{\pi}{2} < y < \pi$ (c) $-\frac{\pi}{2} < y < 0$ (d) $-\frac{\pi}{2} \le y < 0$
Ans. Sol.	(b) If $y = \cot^{-1}x$, $x < 0$ $\cot y = x$, $x < 0$ $\cot y < 0$ $\frac{\pi}{2} < y < \pi$
4. Ans. Sol.	The number of functions defined from $\{1,2,3,4,5\} \rightarrow (a,b)$ which are one-one is : (a) 5 (b) 3 (c) 2 (d) 0 (d) $\{1,2,3,4,5\} \rightarrow \{a, b\}$ Number of one-one function will be 0 \Rightarrow not possible
5.	If $A = \begin{bmatrix} 4 & 2 \\ 1 & 1 \end{bmatrix}$, then $(A - 2I) (A - 3I)$ is equal to

5. If $A = \begin{bmatrix} -1 & 1 \end{bmatrix}$, then (A - 2I) (A - 3I) is equal to (a) A (b) I (c) 5I (d) 0 Ans. (d)

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 555
Tol

八		CBSE-2021-22	DATE : 06-12-2021	OFFICIAL PAPER
Sol.	$A = \begin{bmatrix} 4 & 2 \\ -1 & 1 \end{bmatrix}$			
	\Rightarrow $(A - 2I) (A - 3I)$			
	$\Rightarrow \left(\begin{bmatrix} 4 & 2 \\ -1 & 1 \end{bmatrix} - \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \right)$	$\left] \right) \left[\begin{bmatrix} 4 & 2 \\ -1 & 1 \end{bmatrix} - \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} \right)$		
	$\Rightarrow \begin{bmatrix} 2 & 2 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ -1 & -1 \end{bmatrix}$	2 2]		
	$\Rightarrow \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = 0$			
6.	If P is a 3 × 3 matrix	such that P' = 2P + I	, where P' is the transp	oose of P , then :
A	(a) P = I	(b) P = - I	(c) P = 2I	(d) P = - 2I
Ans. Sol.	(D) P'=2P+I (1)			
	(P')' = (2P + I)'			
	P = 2P' + I			
	from equation (1) $P = 2(2P \pm I) \pm I$			
	P = 2(2P + I) + I P = 4P + 2I + I			
	P = 4P + 3I			
	–3P = 3I → P			
	$\Rightarrow P = -1$			
7.	If order of matrix A is	2 × 3, of matrix B is 3	3×2 , and of matrix C is	s 3×3 , then which a
	is not defined ?			
•	(a) C (A + B′)	(b) C(A + B')'	(c) BAC	(d) CB + A'
Ans. Sol	(a) Order of matrix $A \rightarrow A$	2×3		
001.	matrix $B \Rightarrow 3$	3 × 2		
	matrix $C \Rightarrow$	3 × 3		
	Order of matrix $B' = 2$	2 × 3		
	50 C [A + B]			
	3×3 2×3 2×3			
8.	If A = $\begin{bmatrix} \alpha & 2 \\ 2 & \alpha \end{bmatrix}$ and A	$ ^{3} = 27$, then the value	e of α is	
	(a) ± 1	(b) ± 2	(c) $\pm \sqrt{5}$	(d) $\pm \sqrt{7}$
Ans.	(d)			
Sol.	$A = \begin{bmatrix} \alpha & 2 \\ 2 & \alpha \end{bmatrix} \text{ and } A^3 $	= 27		
	\Rightarrow A = $\alpha^2 - 4$ and	A ³ = 27		
	\Rightarrow 3 = α^2 – 4 and A	4 = 3		

 $\Rightarrow \alpha^2 = 7$ $\Rightarrow \alpha = \pm \sqrt{7}$

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 🔊 7340010333 🚹 facebook.com/ResonanceEdu 🔽 twitter.com/ResonanceEdu 🔠 www.youtube.com/resowatch 🕒 blog.resonance.ac.in

This solution was download from Resonance Solution portal

which one of the following

9. If $\begin{vmatrix} 5 & 3 & -1 \\ 7 & x & -3 \\ 9 & 6 & -2 \end{vmatrix} = 0$, then the value of x is : (a) 3 (b) 5 (c) 7 (d) 9 Ans. (d) Sol. $\begin{vmatrix} 5 & 3 & -1 \\ -7 & x & -3 \\ 9 & 6 & -2 \end{vmatrix}$ $\Rightarrow 5(-2x+18) - 3(14+27) - 1(-42-9x) = 0$ $\Rightarrow -10x+90 - 123+42+9x = 0$ $\Rightarrow -x+9 = 0$ $\Rightarrow -x+9 = 0$ 10. The inverse of $\begin{bmatrix} -4 & 3 \\ 7 & -5 \end{bmatrix}$ is (a) $\begin{bmatrix} -5 & 3 \\ 7 & -4 \end{bmatrix}$ (b) $\begin{bmatrix} 5 & 3 \\ 7 & 4 \end{bmatrix}$ (c) $\begin{bmatrix} -5 & 7 \\ 3 & -4 \end{bmatrix}$ (d) $\begin{bmatrix} -5 & -3 \\ -7 & -4 \end{bmatrix}$ Ans. (b) Sol. $A = \begin{bmatrix} -4 & 3 \\ 7 & -5 \end{bmatrix}$ $A^{-1} = \frac{adjA}{[A]}$ $A^{-1} = \frac{adjA}{[A]}$ A = 20 - 21 = -1 $\therefore A^{-1} = -1 \begin{bmatrix} -5 & -3 \\ -7 & -4 \end{bmatrix} = \begin{bmatrix} 5 & 3 \\ 7 & 4 \end{bmatrix}$ 11. If $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 59 & 69 & -1 \end{bmatrix}$, then A^{-1} (a) is A (b) is (-A) (c) is A^{2} (d) Does not exist Ans. (a) Sol. $A = \begin{bmatrix} 1 & 0 & 0 \\ 59 & 69 & -1 \end{bmatrix}$, then $A^{-1} = ?$ $A^{-1} = \frac{adjA}{[A]}$ $A^{-1} = \frac{adjA}{[A]}$ $A^{-1} = \frac{adjA}{[A]}$ $A^{-1} = \frac{adjA}{[A]}$ $adjA = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ -59 & -69 & 1 \end{bmatrix}$	人	Resonance® Educating for better tomorrow	CBSE-2021-22 DAT	E : 06-12-2021	OFFICIAL PAPER MATHEMATICS
(a) 3 (b) 5 (c) 7 (d) 9 Ans. (d) Sol. $\begin{vmatrix} 5 & 3 & -1 \\ -7 & x & -3 \\ 9 & 6 & -2 \end{vmatrix}$ $\Rightarrow 5(-2x+18) - 3(14+27) - 1(-42 - 9x) = 0$ $\Rightarrow -10x + 90 - 123 + 42 + 9x = 0$ $\Rightarrow -x + 9 = 0$ $\Rightarrow x = 9$ 10. The inverse of $\begin{bmatrix} -4 & 3 \\ 7 & -4 \end{bmatrix}$ is (a) $\begin{bmatrix} -5 & -3 \\ 7 & -4 \end{bmatrix}$ (b) $\begin{bmatrix} 5 & 3 \\ 7 & 4 \end{bmatrix}$ (c) $\begin{bmatrix} -5 & 7 \\ 3 & -4 \end{bmatrix}$ (d) $\begin{bmatrix} -5 & -3 \\ -7 & -4 \end{bmatrix}$ Ans. (b) Sol. $A = \begin{bmatrix} -4 & 3 \\ 7 & -5 \end{bmatrix}$ $A^{-1} = \frac{adjA}{ A }$ $A^{-1} = -1 \begin{bmatrix} -5 & -3 \\ -7 & -4 \end{bmatrix} = \begin{bmatrix} 5 & 3 \\ 7 & 4 \end{bmatrix}$ 11. If $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 59 & 69 & -1 \end{bmatrix}$, then A^{-1} (a) is A (b) is (-A) (c) is A^2 (d) Does not exist Ans. (a) Sol. $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 59 & 69 & -1 \end{bmatrix}$ given $A^{-1} = ?$ $A^{-1} = \frac{adjA}{ A }$ $A^{-1} = \frac{adjA}{ A }$ $adjA = \begin{bmatrix} -1 & 0 & 0 \\ 59 & 69 & -1 \end{bmatrix}$	9.	$ \begin{cases} 5 & 3 & -1 \\ -7 & x & -3 \\ 9 & 6 & -2 \end{cases} = 0, t $	hen the value of x is :		
Sol. $\begin{vmatrix} -7 & x & -3 \\ 9 & 6 & -2 \end{vmatrix}$ $\Rightarrow 5(-2x + 18) - 3(14 + 27) - 1(-42 - 9x) = 0$ $\Rightarrow -10x + 90 - 123 + 42 + 9x = 0$ $\Rightarrow x + 9 = 0$ 10. The inverse of $\begin{bmatrix} -4 & 3 \\ 7 & -5 \end{bmatrix}$ is (a) $\begin{bmatrix} -5 & 3 \\ 7 & -4 \end{bmatrix}$ (b) $\begin{bmatrix} 5 & 3 \\ 7 & 4 \end{bmatrix}$ (c) $\begin{bmatrix} -5 & 7 \\ 3 & -4 \end{bmatrix}$ (d) $\begin{bmatrix} -5 & -3 \\ -7 & -4 \end{bmatrix}$ Ans. (b) Sol. $A = \begin{bmatrix} -4 & 3 \\ 7 & -5 \end{bmatrix}$ $A^{-1} = \frac{adjA}{ A }$ $adjA = \begin{bmatrix} -5 & -3 \\ -7 & -4 \end{bmatrix} = \begin{bmatrix} 5 & 3 \\ 7 & 4 \end{bmatrix}$ 11. If $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 59 & 69 & -1 \end{bmatrix}$, then A^{-1} (a) is A (b) is (-A) (c) is A^2 (d) Does not exist Ans. (a) Sol. $A = \begin{bmatrix} 1 & 0 & 0 \\ 59 & 69 & -1 \end{bmatrix}$ given $A^{-1} = ?$ $A^{-1} = \frac{adjA}{ A }$ $A^{-1} = \frac{adjA}{ A }$ $adjA = \begin{bmatrix} -1 & 0 & 0 \\ 59 & 69 & -1 \end{bmatrix}$	Ans.	(a) 3 (d) 5 3 −1	(b) 5	(c) 7	(d) 9
$ \begin{array}{l} \Rightarrow 5(-2x+18) - 3(14+27) - 1(-42 - 9x) = 0 \\ \Rightarrow -10x+99 - 123+42+9x = 0 \\ \Rightarrow x+9 = 0 \\ \Rightarrow x=9 \end{array} \\ \end{tabular} 10. The inverse of \begin{bmatrix} -4 & 3 \\ 7 & -5 \end{bmatrix} is(a) \begin{bmatrix} -5 & 3 \\ 7 & -4 \end{bmatrix} (b) \begin{bmatrix} 5 & 3 \\ 7 & 4 \end{bmatrix} (c) \begin{bmatrix} -5 & 7 \\ 3 & -4 \end{bmatrix} (d) \begin{bmatrix} -5 & -3 \\ -7 & -4 \end{bmatrix}Ans. (b)Sol. A = \begin{bmatrix} -4 & 3 \\ 7 & -5 \end{bmatrix}A^{-1} = \frac{adjA}{ A } A = 20 - 21 = -1\therefore A^{-1} = -1 \begin{bmatrix} -5 & -3 \\ -7 & -4 \end{bmatrix} = \begin{bmatrix} 5 & 3 \\ 7 & 4 \end{bmatrix}11. If A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 59 & 69 & -1 \end{bmatrix}, then A^{-1}(a) is A (b) is (-A) (c) is A^2 (d) Does not existAns. (a)Sol. A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 59 & 69 & -1 \end{bmatrix} given A^{-1} = ?A^{-1} = \frac{adjA}{ A }A^{-1} = \frac{adjA}{ A }adjA = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 59 & 69 & -1 \end{bmatrix}$	Sol.	$\begin{vmatrix} -7 & x & -3 \\ 9 & 6 & -2 \end{vmatrix} = 0$			
$ \begin{array}{l} \Rightarrow -x+9=0 \\ \Rightarrow x=9 \end{array} \\ 10. \text{The inverse of } \begin{bmatrix} -4 & 3 \\ 7 & -5 \end{bmatrix} \text{ is } \\ (a) \begin{bmatrix} -5 & 3 \\ 7 & -4 \end{bmatrix} & (b) \begin{bmatrix} 5 & 3 \\ 7 & 4 \end{bmatrix} & (c) \begin{bmatrix} -5 & 7 \\ 3 & -4 \end{bmatrix} & (d) \begin{bmatrix} -5 & -3 \\ -7 & -4 \end{bmatrix} \\ \text{Ans. (b)} \\ \text{Sol.} A = \begin{bmatrix} -4 & 3 \\ 7 & -5 \end{bmatrix} \\ A^{-1} = \frac{\text{adjA}}{ A } \\ adjA = \begin{bmatrix} -5 & -3 \\ -7 & -4 \end{bmatrix} = \begin{bmatrix} 5 & 3 \\ 7 & 4 \end{bmatrix} \\ A = 20 - 21 = -1 \\ \therefore A^{-1} = -1 \begin{bmatrix} -5 & -3 \\ -7 & -4 \end{bmatrix} = \begin{bmatrix} 5 & 3 \\ 7 & 4 \end{bmatrix} \\ \text{I1.} \text{If } A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 59 & 69 & -1 \end{bmatrix}, \text{ then } A^{-1} \\ (a) \text{ is } A \qquad (b) \text{ is } (-A) \qquad (c) \text{ is } A^2 \qquad (d) \text{ Does not exist} \end{cases} \\ \text{Ans. (a)} \\ \text{Sol.} A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 59 & 69 & -1 \end{bmatrix} \text{given } A^{-1} = ? \\ A^{-1} = \frac{\text{adjA}}{ A } \\ adjA = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ -59 & -69 & 1 \end{bmatrix} \end{array}$		$\Rightarrow 5(-2x + 18) - 3(1)$ $\Rightarrow -10x + 90 - 123 - 3(1)$	4 + 27) - 1(-42 - 9x) = 0 + 42 + 9x = 0		
10. The inverse of $\begin{bmatrix} -4 & 3 \\ 7 & -5 \end{bmatrix}$ is (a) $\begin{bmatrix} -5 & 3 \\ 7 & -4 \end{bmatrix}$ (b) $\begin{bmatrix} 5 & 3 \\ 7 & 4 \end{bmatrix}$ (c) $\begin{bmatrix} -5 & 7 \\ 3 & -4 \end{bmatrix}$ (d) $\begin{bmatrix} -5 & -3 \\ -7 & -4 \end{bmatrix}$ Ans. (b) Sol. $A = \begin{bmatrix} -4 & 3 \\ 7 & -5 \end{bmatrix}$ $A^{-1} = \frac{adjA}{ A }$ $adjA = \begin{bmatrix} -5 & -3 \\ -7 & -4 \end{bmatrix}$ A = 20 - 21 = -1 $\therefore A^{-1} = -1 \begin{bmatrix} -5 & -3 \\ -7 & -4 \end{bmatrix} = \begin{bmatrix} 5 & 3 \\ 7 & 4 \end{bmatrix}$ 11. If $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 59 & 69 & -1 \end{bmatrix}$, then A^{-1} (a) is A (b) is (-A) (c) is A^2 (d) Does not exist Ans. (a) Sol. $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 59 & 69 & -1 \end{bmatrix}$ given $A^{-1} = ?$ $A^{-1} = \frac{adjA}{ A }$ $A^{-1} = \frac{adjA}{ A }$ $adjA = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ -59 & -69 & 1 \end{bmatrix}$		$\Rightarrow -x + 9 = 0$ $\Rightarrow x = 9$	2]		
(a) $\begin{bmatrix} -5 & 3 \\ 7 & -4 \end{bmatrix}$ (b) $\begin{bmatrix} 5 & 3 \\ 7 & 4 \end{bmatrix}$ (c) $\begin{bmatrix} -5 & 7 \\ 3 & -4 \end{bmatrix}$ (d) $\begin{bmatrix} -5 & -3 \\ -7 & -4 \end{bmatrix}$ Ans. (b) Sol. $A = \begin{bmatrix} -4 & 3 \\ 7 & -5 \end{bmatrix}$ $A^{-1} = \frac{adjA}{ A }$ $adjA = \begin{bmatrix} -5 & -3 \\ -7 & -4 \end{bmatrix}$ A = 20 - 21 = -1 $\therefore A^{-1} = -1 \begin{bmatrix} -5 & -3 \\ -7 & -4 \end{bmatrix} = \begin{bmatrix} 5 & 3 \\ 7 & 4 \end{bmatrix}$ 11. If $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 59 & 69 & -1 \end{bmatrix}$, then A^{-1} (a) is A (b) is (-A) (c) is A^2 (d) Does not exist Ans. (a) Sol. $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 59 & 69 & -1 \end{bmatrix}$ given $A^{-1} = ?$ $A^{-1} = \frac{adjA}{ A }$ $adjA = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ -59 & -69 & 1 \end{bmatrix}$	10.	The inverse of $\begin{bmatrix} -4\\7 \end{bmatrix}$	$\begin{bmatrix} 3 \\ -5 \end{bmatrix}$ is		
Ans. (b) Sol. $A = \begin{bmatrix} -4 & 3 \\ 7 & -5 \end{bmatrix}$ $A^{-1} = \frac{adjA}{ A }$ $adjA = \begin{bmatrix} -5 & -3 \\ -7 & -4 \end{bmatrix}$ A = 20 - 21 = -1 $\therefore A^{-1} = -1 \begin{bmatrix} -5 & -3 \\ -7 & -4 \end{bmatrix} = \begin{bmatrix} 5 & 3 \\ 7 & 4 \end{bmatrix}$ 11. If $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 59 & 69 & -1 \end{bmatrix}$, then A^{-1} (a) is A (b) is (-A) (c) is A^2 (d) Does not exist Ans. (a) Sol. $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 59 & 69 & -1 \end{bmatrix}$ given $A^{-1} = ?$ $A^{-1} = \frac{adjA}{ A }$ $adjA = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ -59 & -69 & 1 \end{bmatrix}$		(a) $\begin{bmatrix} -5 & 3 \\ 7 & -4 \end{bmatrix}$	(b) $\begin{bmatrix} 5 & 3 \\ 7 & 4 \end{bmatrix}$	$(c)\begin{bmatrix} -5 & 7\\ 3 & -4 \end{bmatrix}$	$ (d) \begin{bmatrix} -5 & -3 \\ -7 & -4 \end{bmatrix} $
Sol. $A = \begin{bmatrix} -4 & 3\\ 7 & -5 \end{bmatrix}$ $A^{-1} = \frac{adjA}{ A }$ $adjA = \begin{bmatrix} -5 & -3\\ -7 & -4 \end{bmatrix}$ $ A = 20 - 21 = -1$ $\therefore A^{-1} = -1 \begin{bmatrix} -5 & -3\\ -7 & -4 \end{bmatrix} = \begin{bmatrix} 5 & 3\\ 7 & 4 \end{bmatrix}$ 11. If $A = \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 59 & 69 & -1 \end{bmatrix}$, then A^{-1} (a) is A (b) is (-A) (c) is A^2 (d) Does not exist Ans. (a) Sol. $A = \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 59 & 69 & -1 \end{bmatrix}$ given $A^{-1} = ?$ $A^{-1} = \frac{adjA}{ A }$ $adjA = \begin{bmatrix} -1 & 0 & 0\\ 0 & -1 & 0\\ -59 & -69 & 1 \end{bmatrix}$	Ans.	(b)			
$A^{-1} = \frac{adjA}{ A }$ $adjA = \begin{bmatrix} -5 & -3 \\ -7 & -4 \end{bmatrix}$ $ A = 20 - 21 = -1$ $\therefore A^{-1} = -1 \begin{bmatrix} -5 & -3 \\ -7 & -4 \end{bmatrix} = \begin{bmatrix} 5 & 3 \\ 7 & 4 \end{bmatrix}$ 11. If $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 59 & 69 & -1 \end{bmatrix}$, then A^{-1} (a) is A (b) is (-A) (c) is A^2 (d) Does not exist Ans. (a) Sol. $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 59 & 69 & -1 \end{bmatrix}$ given $A^{-1} = ?$ $A^{-1} = \frac{adjA}{ A }$ $adjA = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ -59 & -69 & 1 \end{bmatrix}$	Sol.	$A = \begin{bmatrix} -4 & 3 \\ 7 & -5 \end{bmatrix}$			
adjA = $\begin{bmatrix} -5 & -3 \\ -7 & -4 \end{bmatrix}$ A = 20 - 21 = -1 $\therefore A^{-1} = -1 \begin{bmatrix} -5 & -3 \\ -7 & -4 \end{bmatrix} = \begin{bmatrix} 5 & 3 \\ 7 & 4 \end{bmatrix}$ 11. If A = $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 59 & 69 & -1 \end{bmatrix}$, then A -1 (a) is A (b) is (-A) (c) is A ² (d) Does not exist Ans. (a) Sol. A = $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 59 & 69 & -1 \end{bmatrix}$ given A ⁻¹ = ? A ⁻¹ = $\frac{adjA}{ A }$ A ⁻¹ = $\frac{adjA}{ A }$ adjA = $\begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ -59 & -69 & 1 \end{bmatrix}$		$A^{-1} = \frac{adjA}{ A }$			
A = 20 - 21 = -1 $\therefore A^{-1} = -1 \begin{bmatrix} -5 & -3 \\ -7 & -4 \end{bmatrix} = \begin{bmatrix} 5 & 3 \\ 7 & 4 \end{bmatrix}$ 11. If $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 59 & 69 & -1 \end{bmatrix}$, then A^{-1} (a) is A (b) is (-A) (c) is A^2 (d) Does not exist Ans. (a) Sol. $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 59 & 69 & -1 \end{bmatrix}$ given $A^{-1} = ?$ $A^{-1} = \frac{adjA}{ A }$ $adjA = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ -59 & -69 & 1 \end{bmatrix}$		$adjA = \begin{bmatrix} -5 & -3 \\ -7 & -4 \end{bmatrix}$			
$\therefore A^{-1} = -1 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 59 & 69 & -1 \end{bmatrix}, \text{ then } A^{-1}$ (a) is A (b) is (-A) (c) is A ² (d) Does not exist Ans. (a) Sol. $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 59 & 69 & -1 \end{bmatrix} \text{ given } A^{-1} = ?$ $A^{-1} = \frac{adjA}{ A }$ $adjA = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ -59 & -69 & 1 \end{bmatrix}$		A = 20 - 21 = -1	3] [5 3]		
11. If $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 59 & 69 & -1 \end{bmatrix}$, then A^{-1} (a) is A (b) is (-A) (c) is A^2 (d) Does not exist Ans. (a) Sol. $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 59 & 69 & -1 \end{bmatrix}$ given $A^{-1} = ?$ $A^{-1} = \frac{adjA}{ A }$ $adjA = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ -59 & -69 & 1 \end{bmatrix}$		$\therefore A^{-1} = -1 \begin{bmatrix} -7 & -4 \end{bmatrix}$	$4 = \begin{bmatrix} 7 & 4 \end{bmatrix}$		
(a) is A (b) is (-A) (c) is A ² (d) Does not exist Ans. (a) Sol. $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 59 & 69 & -1 \end{bmatrix}$ given $A^{-1} = ?$ $A^{-1} = \frac{adjA}{ A }$ $adjA = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ -59 & -69 & 1 \end{bmatrix}$	11.	If $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 59 & 69 & -1 \end{bmatrix}$, then A ^{−1}		
Ans. (a) Sol. $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 59 & 69 & -1 \end{bmatrix}$ given $A^{-1} = ?$ $A^{-1} = \frac{adjA}{ A }$ $adjA = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ -59 & -69 & 1 \end{bmatrix}$		(a) is A	(b) is (–A)	(c) is A ²	(d) Does not exist
Sol. $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 59 & 69 & -1 \end{bmatrix}$ given $A^{-1} = ?$ $A^{-1} = \frac{adjA}{ A }$ $adjA = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ -59 & -69 & 1 \end{bmatrix}$	Ans.	(a)			
$A^{-1} = \frac{adjA}{ A }$ adjA = $\begin{bmatrix} -1 & 0 & 0\\ 0 & -1 & 0\\ -59 & -69 & 1 \end{bmatrix}$	Sol.	$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 59 & 69 & -1 \end{bmatrix} giv$	ven A ⁻¹ = ?		
$adjA = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ -59 & -69 & 1 \end{bmatrix}$		$A^{-1} = \frac{adjA}{ A }$			
		$adjA = \begin{bmatrix} -1 & 0\\ 0 & -1\\ -59 & -69 \end{bmatrix}$	0 0 1		

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 555
Tol

	and $A^{-1} = \frac{-1}{1} \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ -59 & -69 & 1 \end{bmatrix}$ = $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 59 & 69 & -1 \end{bmatrix} = A$		
12.	If the function $f(x) = \begin{cases} 3x - 8, & \text{if } x \le 5\\ 2k, & \text{if } x > 5 \end{cases}$ is continu	uous, then the value of k	is :
Ans.	(a) $\frac{2}{7}$ (b) $\frac{7}{2}$	(c) $\frac{3}{7}$	(d) $\frac{4}{7}$
Sol.	$f(x) = \begin{cases} 3x - 8 , x \le 5 \\ 2k , x > 5 \end{cases}$ continuous at x = 5 \therefore LHL = RHL = f(5) $\lim_{h \to 0} f(5 - h) = \lim_{h \to 0} f(5 + h)$ $\Rightarrow \lim_{h \to 0} 3(5 - h) - 8, \lim_{h \to 0} f(5 + h)$ $\Rightarrow \lim_{h \to 0} 15 - 3h - 8, 2k$ $\Rightarrow 7$ $\therefore 7 = 2k$ $k = \frac{7}{2}$		
13.	The function $f(x) = [x]$, where $[x]$ is the greatest in at :	nteger function that is les	s than or equal to x, is continuous
Ans. Sol.	(a) 4 (b) -2 (c) $f(x) = [x] \Rightarrow$ greatest integer function \Rightarrow It is continuous non-integer number	(c) 1.5	(d) 1
14.	If $y = \tan^{-1} (e^{2x})$, then $\frac{dy}{dx}$ is equal to		
Ans. Sol.	(a) $\frac{2e^{2x}}{1+e^{4x}}$ (b) $\frac{1}{1+e^{4x}}$ (a) $y = \tan^{-1}(e^{2x})$ $\frac{dy}{dx} = \frac{1}{1+(e^{2x})^2} \times e^{2x} \times 2 \implies \frac{2e^{2x}}{1+e^{4x}}$	(c) $\frac{2}{e^{2x} + e^{-2x}}$	(d) $\frac{1}{e^{2x} - e^{-2x}}$

- **15.** If $y^2 (2 x) = x^3$, then $\left(\frac{dy}{dx}\right)_{(1,1)}$ is equal to : (a) 2 (b) - 2 (c) 3 (d) $-\frac{3}{2}$
- Ans. (a)

Resonance Educating for better tomorrow

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 555
Tol

| CBSE-2021-22 | DATE : 06-12-2021 | OFFICIAL PAPER | MATHEMATICS

Sol.	$y^{2}(2-x) = x^{3}; \left(\frac{dy}{dx}\right)_{(1,1)}$ equal to
	:. 2y $\frac{dy}{dx}(2-x) + y^2(-1) = 3x^2$
	$\Rightarrow 2y (2-x) \frac{dy}{dx} - y^2 = 3x^2$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3x^2 + y^2}{2y(2 - x)}$
	at (1, 1) $\left(\frac{dy}{dx}\right)_{(11)} = \frac{3(1)^2 + (1)^2}{2(1)(2-1)} \implies \frac{4}{2} = 2$
16.	The angle between the tangents to the curves $y = x^2 - 5x + 5$ at , the points (2,0) and (3,0) is
	(a) $\frac{\pi}{2}$ (b) $\frac{\pi}{3}$ (c) $\frac{\pi}{4}$ (d) 0
Ans.	(a)
501.	Curve $y = x^2 - 5x + 6$ dy $2x = 5$
	$\frac{dx}{dx} = 2x - 3$
	Slope at point (2, 0)
	$\left(\frac{dy}{dx}\right)_{(2,0)} = 4 - 5 = -1$
	Slope at point (3, 0)
	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{(3,0)} = 6 - 5 = 1$
	$m_1 \times m_2 = -1$ -1 x 1 = -1
	angle will be $\frac{\pi}{2}$
	aligie will be 2
17.	The interval , in which function $y = x^3 + 6x^2 + 6$ is increasing, is :
Ano	(a) $(-\infty, -4) \cup (0, \infty)$ (b) $(-\infty, 4)$ (c) $(-4, 0)$ (d) $(-\infty, 0) \cup (4, \infty)$
Sol.	(a) $y = x^3 + 6x^2 + 6$
	$\frac{dy}{dx} = 3x^2 + 12x$
	ox For increasing
	$\frac{dy}{dt} > 0$
	$3x^2 + 12x + > 0$
	$x^2 + 4x > 0$
	x (x + 4) > 0 x = 0; x = -4
	$\begin{array}{c c} + & - & + \\ -\infty & -4 & 0 & +\infty \end{array}$
	$x \in (-\infty, -4) \cup (0, \infty)$

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 555
Tol

		CBSE-2021-22	DATE:06-12-2021	OFFICIAL PAPER MATHEMAT	rics
18.	The value of x for which	ch (x – x²) is maxin	num, is		
	(a) $\frac{3}{4}$	(b) $\frac{1}{2}$	(c) $\frac{1}{3}$	(d) $\frac{1}{4}$	
Ans.	(b)				
Sol.	$y = x - x^2$				
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 1 - 2x$				
	For maxima,				
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 0$				
	1 - 2x = 0				
	$x = \frac{1}{2}$				
	Now $\frac{d^2y}{dx^2} = -2 < 0$				
	$x = \frac{1}{2}$ Local maxima .				
19.	If the corner points of t	the feasible region	of an LPP are (0,3), (3,	2) and (0,5) , then the minimum valu	le of
	Z = 11x + 7y is :				
	(a) 21	(b) 33	(c) 14	(d) 35	
A					
Ans. Sol	(a) $7 - 11x + 7y$				
001.	Corner point				
	$Z = 11 \times 0 + 7 \times 3$	at point (0,3)			
	Z = 21				
	$Z = 11 \times 3 + 7 \times 2$	at point (3,2)			
	= 33 +14 = 47				
	$Z = 11 \times 0 + 7 \times 5$	at point (0,5)			
	= 35				
	∴ minimum value of z	z = 21			
20.	The number of solution	ns of the system o	f inequations x + $2y \le 3$, $3x + 4y \ge 12$, $x \ge 0$; $y \ge 1$	
_	(a) 0	(b) 2	(c) finite	(d) infinite	
Ans.	(a)				

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 555
Tol

Sol.	x + 2y≤3 ; Drawing graph	3x + 4y ≥ 1	2; $x \ge 0; y \ge 1$		
	4 3				
			v = 1		
	0	1 2 3 x+2y = 3	4 5 3x+4y = 12		
	Here No.	a sa Na a	f solution $= 0$		
	reasible Regio	T. 50. NO. C			
			SECTI	ON - B	
	In this Section,	attempt any	16 questions out of	Questions 21-40 . Each q	uestion is of One mark.
21.	The number of	equivalence	e relations in the set {	1,2,3} containing the eler	ments (1,2) and (2,1) is
	(a) 0	(b)	1	(c) 2	(d) 3
Ans. Sol	(C) √1 2 3\				
501.	No. of equivaler	nce relation	containing element (1,2) and (2,1)	
	R ₁ { (1,1) (2,2) ((3,3) (1,2) (2	2,1) } .		
	R ₂ { (1,1) (2,2) ((3,3) (1,2) (2	2,1) (1,3) (3,1) (2,3)(3	5,2)} .	
	∴ No. of equiva	alence relati	on = 2		
22.	Let $f : R \rightarrow R$ be	e defined by	$f(x) = \frac{1}{x}$, for all $x \in$	R . Then , f is	
Ans.	(a) one-one (d)	(b)	onto	(c) bijective	(d) not defined
Sol.	$f: R \rightarrow R$				
	$F(x) = \frac{1}{x}$ for all	l x < R			
	Function is not	defined as >	x = 0		

23. The function $f: N \to N$ is defined by $f(n) = f(n) = \begin{cases} \frac{n+1}{2} & \text{, if n isodd} \\ \frac{n}{2} & \text{, if n iseven} \end{cases}$, the function f is : (a) bijective (b) one-one but not onto (c) onto but not one-one (d) neither one-one nor onto

Ans. (a)

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 555
Tol

This solution was download from Resonance Solution portal

Sol. $f: N \rightarrow N$ $f(n) = \begin{cases} \frac{n+1}{2} & :n \text{ add} \\ \frac{n}{2} & :n \text{ iseven} \end{cases}$ for one-one : $f(n_1) = f(n_2)$ every n add. $\frac{n_1\!+\!1}{2}\!=\!\frac{n_2\!+\!1}{2}$ $n_1 = n_2$ for every odd no. for n = even no. $f(n_1) = f(n_2)$ \Rightarrow n₁ = n₂ for every even no. hence f(n) will be many one function For onto for n = odd no. Let y = f(n) $y = \frac{n+1}{2}$ $\Rightarrow 2y = n + 1$ \Rightarrow 2y –1 = n : y = N. ... Pre image exit for every odd no. Let y = f(n)when n = even no. $y = \frac{1}{2}$ 2y = n ; y = N. ... Pre image exit for every even no. function onto not one-one The value of $\sin^{-1}\left(\cos\frac{13\pi}{5}\right)$ is 24. (a) $-\frac{3\pi}{5}$ (b) $-\frac{\pi}{10}$ (c) $\frac{3\pi}{5}$ (d) $\frac{\pi}{10}$ Ans. (b) $\sin^{-1}\left(\cos\frac{13\pi}{5}\right)$ Sol. $\Rightarrow \frac{\pi}{2} - \cos^{-1} \left[\cos \frac{13\pi}{5} \right]$ $\Rightarrow \frac{\pi}{2} - \cos^{-1} \left[\cos \left(2\pi + \frac{3\pi}{5} \right) \right]$ $\Rightarrow \frac{\pi}{2} - \cos^{-1}\left(\cos\frac{3\pi}{5}\right)$ $\Rightarrow \frac{\pi}{2} - \frac{3\pi}{5} \Rightarrow \frac{5\pi - 6\pi}{10} = \frac{-\pi}{10}$

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 (7340010333 f facebook.com/ResonanceEdu) twitter.com/ResonanceEdu) www.youtube.com/resowatch) blog.resonance.ac.in

		CBSE-2021-22	DATE:06-12-2021	OFFICIAL PAPER MATHE	MATICS
25.	If $\sin^{-1}x > \cos^{-1}x$, the	en x should lie in the i	nterval:		
	(a) $\left(-1,-\frac{1}{\sqrt{2}}\right)$	(b) $\left(0, \frac{1}{\sqrt{2}}\right)$	(c) $\left(\frac{1}{\sqrt{2}}, 1\right)$	(d) $\left(\frac{1}{\sqrt{2}}, 0\right)$	
Ans. Sol	(c) $\sin^{-1} x > \cos^{-1} x$	⁻¹ x			
001.	$\Rightarrow \frac{\pi}{2} - \cos x$	$>\cos^{-1}x$			
	2 π				
	$\Rightarrow \frac{\pi}{2} > 2\cos^{-1}$	⁻¹ X			
	$\Rightarrow \frac{\pi}{4} > 2\cos^{\frac{\pi}{4}}$	⁻¹ x			
	$\Rightarrow \frac{1}{\sqrt{2}} > x$				
	√2				
	\therefore x e $\left(\frac{1}{\sqrt{2}}, 1\right)$	J			
26.	If $A = \begin{bmatrix} \cos \alpha - \sin \alpha \end{bmatrix}$	and A+A' = I, then the	e value of α is :		
	sinα cosα	_		2-	
	(a) $\frac{\pi}{6}$	(b) $\frac{\pi}{3}$	(c) π	(d) $\frac{3\pi}{2}$	
Ans.	(b)				
Sol.	$A = \begin{vmatrix} \cos \alpha - \sin \alpha \\ \sin \alpha & \cos \alpha \end{vmatrix}$				
	$A + \overline{A}^1 = I$,		
	$\therefore \begin{bmatrix} \cos\alpha - \sin\alpha \\ \sin\alpha & \cos\alpha \end{bmatrix} + \begin{bmatrix} -\frac{1}{2} \end{bmatrix}$	$\begin{bmatrix} \cos \alpha + \sin \alpha \\ -\sin \alpha \cos \alpha \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$			
	[2cosα 0]_	[1 0]			
	$[0 2\cos\alpha]$	0 1			
	$\therefore 2\cos \alpha = 1$	π			
	$\Rightarrow \cos \alpha = \frac{-}{2} \Rightarrow \alpha =$	= <u>-</u> 3			
	y+k y	У			
27.	If $A = y y + k$	y is equal to :			
	y y y (a) k(3v+k ²)	(b) 3v+k ³	(c) 3v+k ²	(d) k²(3v+k)	
Ans.	(d)		(-) -)		
Sol.	$\begin{vmatrix} y + k & y \\ v & v + k \end{vmatrix}$	y V			
	y y y y	y + k			
	$\Rightarrow \qquad C_1 \Rightarrow C_1 - C$	$_2$ and $C_2 \Rightarrow C_2 - C_3$			

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 555
Tol

k 0 У $-\mathbf{k} \quad \mathbf{k} \quad \mathbf{y}$ $\mathbf{0} \quad -\mathbf{k} \quad \mathbf{y} + \mathbf{k}$ \Rightarrow $k [ky + k^2 + ky] - 0 + y (k^2 - 0)$ \Rightarrow $k^{3} + 3k^{2}v$ \Rightarrow k² (3y+ k) \Rightarrow If A = $\begin{vmatrix} 1 & -2 & 4 \\ 2 & -1 & 3 \\ 4 & 2 & 0 \end{vmatrix}$ is the adjoint of a square matrix B, then B⁻¹ is equal to : 28. (c) $\mp \frac{1}{\sqrt{2}}B$ (d) $\mp \frac{1}{\sqrt{2}} A$ (b) $\pm \sqrt{2}A$ (a) ±A Ans. $A = \begin{bmatrix} 1 & -2 & 4 \\ 2 & -1 & 3 \\ 4 & 2 & 0 \end{bmatrix}$ { |A| = 2}. Sol. $\begin{cases} adjB = A \\ |adjB| = |A| = ||B||^2 \end{cases}$ $\therefore B^{-1} = \frac{1}{|B|} \operatorname{adj}(B)$ $\begin{cases} \Rightarrow |\mathsf{B}|^2 = 2\\ \Rightarrow |\mathsf{B}| = \pm \sqrt{2} \end{cases}$ $=\frac{1}{|\mathsf{B}|}\mathsf{A}$ $B^{-1} = \pm \frac{1}{\sqrt{2}} A$ If $\begin{bmatrix} 1 & -1 & 1 \\ 1 & -1 & 1 \\ 1 & -1 & 1 \end{bmatrix}$. Then $A^5 - A^4 - A^3 + A^2$ is equal to : 29. (a) 2A (b) 3A (c) 4A (d) O Ans. (d) $(\mathbf{a}) \\ \mathbf{A} = \begin{bmatrix} 1 & -1 & 1 \\ 1 & -1 & 1 \\ 1 & -1 & 1 \end{bmatrix}$ Sol. $A^{2} = \begin{bmatrix} 1 & -1 & 1 \\ 1 & -1 & 1 \\ 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 \\ 1 & -1 & 1 \\ 1 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 1 \\ 1 & -1 & 1 \\ 1 & -1 & 1 \end{bmatrix}$ $\therefore \Rightarrow A^5 - A^4 - A^3 + A^2 \qquad \begin{cases} A^3 = A^5 \\ and A^2 = A^4 \end{cases}$ $\therefore \Rightarrow 0$

Resonance

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 5555
Toll Free : 1800 258 5555

30.	If $y = e^{-x}$, then $\frac{d^2y}{dx^2}$ is equivalent.	qual to :		
Ans. Sol.	(a) $-y$ (b) $y = e^{-x}$ $\frac{dy}{dx} = -e^{-x}$ $\frac{d^2y}{dx^2} = e^{-x}$ d^2y	(b) y	(c) x	(d) -x
	$\frac{y}{dx^2} = y$	d2.,		
31.	If $x = t^2 + 1$, $y = 2at$, then (a) $-\frac{1}{2}$	$\frac{d y}{dx^2} \text{ at } t = a \text{ is } :$ (b) $-\frac{1}{2a^2}$	(c) $\frac{1}{22^2}$	(d) 0
Ans. Sol.	(b) If x = t ² + 1; y = 2 at $\frac{d^2y}{d^2 + 2}$ at t = a is	Za	20	
	$\frac{dx^2}{dt} = 2t \qquad (1)$)		
	$\therefore \frac{dy}{dt} = 2a$ Equation (2) ÷ Equation $\frac{dy}{dx} = \frac{2a}{2t} = \frac{a}{t}$	(2) (1)		
	$\frac{d^2 y}{dx^2} = a \times -\frac{1}{t^2} \frac{dt}{dx}$ $= -\frac{1}{t^2} \frac{dt}{dx}$	espect to x	$\frac{d^2y}{dx^2} \text{ at } t = a$ $-\frac{a}{a^2} \times \frac{1}{2a}$	
	$=-\frac{a}{t^2} \times \frac{1}{2t}$		$\Rightarrow -\frac{1}{2a^2}$	
32.	The function f(x) $\begin{cases} x^2 & \text{for } \\ 2-x & \text{for } \end{cases}$	for $x < 1$ is : for $x \ge 1$		
	 (a) not differentiable at x (c) not continuous at x = 	: = 1 1	(b) differentiable at x= 1(d) neither continuous n	or differentiable at x= 1
Ans.	(a)			
Sol.	$f(x) = \begin{cases} x^{2}; x < 1 \\ 2 - x; x \ge 1 \end{cases}$			
	Here LHD \neq RHD, at x = \therefore f (x) is not differentiab x = 1	= 1. le at		

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 5555

		CBSE-2021-22	2 DATE:06-12-202	21 OFFICIAL PAPE	R MATHEMATICS		
33.	The curve $x^2 - xy + y^2$	= 27 has tanger	nts parallel to x-axis at				
	(a) (3, 6) and (-3, -6)		(b) (3, –6) a	nd (–3, 6)			
	(c) (-3, -6) and (3, -6)	(d) (–3, 6) a	nd (–3, –6)			
Ans. Sol.	(a) Curve $x^2 - xy + y^2 = 2^2$ differentiate equation $\Rightarrow 2x - \left(x \frac{dy}{dt} + y \times 1\right)$	7 wr to x + 2y $\frac{dy}{dt} = 0$					
	(dx ·)	dx					
	$\Rightarrow 2x - x \frac{dy}{dx} - y + 2y$	$\frac{dy}{dx} = 0$					
	$\Rightarrow \frac{dy}{dx} (-x + 2y) = y - \frac{dy}{dx} + \frac{dy}{dx} = \frac{dy}{dx} + \frac{dy}{dx} + \frac{dy}{dx} = \frac{dy}{dx} + $	- 2x					
	$\Rightarrow \frac{dy}{dx} = \frac{y-2x}{2y-x}$						
	tangent parallel to x-a	kis.					
	$\therefore \frac{dy}{dx} = 0$						
	$\frac{y-2x}{y-2x} = 0$						
	2y - x						
	$y = 2x$ \therefore Option (a) S	Satisfies given co	ondition.				
34.	A wire of length 20 cm	is bent in the fo	rm of a sector of a circ	le. The maximum area	that can be		
	(a) 20 sq cm	(b) 25 sq cm	(c) 10 sq cm	n (d) 30 sa	cm		
Ans.	(b)	(.,	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(-,			
Sol.	2r + L = 20 cm.		I = 20 - 10				
	Area = $\frac{1}{2}r^2 \times \frac{1}{r}$		l = 10 cm.				
	$A = \frac{1}{2} lr$		Area = $\frac{1}{2} \times 10 \times 5$				
	Area = $\frac{1}{2} r^2 \theta$		= 25 cm ²				
	$\frac{\mathrm{dA}}{\mathrm{dr}} = \frac{1}{2} \mathrm{r} (20 - 2\mathrm{r})$		Option (b)				
	$\Rightarrow 10 - 2r = 0$ r = 5 cm.	I					
35.	The function (x-sinx)	decreases for :					
	(a) all x	(b) x < $\frac{\pi}{2}$	(c) 0 < x < -	$\frac{\pi}{4}$ (d) no val	ue of x		
Ans. Sol.	(d) $f(x) = (x - \sin x)$ $f'(x) = 1 - \cos x$ decrease $f'(x) < 0$ $1 - \cos x < 0$ $1 < \cos x$ No volve peecible						
	No value possible.						

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 🔊 7340010333 🚹 facebook.com/ResonanceEdu 💟 twitter.com/ResonanceEdu 🔡 www.youtube.com/resowatch 🕒 blog.resonance.ac.in

This solution was download from Resonance Solution portal

PAGE # 13

	Resonance [®] Educating for better tomorrow	CBSE-2021-22 DAT	E:06-12-2021	OFFICIAL PAPER MATH	IEMATICS
36.	If θ is the angle of inter	section between the curv	ves y ² = 4ax and ay	$v = 2x^2$ at (a, 2a) then the value	lue of tan
	θ is :				
	(a) $\frac{3}{5}$	(b) $\frac{2}{5}$	(c) $\frac{3}{4}$	(d) $\frac{2}{5}$	
Ans.	(a)				
Sol.	$y^2 = 4ax$ and	$ay = 2x^2$.			
	$2y \frac{dy}{dx} = 4a$	$a\frac{dy}{dx} = 4x$			
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2\mathrm{a}}{\mathrm{y}}$	$\frac{dy}{dx} = \frac{4x}{a}$			
	Slope at point (a, 2a)	slope at point at (a, 2a)			
	$\left(\frac{dy}{dx}\right)_{(a,2a)} = \frac{2a}{2a} = 1$	$\left(\frac{dy}{dx}\right)_{\!\!\!(a,2a)}=\frac{4a}{a}=4$			
	$\therefore \tan \theta = \left \frac{\mathbf{m}_1 - \mathbf{m}_2}{1 + \mathbf{m}_1 \mathbf{m}_2} \right $				
	$= \left \frac{1-4}{1+1\times 4} \right $				
	$\tan\theta = \left \frac{-3}{5}\right $				
	$tanq = \frac{3}{5}$				
37.	The maximum value of	Z = 3x + 4y subject to the	the constraints $x \ge 0$, $y \ge 0$, and $x + y \le 1$ is :	
_	(a) 7	(b) 4	(c) 3	(d) 10	
Ans.	(b)				
501.	Z = 3X + 4y) and $x \pm y < 1$			
	y = 0	anu x∓y≤i			
	1 (1,0)				
	(0, 0) 1	×			
	Corner point (0, 0) (1,0) (0, 1)			
	$(0, 0) \implies Z = 0$				
	$\begin{array}{rcl} (1,0) & \Rightarrow & Z=3\\ (0,1) & \Rightarrow & Z=4 \end{array}$	maximum value			

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 🔊 7340010333 🚹 facebook.com/ResonanceEdu 🔽 twitter.com/ResonanceEdu 🔠 www.youtube.com/resowatch 🕒 blog.resonance.ac.in

38. The feasible region of an LPP is given in the the following figure:

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 🔊 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

SECTION - C

In this Section, attempt any 8 questions out of Questions 41-50. Each question is of One mark.

41. A relation R is defined on Z as : aRb if and only if $a^2 - 7ab + 6b^2 = 0$ Then R, is (a) reflexive and symmetric (c) transitive but not reflexive Ans. (d) Sol. aRb if and only is $a^2 - 7ab + 6b^2 = 0$ reflexive (a, a) $\in R \forall a \in Z$ \Rightarrow a² - 7a² + 6a \Rightarrow -6a² + 6a² = 0 ∴ reflexive Symmetric : (a, b) $\in R \Rightarrow$ (b, a) $\in R$ \Rightarrow a² - 7ab + 6b² = 0 For (b, a) \Rightarrow b² -7ba+6a² \neq 0

Not symmetric

(b) symmetric but not reflexive (d) reflexive but not symmetric

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 💿 7340010333 🚹 facebook.com/ResonanceEdu 💟 twitter.com/ResonanceEdu 🔠 www.youtube.com/resowatch 🕒 blog.resonance.ac.in

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

45.

| CBSE-2021-22 | DATE : 06-12-2021 | OFFICIAL PAPER | MATHEMATICS

Some young entrepreneurs started an industry "young achievers " for casting metal into various 46. shapes. They put up an advertisement online stating the same and expending order to cast metal for toys, sculptures, decorative pieces and more

A group of friends wanted to make innovative toys and hence contacted the "young achievers" to order them to cast metal into solid half cylinders with rectangular base and semi-circular ends.

Based on the above information, answer the following question :

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 🔊 7340010333 🚹 facebook.com/ResonanceEdu 💟 twitter.com/ResonanceEdu 🔡 www.youtube.com/resowatch 🕒 blog.resonance.ac.in

	Resonance® ducating for better tomorrow	CBSE-2021-22 DAT	ГЕ : 06-12-2021 OFFI	CIAL PAPER MATHEMATICS
46.	The volume (V) of the	e casted half cylinder will	be:	
	(a) πr²h	(b) $\frac{1}{3}\pi r^{2}h$	(c) $\frac{1}{2}\pi r^{2}h$	(d) πr^2 (r+h)
Ans. Sol.	(c) Vol. of the casted half $V = \frac{\pi r^2 h}{2} \Rightarrow \frac{1}{2}\pi r^2 h$	f cylinder		
47.	The total surface area (a) π rh + 2π r ² + rh	a (S) of the casted half cy (b) π rh + π r ² + 2rh	linder will be : (c) $2\pi rh + \pi r^2 + 2rh$	(d) π rh + π r ² + rh
Ans. Sol.	(b) Total surface area (s) $s \Rightarrow \pi rh + \pi r^2 + 2rh$			
48.	The total surface area	a S can be expressed in t	erms of V and r as :	
	(a) $2\pi r + \frac{2V(\pi+2)}{\pi r}$	(b) $\pi r + \frac{2V}{\pi r}$	(c) $\pi r^2 + \frac{2V(\pi+2)}{\pi r}$	(d) $2\pi r^2 + \frac{2V(\pi+2)}{\pi r}$
Ans.	(c)	7.1	70	7.1
Sol.	\therefore V = $\frac{1}{2}\pi r^2 h$			
	and $s = \pi r h + \pi r^2 -$	+ 2rh		
	$\therefore \qquad h = \frac{2V}{\pi r^2}$			
	$\therefore \qquad s = \pi r \left(\frac{2V}{\pi r^2}\right) + \frac{2V}{\pi r^2}$	$\pi r^2 + 2r\left(\frac{2V}{\pi r^2}\right)$		
	$s = \pi r^2 + \frac{2v}{c}$	$\frac{\pi + 2}{\pi r}$		
49.	For the given half cylin	nder of volume V, the tota	al surface area S is minin	num, when
Ans.	(a) $(\pi + 2)V = \pi^2 r^3$ (d)	(b) $(\pi + 2)V = \pi^2 r^2$	(c) $2(\pi+2)V = \pi^2 r^3$	(d) $(\pi + 2)V = \pi^{2}r$
Sol.	$s = \pi r^2 + \frac{2V(\pi + 2)}{2}$			
	πr diff. wr. to r			
	$\frac{ds}{dr} = 2\pi r + \frac{2\nu}{\pi} (\pi + 2) >$	$\times \frac{-1}{r^2}$		
	For minimum			
	$\frac{ds}{dr} = 0$			
	$\Rightarrow \qquad 2\pi r - \frac{2\nu}{\pi} \left(\pi + 2\tau\right)^2$	$2) \times \frac{1}{r^2} = 0$		
	$\Rightarrow \qquad 2\pi r = \frac{2v}{\pi} \left(\pi + \right)$	$2) \times \frac{1}{r^2}$		
	$\Rightarrow \qquad r^3 = \frac{v(\pi+2)}{\pi^2}$			
	$\Rightarrow \qquad (\pi + 2)v = \pi^2 r^3$	3		

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555 S 7340010333 F acebook.com/ResonanceEdu www.youtube.com/resowatch bog.resonance.ac.in

八	Resonance [®] Educating for better tomorrow	CBSE-2021-22 D	ATE:06-12-2021	OFFICIAL PAPER MATHEMATICS
50.	The ration h: 2r for S to be minimum will be equal to :			
Ans.	(a)2π : π + 2 (d)	(b) 2π : π + 1	(c) π : π + 1	(d) π : π + 2
Sol.	Ration $\frac{h}{2r} = \frac{\pi}{\pi + 2}$			

*----**----**-----*

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 555
Tol