Resonance®

| CBSE-2021-22 | DATE : 06-12-2021 | OFFICIAL PAPER | MATHEMATICS

CBSE 2021-22 (TERM-1)

DATE: 06-12-2021

Questions Paper

SERIES: SSJ/2 | CODE : 065/2/4 | SET-4 SUBJECT : MATHEMATICS

TIME ALLOWED: 90 MINUTES

MAXIMUM MARKS: 40

Ν	N	т	F	
	U			

- (i) Please check that this question paper contains 24 printed pages.
- (ii) Please check that this question paper contains 50 multiple choice questions MCQs.)
- (iii) QP Code given on the right hand side of the question paper should be written at the appropriate place of the OMR Sheet by the candidates.
- (iv) 20 minute additional time has been allotted to read this question paper prior to actual time of commencement of examination.

General Instructions:

- (i) This question paper contains 50 questions out of which 40 questions are to be attempted. All questions carry equal marks.
- (ii) This question paper consists of three Sections Section A, Section B and Section C.
- (iii) Section-A contains 20 questions. Attempt any 16 questions from Q. No. 1 to 20.
- (iv) Section–B also contains 20 questions. Attempt any 16 questions from Q. No. 21 to 40.
- (v) Section–C contains 10 questions including one Case Study. Attempt any 8 from Q. No. 41 to 50.
- (vi) There is only one correct option for every Multiple Choice Question (MCQ). Marks will not be awarded for answering more than one option.
- (vii) There is no negative marking.

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No. :** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

```
SECTION - A
```

In this Section, attempt any **16** questions out of Questions **1-20**. Each question is of **One** mark.

1. Differential of log [log(log x⁵)] w.r.t. x is

	(a) $\frac{5}{x \log(x^5) \log(\log x^5)}$	(b) $\frac{5}{x \log(\log x^5)}$	
	(c) $\frac{5x^4}{\log(x^5)\log(\log x^5)}$	(d) $\frac{5x^4}{\log x^5 \log(\log x^5)}$	
Ans. Sol.	(a) $y = \log [\log (\log x^{5})]$ $\frac{dy}{dx} = \frac{1}{\log(\log x^{5})} \times \frac{1}{\log x^{5}} \times \frac{1}{x^{5}} \times 5x^{4}$ $\Rightarrow \frac{5}{x \log x^{5} \log(\log x^{5})}$		
2.	The number of all possible matrices of order 2>	x3 with each entry 1 or 2 is	
Ans. Sol.	(a) 16 (b) 6 (c) Order 2×3 total element $= 2 \times 3 = 6$	(c) 64 (d) 24	
	$2^6 = 64$		
3.	A function f : R \rightarrow R is defined as f(x) = x ³ + 1.	Then the function has	
	(a) no minimum value	(b) no maximum value	
	(c) both maximum and minimum values	(d) neither maximum value nor minimum value	Э
Ans. Sol.	(d) f: $R \rightarrow R$ f(x) = x ³ + 1 f'(x) = 3x ² critical point f'(x) = 0 3x ² = 0 x = 0		
	Again different $f''(x) = 6x$		
	f′′(0) = 0 ∴ Neither maximum nor minimum		
4.	If sin y = x cos (a + y), then $\frac{dx}{dy}$ is		
	(a) $\frac{\cos a}{\cos^2(a+y)}$ (b) $\frac{-\cos a}{\cos^2(a+y)}$	(c) $\frac{\cos a}{\sin^2 y}$ (d) $\frac{-\cos a}{\sin^2 y}$	
Ans. Sol.	(a) If siny = x cos(a + y) $\frac{dx}{dy} = ?$		

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 555
Tol

5.

Ans.

Sol.

differentiation with respect to x

dy dy
$\cos y \frac{dy}{dx} = x \times -\sin(a+y) \frac{dy}{dx} + \cos(a+y) \times 1$
$\frac{dy}{dx} = \frac{\cos(a+y)}{\cos y + x\sin(a+y)}$
$dx = \cos y + x \sin(a + y)$
$\frac{dx}{dy} = \frac{\cos y + x \sin(a + y)}{\cos(a + y)}$
$\frac{dx}{dy} = \frac{\frac{\cos y + \frac{\sin y}{\cos(a + y)}\sin(a + y)}{\cos(a + y)}}{\cos(a + y)}$
$\{\because x = \frac{\sin y}{\cos(a+y)}\}$
$\frac{dx}{dy} = \frac{\cos y \cos(a+y) + \sin y \sin(a+y)}{\cos^2(a+y)}$
$\Rightarrow \frac{\cos a}{\cos^2(a+y)}$
The points on the curve $\frac{x^2}{9} + \frac{y^2}{25} = 1$, where tangent is parallel to x-axis are
(a) $(\pm 5, 0)$ (b) $(0, \pm 5)$ (c) $(0, \pm 3)$ (d) $(\pm 3, 0)$
(b)
$\frac{2x}{9} + \frac{2y}{25}\frac{dy}{dx} = 0$
$\frac{dy}{dx} = \frac{-x}{9} \times \frac{25}{y}$
$= -\frac{25}{9}\frac{x}{y}$
$= -\frac{25}{9}\frac{x}{y}$
$= -\frac{25}{9} \frac{x}{y}$ Parallel to x-axis
$= -\frac{25}{9} \frac{x}{y}$ Parallel to x-axis $\frac{dy}{dx} = 0$
$= -\frac{25}{9} \frac{x}{y}$ Parallel to x-axis $\frac{dy}{dx} = 0$ $-\frac{25}{9} \frac{x}{y} = 0$
$= -\frac{25}{9} \frac{x}{y}$ Parallel to x-axis $\frac{dy}{dx} = 0$ $-\frac{25}{9} \frac{x}{y} = 0$ x = 0
$= -\frac{25}{9} \frac{x}{y}$ Parallel to x-axis $\frac{dy}{dx} = 0$ $-\frac{25}{9} \frac{x}{y} = 0$ $x = 0$ $\frac{0}{9} + \frac{y^2}{25} = 1$

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 555
Tol

八		CBSE-2021-22	DATE : 06-12-2021	OFFICIAL PAPER MATH	EMATICS
6.	Three points P(2x, x	+ 3), Q (0, x) and R (x + 3, x + 6) are collin	ear, then x is equal to	
	(a) 0	(b) 2	(c) 3	(d) 1	
Ans. Sol.	(d) $\Delta = 0$ $\frac{1}{2} \begin{vmatrix} 2x & x+3 & 1 \\ 0 & x & 1 \\ x+3 & x+6 & 1 \end{vmatrix} = 0$ Expression closes of				
	Expansion along c_1	() + (x+3) (x+3–x)=	0		
	$\Rightarrow -12x + 3x + 9$., . , . , ,	0		
	$\Rightarrow -9x + 9 = 0$ $x = 1$				
7.	The principal value o	$f \cos^{-1}\left(\frac{1}{2}\right) + \sin^{-1}\left(-\frac{1}{2}\right)$	$\left(\frac{1}{\sqrt{2}}\right)$ is		
	(a) $\frac{\pi}{12}$	(b) π	(c) $\frac{\pi}{3}$	(d) $\frac{\pi}{6}$	
Ans.	(a)				
Sol.	$\cos^{-1}\left(\frac{1}{2}\right) + \sin^{-1}\left(-\frac{1}{\sqrt{2}}\right)$				
8.	If $(x^2 + y^2)^2 = xy$, then	$h \frac{dy}{dx}$ is		$(\frac{y^2}{y^2})$ (d) $\frac{4y(x^2 + y^2) - x}{y - 4x(x^2 + y^2)}$	
	(a) $\frac{y+4x(x^2+y^2)}{4y(x^2+y^2)-x}$	(b) $\frac{y-4x(x^2+y^2)}{x+4(x^2+y^2)}$	$(c) \frac{y-4x(x^2+y^2)}{4y(x^2+y^2)}$	$\frac{(y^2)}{(y^2)-x} \qquad (d) \ \frac{4y(x^2+y^2)-x}{y-4x(x^2+y^2)}$	
Ans.	(c)				
Sol.	$(x^2 + y^2)^2 = xy$				
	$=2(x^2+y^2)\left[2x+2y\right]$	$\left[\frac{dy}{dx}\right] = x\frac{dy}{dx} + y \times 1$			
	$= 4x(x^2 + y^2) + 4y(x^2)$	$(+y^2)\frac{dy}{dx} = x\frac{dy}{dx} + y$			
	$\frac{dy}{dx} \Big[4y(x^2 + y^2) - x \Big] =$	$y - 4x(x^2 + y^2)$			
	$\frac{dy}{dx} = \frac{y - 4x (x^2 + y^2)}{4y(x^2 + y^2) - x}$	<u>)</u>			

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555 S 7340010333 F facebook.com/ResonanceEdu www.youtube.com/resonance.ac.in Cin : U80302RJ2007PLC024029

八	Resonance [®] CBSE-2021-22 DATE : 06-12-2021 OFFICIAL PAPER MATHEMATICS
9.	If a matrix A is both symmetric and skew symmetric, then A is necessarily a (a) Diagonal matrix (b) Zero square matrix (c) Square matrix (d) Identity matrix
Ans.	(b)
Sol.	A = A'
	A = -A'
	2A = 0
10	A = 0
10.	Let sec X = $\{1,2,3\}$ and a relation R is defined in X as : R = $\{(1,3), (2,2), (3,2)\}$, then minimum ordered pairs which should be added in relation R to make it reflexive and symmetric are
	(a) $\{(1,1), (2,3), (1,2)\}$ (b) $\{(3,3), (3,1), (1,2)\}$
	$\begin{array}{c} (c) \{(1,1), (3,3), (3,1), (2,3)\} \\ (c) \{(1,1), (3,3), (3,1), (2,3)\} \\ (d) \{(1,1), (3,3), (3,1), (1,2)\} \end{array}$
Ans.	(c) ((,,,), (c,c), (c,c
Sol.	$X = \{1, 2, 3\}$
	R {(1,3), (2,2) (3,2)}
	to be reflexive and symmetric
	{(1,1), (3,3), (3,1), (2,3)}
11.	A linear Programming Problem is as follows :
	Minimise $z = 2x + y$
	subject to the constraints $x \ge 3, x \le 9, y \ge 0$
	$x - y \ge 0, x + y \le 14$
	The feasible region has
	(a) 5 corner points including (0, 0) and (9,5) (b) 5 corner points including (7, 7) and (3, 3)
	(c) 5 corner points including (14, 0) and (9, 0) (d) 5 corner points including (3, 6) and (9,5)
Ans.	(b)
Sol.	z = 2x + y
••••	$x \ge 3, x \le 9, y \ge 0$
	$x \ge 3, x \le 3, y \ge 0$ $x - y \ge 0, x + y \le 14$
	$\Rightarrow \frac{ x ^2}{ x ^2} = \frac{ x ^2}$
	(14,0)
	(0,14)
	(7,7)
	(9,5)
	(3,3) (14,0)
	Corner points (3,3), (3,0), (9,0), (9,5) and (7,7)

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 🔊 7340010333 🚹 facebook.com/ResonanceEdu 💟 twitter.com/ResonanceEdu 🔠 www.youtube.com/resowatch 🕒 blog.resonance.ac.in

This solution was download from Resonance Solution portal

PAGE # 5

八	Resonance [®] Educating for better tomorrow	CBSE-2021-22	DATE : 06-12-2021	OFFICIAL PAPER MATHEMATICS
12.	The function $f(x) = \begin{cases} -1 \\ -1 \\ -1 \end{cases}$	$\frac{e^{3x} - e^{5x}}{x}, \text{ if } x \neq 0$ k, if $x = 0$		
	is continuous at x = 0	for the value of k, a	s	
	(a) 3	(b) 5	(c) 2	(d) 8
Ans.	(d)			
Sol.	$f(x) = \begin{cases} \frac{e^{3x} - e^{5x}}{x}, & \text{if } y \\ k, & \text{if } y \end{cases}$			
	$\lim_{x \to 0} \frac{e^{3x} - e^{-5x}}{x} = k$	(using L hospital rule))	
	$\lim_{x \to 0} \frac{3e^{3x} + 5e^{-5x}}{1} = k$			
	3 + 5 = k			
	8 = k			
			1 -1	2
13.	If C_{ij} denotes the cofa	ctor of element p _{ij} of	the matrix $P = \begin{bmatrix} 0 & 2 \\ 3 & 2 \end{bmatrix}$	$\begin{bmatrix} 2 \\ -3 \\ 4 \end{bmatrix}$, then the value of C ₃₁ . C ₂₃ is
	(a) 5	(b) 24	(c) –24	(d) –5
Ans.	(a)			
Sol.	$P = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & 2 & 4 \end{bmatrix}$			
	- 7			
	$C_{31} = (-1)^{3+1} \begin{vmatrix} -1 & 2 \\ 2 & -3 \end{vmatrix}$	$C_{ij} = (-1) p_{ij}$		
	$C_{31} = 3 - 4 = (-1)$			
	$C_{2-3} = (-1)^{2+3} \begin{vmatrix} -1 & 1 \\ 3 & 2 \end{vmatrix}$			
	= -1 (2+3) =	-5		
	Then $c_{31} \times c_{23} \Rightarrow -1$			
		~ 0 - 0		
14.	The function $y = x^2 e^{-x}$	is decreasing in the	e interval	
	(a) (0, 2)	(b) (2, ∞)	(c) (-∞, 0)	(d) $(-\infty, 0) \cup (2, \infty)$
Ans. Sol.	(d) y = x ² e ^{-x}			
	$\frac{dy}{dx} = -x^2 e^{-x} + e^{-x} \times 2x$			

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555 S 7340010333 F facebook.com/ResonanceEdu www.youtube.com/resonance.ac.in Cin : U80302RJ2007PLC024029

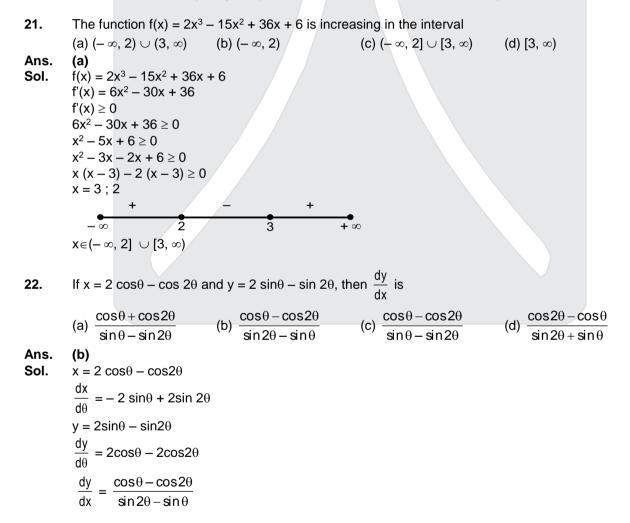
This solution was download from Resonance Solution portal

PAGE # 6

	$\frac{dy}{dx} = 0 \ e^{-x} [2x - x^2] = 0$ $\Rightarrow \ e^{-x} \alpha \ x[2 - x] = 0$ $X = 0 \ and \ x = 2$ $\frac{+ \ - \ + \ + \ \infty}{0 \ 2} + \infty$ $f'(x) < 0$ $-e^{-x} x [x-2] < 0$
15.	e ^{-x} x (x-2) >0 ∴ x ∈ (-∞, 0) ∪ (2, ∞) If R = {(x, y) : x, y ∈ Z, x ² + y ² ≤ 4} is a relation in set Z, then domain of R is
Ans. Sol.	(a) $\{0,1,2\}$ (b) $\{-2, -1, 0, 1, 2\}$ (c) $\{0, -1, -2\}$ (d) $\{-1, 0, 1\}$ (b) R = $\{(x, y) : xy \in z\}$; $x^2 + y^2 \le 4\}$ (b) $y^2 \le 4 - x^2$ $y \le \sqrt{4 - x^2}$ $4 - x^2 \ge 0$ P - + $-(x^2 - 4) \le 0$ $-\infty$ $\frac{1}{-2}$ 2 + ∞ $x^2 - 4 \le 0$ (x-2) (x+2) ≤ 0 { domain $\{-2, -1, 0, 1, 2\}$
16.	The system of linear equations 5x + ky = 5, 3x + 3y = 5; will be consistent if
Ans. Sol.	will be consistent if (a) $k \neq -3$ (b) $k = -5$ (c) $k = 5$ (d) $k \neq 5$ (d) 5x+ky = 5 3x+3y = 5 Will be consistent $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$ $\frac{5}{3} \neq \frac{k}{3}$ $\frac{5}{3} \neq \frac{k}{3} \implies k \neq 5$
17. Ans. Sol.	The equation of the tangent to the curve y $(1 + x^2) = 2 - x$ where it crosses the x-axis is (a) $x - 5y = 2$ (b) $5x - y = 2$ (c) $x + 5y = 2$ (d) $5x + y = 2$ (c) y $(1+x^2) = 2-x$ $(1+x^2) \frac{dy}{dx} + y \times 2x = -1$ $(1+x^2) \frac{dy}{dx} = -1-2xy$ $\frac{dy}{dx} = \frac{-1-2xy}{1+x^2}$ Equation of tan equation It crosses to x-axis

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555 S 7340010333 F facebook.com/ResonanceEdu www.youtube.com/resonance.ac.in Cin : U80302RJ2007PLC024029


	Points \Rightarrow (x, 0) y(1+x ²) = 2 -x x = 2	
	Point (2, 0) \therefore slope $\left(\frac{dy}{dx}\right)_{(2,0)} = \frac{-1}{5}$	
	$\therefore \text{ Equation of tangent} \Rightarrow y - y_1 = m(x-x_1)$	
	$\Rightarrow y - 0 = \frac{-1}{5}(x - 2)$	
	5y = -x+2 x + 5y = 2	
18.	If $\begin{bmatrix} 3c+6 & a-b \\ a+d & 2-3b \end{bmatrix} = \begin{bmatrix} 12 & 2 \\ -8 & -4 \end{bmatrix}$ are equal, then value of $ab - cd$ is	
Ans.	(a) 4 (b) 16 (c) -4	(d) –16
Sol.	(a) $\begin{bmatrix} 3c+6 & a-d \\ a+d & 2-3b \end{bmatrix} = \begin{bmatrix} 12 & 2 \\ -8 & -4 \end{bmatrix}$	
	$3c+b-12$ (i) \rightarrow 2 $3b-4$ 4 (iv)	
	$a-d=2(ii) \implies -3b=-6$ $a+d=-8(iii) \implies b=2$ equation (ii) and (iii) $c=2$ $2a=-6 \implies \therefore ab-cd$ $a=-3 \implies \therefore -3 \times 2 - 2 \times -5$ $d=-5 \implies -6+10 \implies 4$	
	$2a = -6 \qquad \Rightarrow \qquad \therefore ab - cd$ $a = -3 \qquad \Rightarrow \qquad \therefore -3 \times 2 - 2 \times -5$	
19.	The principal value of $\tan^{-1}\left(\tan\frac{9\pi}{8}\right)$ is	
	(a) $\frac{\pi}{8}$ (b) $\frac{3\pi}{8}$ (c) $-\frac{\pi}{8}$	(d) $-\frac{3\pi}{8}$
Ans.	(a)	
Sol.	$\tan^{-1}\left[\tan\frac{9\pi}{8}\right]$	
	$\tan^{-1}\left[\tan\left(\pi+\frac{\pi}{8}\right)\right]$	
	$\tan^{-1}\left[\tan\frac{\pi}{8}\right] = \frac{\pi}{8}$	
20.	For two matrices P = $\begin{bmatrix} 3 & 4 \\ -1 & 2 \\ 0 & 1 \end{bmatrix}$ and Q ^T = $\begin{bmatrix} -1 & 2 & 1 \\ 1 & 2 & 3 \end{bmatrix}$ P – Q is	
	(a) $\begin{bmatrix} 2 & 3 \\ -3 & 0 \\ 0 & -3 \end{bmatrix}$ (b) $\begin{bmatrix} 4 & 3 \\ -3 & 0 \\ -1 & -2 \end{bmatrix}$ (c) $\begin{bmatrix} 4 & 3 \\ 0 & -3 \\ -1 & -2 \end{bmatrix}$	(d) $\begin{bmatrix} 2 & 3 \\ 0 & -3 \\ 0 & -3 \end{bmatrix}$

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555 S 7340010333 F facebook.com/ResonanceEdu www.youtube.com/resonance.ac.in Cin : U80302RJ2007PLC024029

Ans.	(b)		
Sol.	$\mathbf{p} = \begin{bmatrix} 3 & 2 \\ -1 & 1 \\ 0 \end{bmatrix} \mathbf{Q}^{T} = \begin{bmatrix} -1 & 2 & 1 \\ 1 & 2 & 3 \end{bmatrix}$		
	$\therefore Q = \begin{bmatrix} -1 & 1 \\ 2 & 2 \\ 1 & 3 \end{bmatrix}$		
	$ \therefore P - Q \begin{bmatrix} 3 & 4 \\ -1 & 2 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} -1 & 1 \\ 2 & 2 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 4 & 3 \\ -3 & 0 \\ -1 & -2 \end{bmatrix} $		
		SECTION - B	

In this Section, attempt any 16 questions out of Questions 21-40. Each question is of One mark.

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-277777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

八	Resonance® Educating for better tomorrow	CBSE-2021-22	DATE : 06-12-2021	OFFICIAL PAPER MATHEMAT	ICS
23. Ans. Sol.	What is the domain of (a) $[-1, 1]$ (d) $\cos^{-1}(2x - 3)$ domain. $\Rightarrow -1 \le 2x - 3 \le$ $\Rightarrow 2 \le 2x \le 4$ $\Rightarrow 1 \le x \le 2$ [1, 2]	(b) (1, 2)	2x – 3) ? (c) (–1, 1)	(d) [1, 2]	
24.	A matrix A = [a _{ij}] _{3 × 3} $a_{ij} = \begin{cases} 2i + 3j, i < j \\ 5, i = j \\ 3i - 2j, i > j \end{cases}$		1		
Ans. Sol.	$ \begin{array}{rcl} = & 4 + 9 \\ = & 13 \\ \Rightarrow & 3 \times 3 \\ = & 9 - 3 \\ = & 7 \\ \end{array} $	(b) 4 $1 + 3 \times 2$ $5 \Rightarrow 8$ $1 + 3 \times 3$ $9 \Rightarrow 11$ $2 - 2 \times 1$ $2 + 3 \times 3$ $3 - 2 \times 1$ $3 - 2 \times 2$	ore than 5, is (c) 5	(d) 6	

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 555
Tol

25.	If function f defined by		
	$f(x) = \begin{cases} \frac{k \cos x}{\pi - 2x'}, & \text{if } x \neq \frac{\pi}{2} \\ 3, & \text{if } x = \frac{\pi}{2} \end{cases}$		
	is continuous at $x = \frac{\pi}{2}$, then the value of k is		
	(a) 2 (b) 3	(c) 6	(d) – 6
Ans.			
Sol.	$f(x) = \begin{cases} \frac{k \cos x}{\pi - 2x} , & x = \frac{\pi}{2} \\ 3 , & x = \frac{\pi}{2} \end{cases}$		
	$\lim_{x \to \frac{\pi}{2}} \frac{k \cos x}{\pi - 2x} = 3$		
	$\lim_{x \to \frac{\pi}{2}} \frac{-k\cos x}{-2} = 3$		
	$\frac{-k}{-2} = 3$		
	k = 6		
26.	For the matrix $X = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$, $(X^2 - X)$ is		
Ans.	(a) 2I (b) 3I (a)	(c) I	(d) 5I
Sol.	$ x = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} $ $ x^{2} - x $		
	[0 1 1] [0 1 1] [0 1 1]		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	$\Rightarrow \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix} - \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \Rightarrow 2$	Ι	
27.	Let $X = \{x^2 : x \in N\}$ and the function $f : N \to X$ is (a) injective only (b) not bijective	defined by $f(x) = x^2$, $x \in$ (c) surjective only	N. Then this function is (d) bijective
Ans. Sol.	(d) $x = {x^2 : x \in N} = {1, 4, 9 \dots}$ $f : N \to X$		
-			

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555 S 7340010333 F acebook.com/ResonanceEdu www.youtube.com/resowatch bog.resonance.ac.in

 $f(x) = x^2$; $x \in N$ one one $f(x_1) = f(x_2)$ \Rightarrow $x_1^2 = x_2^2$ \Rightarrow X₁ = ± X₂ $x_1 = x_2$ one - one onto $v = x^2$ $x = \sqrt{y}$ $y \in \{1, 4, 9...\}$ $y \in co-domain$ exist pre- in ∴ onto : function bijective The corner points of the feasible region for a Linear Programming problem are P(0,5), Q(1,5), R(4,2)28. and S(12,0). The minimum value of the objective function Z = 2x + 5y is at the point A) P (b) Q (c) R (d) S Ans. (c) Sol. z = 2x + 5ypoints P(0, 5) \Rightarrow z = 25 $Q(1, 5) \Rightarrow z = 2 \times 1 + 25 = 27$ $R(4, 2) \Rightarrow z = 8 + 10 = 18$ S (12, 0) z = 24 + 0 = 24 29. The equation of the normal to the curve $ay^2 = x^3$ at the point (am^2 , am^3) is (a) $2y - 3mx + am^3 = 0$ (b) $2x + 3my - 3am^4 - am^2 = 0$ (c) $2x + 3my + 3am^4 - 2am^2 = 0$ (d) $2x + 3my - 3am^4 - 2am^2 = 0$ Ans. (d) $ay^2 = x^3$ point (am², am³) Sol. $= a \times 2y \frac{dy}{dx} = 3x^2$ $\Rightarrow \frac{dy}{dx} = \frac{3x^2}{2ya}$ $\Rightarrow \left(\frac{dy}{dx}\right)_{(am^2,am^3)} = \frac{3 \times a^2 m^4}{2 \times am^3 \times a} = \frac{3}{2}m$ Slope f normal $=\frac{-1}{\left(\frac{dy}{dx}\right)}=\frac{-2}{3m}$ $\therefore \mathbf{y} - \mathbf{y}, = \frac{-1}{\left(\frac{\mathrm{d}\mathbf{y}}{\mathrm{d}\mathbf{x}}\right)} (\mathbf{x} - \mathbf{x}_1)$ $y - am^3 = \frac{-2}{3m} (x - am^2)$ $3my - 3am^4 = -2x + 2am^2$ $2x + 3my - 3am^4 - 2am^2 = 0$

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

八	Resonance® Educating for better tomorrow	CBSE-2021-22	DATE:06-12-2021 (OFFICIAL PAPER MATHEMATICS
30.	If A is a square matri (a) 125	ix of order of 3 and A (b) – 25	= –5, then adj A is (c) 25	(d) ± 25
Ans. Sol.	(c) A = -5 $ adj A = A ^{n-1}$ $= A ^{3-1}$ $= (-5)^2 \Rightarrow 25$			
31.	The simplest form of	$\tan^{-1}\left[\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}\right]$	-] is	
		(b) $\frac{\pi}{4} + \frac{x}{2}$	(c) $\frac{\pi}{4} - \frac{1}{2}\cos^{-1}x$	(d) $\frac{\pi}{4} + \frac{1}{2}\cos^{-1}x$
Ans.	(c)	-1		
Sol.	$\tan^{-1}\left[\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}\right]$	K K		
	put x = $\cos 2\theta$	7		
	$\Rightarrow \tan^{-1} \left[\frac{\sqrt{1 + \cos 2\theta}}{\sqrt{1 + \cos 2\theta}} \right]$	$\frac{-\sqrt{1-\cos 2\theta}}{+\sqrt{1-\cos 2\theta}} \right]$		
	$\Rightarrow \tan^{-1} \left[\frac{\sqrt{2}\cos\theta - \sqrt{2}}{\sqrt{2}\cos\theta - \sqrt{2}} \right]$	$\frac{\sqrt{2}\sin\theta}{\sqrt{2}\sin\theta}$		
	$\Rightarrow \tan^{-1} \left[\frac{1 - \tan \theta}{1 + \tan \theta} \right]$			
	$\Rightarrow \tan^{-1}\left[\tan\left(\frac{\pi}{4}-\theta\right)\right]$			
	$\Rightarrow \frac{\pi}{4} - \theta$	$\begin{cases} x = \cos 2\theta \\ \frac{1}{2}\cos^{-1}x = \theta \end{cases}$		
	$\Rightarrow \frac{\pi}{4} - \frac{1}{2}\cos^{-1}x$			
32.	If for the matrix $A = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	$\begin{bmatrix} \alpha & -2 \\ -2 & \alpha \end{bmatrix}$. $ A^3 = 125$,	then the value of α is	
	(a) ± 3	(b) – 3	(c) ±1	(d) 1
Ans.	(a) ∧			
Sol.	$A = \begin{bmatrix} \alpha & -2 \\ -2 & \alpha \end{bmatrix}$			
	A³ = 125 ⇒ A³ = 125			
	A = 5 $\alpha^2 - 4 = 5$			
	$\alpha^2 = 9$			
	$\alpha = \pm 3$			

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 5555

Resonance®

 $y = \left(\frac{1}{x}\right)^{x}$

| CBSE-2021-22 | DATE : 06-12-2021 | OFFICIAL PAPER | MATHEMATICS

33. If $y = sin (m sin^{-1} x)$, then which one of the following equations is true ?

(a)
$$(1-x^2)\frac{d^2y}{dx^2} + x\frac{dy}{dx} + m^2y = 0$$

(b) $(1-x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx} + m^2y = 0$
(c) $(1+x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx} - m^2y = 0$
(d) $(1+x^2)\frac{d^2y}{dx^2} + x\frac{dy}{dx} - m^2x = 0$

Sol. (b)

 $y = \sin (m \sin^{-1} x)$ $\frac{dy}{dx} = \cos(m \sin^{-1} x) \times m \times \frac{1}{\sqrt{1 - x^2}}$ $\Rightarrow \sqrt{1 - x^2} \quad \frac{dy}{dx} = m \cos[m \sin^{-1} x]$ $\Rightarrow \sqrt{1 - x^2} \quad \frac{d^2 y}{dx^2} + \frac{dy}{dx} \times \frac{1}{2\sqrt{1 - x^2}} \times -2x = m \times -\sin [m \sin^{-1} x] \times m \frac{1}{\sqrt{1 - x^2}}$ $\Rightarrow (1 - x^2) \frac{d^2 y}{dx^2} - x \frac{dy}{dx} = -m^2 \sin [m \sin^{-1} x]$ $\Rightarrow (1 - x^2) \frac{d^2 y}{dx^2} - x \frac{dy}{dx} = -m^2 y$

34. The principal value of
$$[\tan^{-1}\sqrt{3} - \cot^{-1}(-\sqrt{3})]$$
 is

(b) $-\frac{\pi}{2}$ (a) π (c) 0 (d) 2√3 Sol. (b) $\left[\tan^{-1}\sqrt{3} - \cos^{-1}\left(-\sqrt{3}\right)\right]$ $\frac{\pi}{3} - \left\{\pi - \cos^{-1}\sqrt{3}\right\}$ \Rightarrow $\Rightarrow \qquad \frac{\pi}{3} - \left\{ \pi - \frac{\pi}{6} \right\}$ $\frac{\pi}{3} - \left\{\frac{5\pi}{6}\right\}$ = $\frac{2\pi-5\pi}{6}=\frac{-3\pi}{6}=\frac{-\pi}{2}$ = The maximum value of $\left(\frac{1}{x}\right)^x$ is 35. (c) $\left(\frac{1}{e}\right)^{1/e}$ (a) e^{1/e} (b) e (d) e^e Sol. (a) $f(\mathbf{x}) = \left(\frac{1}{\mathbf{x}}\right)^{\mathbf{x}}$

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

36.

Sol.

$$\begin{split} & \log y = x \log \left(\frac{1}{x} \right) \\ & \frac{1}{y} \frac{dy}{dx} = x \times \frac{1}{\left(\frac{1}{x} \right)} \times \frac{-1}{x^2} + \log \left(\frac{1}{x} \right) \times 1 \\ & \frac{dy}{dx} = y \left[-1 + \log \left(\frac{1}{x} \right) \right] \\ & = \left(\frac{1}{x} \right) \left[-1 + \log \left(\frac{1}{x} \right) \right] \\ & \text{Critical points} \\ & \frac{dy}{dx} = 0 \\ & -1 + \log x^{-1} = 0 \\ & \Rightarrow \quad -1 + \log x^{-1} = 0 \\ & \Rightarrow \quad e^{-1} \\ & x = \frac{1}{\theta} \\ & \text{hence maximum value} \\ & y = \left(\frac{1}{\left(\frac{1}{\theta} \right)} \right)^{\frac{1}{\theta}} \\ & y = \left(e^{\frac{1}{\theta}} \right)^{\frac{1}{\theta}} \\ & y = \left(e^{\frac{1}{\theta}} \right)^{\frac{1}{\theta}} \\ & \text{Let matrix } X = [y_{ij}] \text{ is given by } X = \begin{bmatrix} 1 & -1 & 2 \\ 3 & 4 & -5 \\ 2 & -1 & 3 \end{bmatrix} . \text{ Then the matrix } Y = [m_{ij}], \text{ where } m_{ij} = \text{Minor of } x_{ij}, \text{ is} \\ & \text{(a)} \begin{bmatrix} 7 & -5 & -3 \\ 19 & 1 & -11 \\ -11 & 1 & 7 \end{bmatrix} \\ & \text{(b)} \begin{bmatrix} 7 & -19 & -11 \\ 5 & -1 & -1 \\ 3 & 11 & 7 \end{bmatrix} \\ & \text{(c)} \begin{bmatrix} 7 & 19 & -11 \\ -3 & 11 & 7 \\ -5 & -1 & -1 \end{bmatrix} \\ & \text{(d)} \\ & x = \begin{bmatrix} 1 & -1 & 2 \\ 3 & 4 & -5 \\ 2 & -1 & 3 \end{bmatrix} \\ & y = [m_{ij}] \text{ where } m_{ij} = \text{minor of } x_{ij} \text{ is} \\ & \text{M_1 minor of } 1 = \begin{bmatrix} 4 & -5 \\ -1 & 3 \\ -1 & 3 \end{bmatrix} = 12 - 5 = 7 \\ & \text{M_1z} = \begin{bmatrix} 3 & -5 \\ 2 & -3 \\ -3 \end{bmatrix} \Rightarrow 9 + 10 = 19 \\ & \text{M_1s} = & -3 - 8 \Rightarrow -11 \\ & \text{M_2} = & -3 - 8 \Rightarrow -11 \\ & \text{M_2} = & -3 - 8 \Rightarrow -11 \\ & \text{M_2} = & -3 - 8 \Rightarrow -11 \\ \end{array}$$

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555 S 7340010333 F acebook.com/ResonanceEdu www.youtube.com/resowatch bog.resonance.ac.in

This solution was download from Resonance Solution portal

PAGE # 15

Resonance | CBSE-2021-22 | DATE : 06-12-2021 | OFFICIAL PAPER | MATHEMATICS 3 - 4 = -1M22 = -1 + 2 = 1M₂₃ = **M**31 5 - 8 = -3= M32 -5 - 6 = -11= M₃₃ 4 + 3 = 7= 7 19 -11] ÷. y = -1 -1 1 -3 -11 7 A function f : R \rightarrow R defined by f(x) = 2 + x² is 37. (a) not one-one (b) one-one (c) not onto (d) neither one-one nor onto Ans. (d) Sol. $f: \mathsf{R} \to \mathsf{R}$ $f(x) = 2 + x^2$ one - one $f(\mathbf{X}_1) = f(\mathbf{X}_2)$ \Rightarrow $2 + x_1^2 = 2 + x_2^2$ $x_1 = \pm x_2$ many one \rightarrow onto y = f(x)let $y = 2 + x^2$ $x^{2} =$ y – 2 $x = \sqrt{y-2} y \epsilon R$ (co-domain) If y = 1 $x = \sqrt{-1} \notin R$ domain Neither one-one nor onto 38. A Linear Programming Problem is as follows: Maximise / Minimise objective function Z = 2x - y + 5Subject to the constraints $3x + 4y \le 60$ $x + 3y \le 30$ $x \ge 0, y \ge 0$ If the corner points of the feasible region are A (0, 10), B(12, 6), C(20, 0) and 0(0, 0), then which of the following is true? (a) Maximum value of Z is 40 (b) Minimum value of Z is - 5 (c) Difference of maximum and minimum values of Z is 35 (d) At two corner points, value of Z are equal Ans. (b) Z = 2x - y + 5Sol. corners points A (0,10) $z \Rightarrow -10 + 5$ \Rightarrow – 5 min. $B(12, 6) z \Rightarrow 24 - 6 + 5$ \Rightarrow 18 + 5 = 23 Z = 40 - 0 + 5C (20,0) Z = 45 max.O(0,0) Z = 5

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555
Toll Free : 1800 258 5555
Toll Free : 1800 258 5555

Resonance | CBSE-2021-22 | DATE : 06-12-2021 | OFFICIAL PAPER | MATHEMATICS x 2 3 If x = -4 is a root of $\begin{vmatrix} 1 & x & 1 \end{vmatrix} = 0$, then the sum of the other two roots is 39. 3 2 x (c) 2 (d) 5 (a) 4 (b) - 3 Ans. (a) x 2 3 Sol. $\begin{vmatrix} 1 & x & 1 \end{vmatrix} = 0$ 32 x $\Rightarrow x (x^2 - 2) - 2 (x - 3) + 3(2 - 3x) = 0$ $\Rightarrow x^3 - 2x - 2x + 6 + 6 - 9x = 0$ \Rightarrow x³ - 13x + 12 = 0 x = -4 is one root (x + 4) is factor $x^2 - 4x + 3$ $x + 4 \int \frac{x^2 - 4x + 3}{x^3 - 13x + 12} \\ x^3 + 4x^2$ $-4x^2 - 13x + 12$ $-4x^2 - 16x$ + + 3x + 12 3x + 12 0 Factorization \Rightarrow x² - 4x + 3 = 0 $x^2 - 3x - x + 3 = 0$ x(x-3) - 1(x-3) = 0(x-3)(x-1) = 0x = 3, 1 sum of roots \Rightarrow 3 + 1 = 4 The absolute maximum value of the function $f(x) = 4x - \frac{1}{2}x^2$ in the interval $\left[-2, \frac{9}{2}\right]$ is 40. (a) 8 (b) 9 (c) 6 (d) 10 (a) Ans. $f(x) = 4x - \frac{1}{2}x^2 \ x \in \left[-2, \frac{9}{2}\right]$ Sol. $f'(x) = 4 - \frac{1}{2} \times 2x$ f'(x) = 4 - x = 0 \Rightarrow x = 4 Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🕑 twitter.com/ResonanceEdu

Resonance®

SECTION - C

In this Section, attempt any 8 questions out of Questions 41-50. Each question is of One mark.

41. In a sphere of radius r, a right circular cone of height h having maximum curved surface area is inscribed. The expression for the square of curved surface of cone is

(a) $2\pi^2 rh (2rh + h^2)$ (b) $\pi^2 hr (2rh + h^2)$ (c) $2\pi^2 r (2rh^2 - h^3)$ (d) $2\pi^2 r^2 (2rh - h^2)$

Ans. (c)

Ans.

42. The corner points of the feasible region determined by a set of constraints (linear inequalities) are P(0,5), Q (3,5), R(5,0) and S(4,1) and the objective function is Z = ax + 2by where a, b > 0. The condition on a and b such that the maximum Z occurs at Q and S is

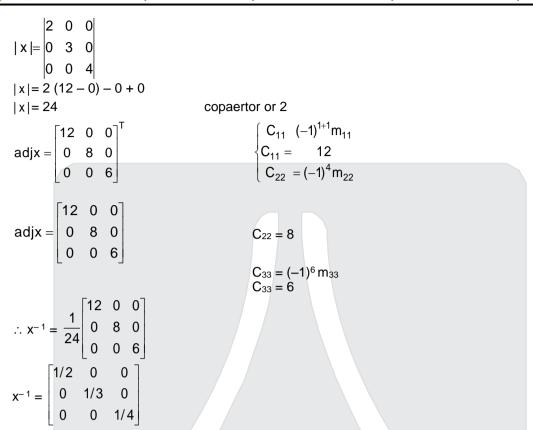
(a) a - 5b = 0 (b) a - 3b = 0 (c) a - 2b = 0 (d) a - 8b = 0 (d)

Resonance Eduventures Ltd.

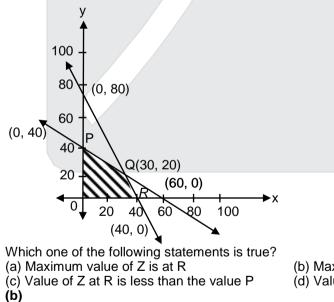
Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

Sol. z = ax + 2bycorner points p(0,5) Q(3,5) R(5, 0) S(4,1) z maxi occurs at point Q and S $Z_{max} = ax + 2by at Q(3,5)$ = 3a + 10 yb $Z_{max} = 4a + 2b$ at S(4,1) 3a + 10b = 4a + 2b \Rightarrow 8b = a \Rightarrow a - 8b = 0 \Rightarrow 43. If curves $y^2 = 4x$ and xy = c cut at right angles then the value of c is (a) $4\sqrt{2}$ (b) 8 (c) $2\sqrt{2}$ (d) $-4\sqrt{2}$ Sol. (a) curve $y^2 = 4x$ and xy = ccut right angle then $m_1 \times m_2 = -1$ $y^2 = 4x$ xy = c $2y \ \frac{dy}{dx} = 4 \qquad x \ \frac{dy}{dx} + y = 0$ $\frac{dy}{dx} = \frac{-y}{x}$ $\frac{dy}{dx} = \frac{2}{y}$ $\therefore \qquad \frac{2}{y} \times \frac{-y}{x} = -1$ x = 2 $y^{2} = 4x$ $y^{2} = 4 \times 2$ $y^{2} = 8$ *.*.. \Rightarrow $y = \pm 2\sqrt{2}$ hence c = xy = $2\sqrt{2}$ The inverse of the matrix $X = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{bmatrix}$ is 44. (a) $24\begin{bmatrix} 1/2 & 0 & 0 \\ 0 & 1/3 & 0 \\ 0 & 0 & 1/4 \end{bmatrix}$ (b) $\frac{1}{24}\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ (c) $\frac{1}{24}\begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{bmatrix}$ (d) $\begin{bmatrix} 1/2 & 0 & 0 \\ 0 & 1/3 & 0 \\ 0 & 0 & 1/4 \end{bmatrix}$ 0 | Ans. (d) $x = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{bmatrix}$ Sol. $\mathbf{x}^{-1} = \frac{\mathbf{adjx}}{|\mathbf{x}|}$


Resonance

Resonance Eduventures Ltd.


Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555
Toll Free : 1800 258 5555
Toll Free : 1800 258 5555

45. For an L.P.P. the objective function is Z = 4x + 3y, and feasible region determined by a set of constraints (linear in equations) is shown in the graph.

Ans. Sol.

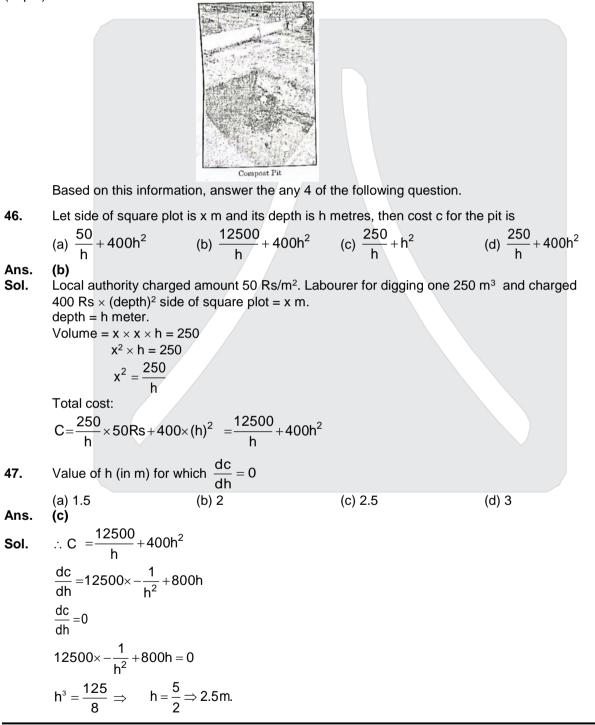
z = 4x + 3y		
Corner point :		z = 4x + 3y
R (40,0)	⇒ z = 160	
Q (30,20)	⇒ z = 180	max
P (0,40)	⇒ z = 120	
O(40,0)	\Rightarrow z = 0	

(b) Maximum value of Z is at Q

(d) Value of Z at Q is less than the value of R.

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 **| FAX No. :** +91-022-39167222


To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555
Toll Free : 1800 258 5555
Toll Free : 1800 258 5555

This solution was download from Resonance Solution portal

PAGE # 20

Case Study

In a residential society comprising of 100 house there were 60 children between the ages of 10-15 years. They were inspired by their teachers to start composting to ensure that biodegradable waste is recycled. For the purpose, instead of each child doing it for only his/her house, children convinced the Residents welfare association to do it as a society initiative. For this they identified a square area in the local park. Local authorities charged amount of Rs. 50 per square metre for space so that there is no misuse of the space and Resident welfare association takes it seriously. Association hired a labourer for digging out 250 m³ and he charged `400 x (depth)². Association will like to have minimum cost.

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555 S 7340010333 f facebook.com/ResonanceEdu 🕑 twitter.com/ResonanceEdu

48.	$\frac{d^2c}{dh^2}$ is given by			
	(a) $\frac{25000}{h^3}$ + 800	(b) $\frac{500}{h^3}$ + 800	(c) $\frac{100}{h^3} + 800$	(d) $\frac{500}{h^3}$ + 2
Ans.	(a)			
Sol.	$\frac{\mathrm{dc}}{\mathrm{dh}} = \frac{-12500}{\mathrm{h}^2} + 800\mathrm{h}$			
	Again differentiate $\frac{d^2c}{dh^2} = \frac{2500}{h^3} + 800$			
49.	Value of x (in m) for mi	nimum cost is		
	(a) 5	(b) $10\sqrt{\frac{5}{3}}$	(C) 5√5	(d) 10
Ans.	(d)			
Sol.	$\therefore x^2 = \frac{250}{h}$			
	$h = \frac{5}{2}$			
	$x^{2} = \frac{250}{5/2} \Rightarrow \frac{500}{5} = 100$ $x^{2} = 100$			
	$x = \sqrt{100} = 10m$			
50.		digging the pit (in Rs.) is		
Ans.	(a) 4,100 (b)	(b) 7,500	(c) 7,850	(d) 3,220
Sol.	$C = \frac{12500}{h} + 400h^2$			
	h putting			
	$h = \frac{5}{2}$			
	$C = \frac{12500}{5/2} + 400 \times \frac{25}{4}$			
	$\Rightarrow 2500 \times 2 + 2500$ $\Rightarrow 5000 + 2500$			
	⇒ 7500 Rs.			

_____*____*_____*_____*_____*_____

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 5555