SUBJECT : PHYSICS \& CHEMISTRY

GUJARAT COMMON ENTRANCETEST (GUJCET) 2019

Date: 26 April, 2019 | Duration: 2 Hours | Max. Marks: 80

:: IMPORTANT INSTRUCTIONS ::

1. The Physics and Chemistry test consists of 80 questions. Each question carries 1 mark. For each correct response, the candidate will get 1 mark. For each incorrect response $1 / 4$ mark will be deducted. The maximum marks are 80 .
2. This test is of 2 hrs. duration.
3. Use Black Ball Point Pen only for writing particulars on OMR Answer Sheet and marking answer by darkening the circle '••'.
4. Rough work is to be done on the space provided for this purpose in the Test Booklet only.
5. On completion of the test, the candidate must handover the Answer Sheet to the Invigilator in the Room/Hall. The candidates are allowed to take away this Test Booklet with them.
6. The Set No. for this Booklet is 05. Make sure that the Set No. printed on the Answer Sheet is the same as that on this booklet. In case of discrepancy, the candidate should immediately.
7. The candidate should ensure that the Answer Sheet is not folded. Do not make any stray marks on the Answer Sheet.
8. Do not write you Seat No. anywhere else, except in the specified space in the Test Booklet/Answer Sheet.
9. Use of White fluid for correction is not permissible on the Answer Sheet.
10. Each candidate must show on demand his/her Admission Card to the Invigilator.
11. No candidate, without special permission of the Superintendent or Invigilator, should leave his/her sent.
12. Use of Manual Calculator is permissible.
13. The candidate should not leave the Examination Hall without handing over their Answer Sheet to the Invigilator on duty and must sign the Attendance Sheet (Patrak - 01). Cases where a candidate has not signed the Attendance Sheet (Patrak - 01) will be deemed not to have handed over the Answer Sheet and will be dealt with as an unfair means case.
14. The candidates are governed by all Rules and Regulations of the Board with regard to their conduct in the Examination Hall. All cases of unfair means will be dealt with as per Rules and Regulations of the Board.
15. No part of the Test Booklet and Answer Sheet shall be detached under any circumstances.
16. The candidates will write the Correct Test Booklet Set No. As given in the Test Booklet/Answer Sheet in the Attendance Sheet. (Patrak - 01)

Candidate's Name

Exam. Seat No. (in figures)..(in words)
Name of Exam. Centre : ...Exam. Centre No
Test Booklet Set No. : ...Test Booklet No.

Candidate's Sign. .Block Supervisor Sign

Resonance Eduventures Ltd.

Registered \& Corporate Office: CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005 Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Toll Free: 18002585555 |Fax: +91-022-39167222 | 008003444888 Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029
blog. resonance.ac. in

HIGHEST number of CLASSROOM Students Qualified for JEE (Advanced) 2019 from any Institute of India*

(All are from Regular Classroom Program)

with 8 classroom students in top 100 in JEE Main 2019

Top Category Ranks in JEE Main 2019
AIR-2, 4, 7 (ST)
Atin Bainada, Raja, Kuldeep Meena
AIR-11 (SC)

Students qualified for JEE Advanced 2019
8235
students from Repeaters' Batches

4230

students from Freshers' Batches

AIR-96
Suhas Jain Classroom student since class $8^{\text {in }}$ Reso Roll No.: 14400705

AIR-30
Rajdeep Paul
Classroom student since class 1^{14} Reso Roll No.: 17173061

Anshul Navphule
All the above students are from Classroom Contact Program
For scholarship on the basis of JEE Main 2019, SMS RESO SCHO at 56677

ADMISSIONS OPEN
 FOR 2019-20

Classes: V to XII \& XII+
Target: JEE (Main+Advanced) JEE (Main) | AIMMS/ NEET Pre-foundation I Commerce \& CLAT

ResoNET Dates $9^{\text {th }} \& 16^{\text {th }}$ June 2019

COURSE: VIJAY (JR) FOR CLASS: XIII
Target: JEE (Main+Advanced) 2020
Course Starts from
$10^{\text {th }}$ JUNE 2019

PART-I : PHYSICS

1. The dimensional formula of $\sqrt{\mu_{r} \in_{r}}$ is \qquad
(A) $\mathrm{M}^{1} \mathrm{~L}^{-1} \mathrm{~T}^{-2} \mathrm{~A}^{-1}$
(B) $\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-2} \mathrm{~A}^{0}$
(C) $\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0} \mathrm{~A}^{0}$
(D) $M^{0} L^{2} T^{-2} A^{0}$

Ans. (C)
Sol. $\quad v=\frac{1}{\sqrt{\mu_{0} \in_{0} \mu_{r} \varepsilon_{r}}}=\frac{c}{\sqrt{\mu_{r} \in_{r}}}$
$\sqrt{\mu_{r} \in_{r}}=\frac{C}{v}=$ Dimensionless.
2. At large distances from source \vec{E} and \vec{B} are in phase and the decrease in their magnitude is comparitively slower with distance r as per \qquad
(A) r^{-1}
(B) r
(C) r^{-3}
(D) r^{2}

Ans. (A)
Sol. For at point source

$$
\begin{aligned}
& I=\frac{P}{4 \pi r^{2}}=\frac{1}{2} \varepsilon_{0} E^{2} C \\
& \Rightarrow \quad E \propto \frac{1}{r}
\end{aligned}
$$

3. The angular spread of central maximum, in diffraction pattern, does not depend on \qquad
(A) the distance between the slit and source
(B) width of slit
(C) wavelength of light
(D) frequency of light

Ans. (A)
Sol. Angular spread of central maxima is $\theta=2 \lambda / a$.
4. The ratio of resolving power of telescope, when lights of wavelength $4400 \AA$ and $5500 \AA$ are used, is \qquad
(A) $16: 25$
(B) $4: 5$
(C) $9: 1$
(D) $5: 4$

Ans. (D)
Sol. Resolving power $\propto \frac{1}{\lambda}$
$\frac{\theta_{1}}{\theta_{2}}=\frac{\lambda_{2}}{\lambda_{1}}=\frac{5500}{4400}=\frac{5}{4}$
5. In Young's experiment fourth bright fringe produced by light of $5000 \AA$ superposes on the fifth bright fringe of an unknown wavelength. The unknown wavelength is \qquad Å.
(A) 4000
(B) 6000
(C) 5000
(D) 8000

Ans. (A)
Sol. $\quad 4 \beta_{1}=5 \beta_{2}$
$4 \times 5000 \frac{D}{d}=5 \times \lambda \frac{D}{d}$
$\lambda=4000 \AA$

Resonance Eduventures Limited

REGISTERED \& CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph.No. : 0744-2777777, 0744-2777700 | Toll Free : 18002585555 | FAX No. : +91-022-39167222 | To Know more: sms RESO at 56677

Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800258555507340010333 fffacebook.com/ResonanceEdu Y twitter.com/ResonanceEdu 蓇 www.youtube.com/resowatch

6. IN X-ray tube the potential difference between the anode and the cathode is 20 kV and the current flowing is 1.6 mA . The number of electrons striking the anode in 1 s is \qquad .
(Charge of an electron $=1.6 \times 10^{-19} \mathrm{C}$)
(A) 10^{14}
(B) 1.25×10^{16}
(C) 10^{16}
(D) 6.25×10^{18}

Ans. (C)
Sol. $1.6 \times 10^{-3}=\frac{q}{t}$

$$
\begin{aligned}
& \Rightarrow \quad q=1.6 \times 10^{-3} \mathrm{C} \\
& n e=1.6 \times 10^{-3} \\
& n \times 1.6 \times 10^{-19} \\
&=1.6 \times 10^{-3} \\
& n=10^{16}
\end{aligned}
$$

7. If the kinetic energy of the electron in the hydrogen atoms is $\frac{e^{2}}{8 \pi \epsilon_{0} r}$, then its potential energy is \qquad .
(A) $\frac{\mathrm{e}^{2}}{4 \pi \epsilon_{0} r}$
(B) $-\frac{\mathrm{e}^{2}}{4 \pi \epsilon_{0} r}$
(C) $\frac{\mathrm{e}^{2}}{8 \pi \epsilon_{0} r}$
(D) $-\frac{e^{2}}{8 \pi \epsilon_{0} r}$

Ans. (B)
Sol. $\quad \frac{|P . E .|}{2}=$ K.E.
P.E. $=-2 K . E$.
$=-2 \times \frac{\mathrm{e}^{2}}{8 \pi \varepsilon_{0} r}=\frac{-\mathrm{e}^{2}}{4 \pi \varepsilon_{0} r}$
8. The wavelength of the first line of Lyman series is λ. The wavelength of the first line in Paschen series is
\qquad
(A) $108 / 7$
(B) $27 / 5$
(C) $7 / 108$
(D) $5 / 27$

Ans. (A)
Sol. $\quad \frac{1}{\lambda}=R\left(\frac{1}{1^{2}}-\frac{1}{2^{2}}\right)$

$$
\Rightarrow \quad \frac{1}{\lambda_{1}}=\mathrm{R}\left(\frac{1}{3^{2}}-\frac{1}{4^{2}}\right)
$$

$\Rightarrow \quad \frac{\lambda_{1}}{\lambda}=\frac{\frac{3}{4}}{\frac{7}{16 \times 9}}$
$\Rightarrow \quad \lambda_{1}=\frac{3}{4} \times \frac{16 \times 9}{7} \lambda$
$\Rightarrow \quad \lambda_{1}=\frac{108}{7} \lambda$

Resonance Eduventures Limited

REGISTERED \& CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
$入$ Resanancea Eujarat Common Entrance Test (GUJCET) 2019| PHYSICS | 26-04-2019 | Code-05
9. For a radioactive element, $\tau=$ \qquad $\tau 1 / 2$.
(A) 0.693
(B) 693
(C) 144
(D) 1.44

Ans. (D)
Sol. $\quad T_{\text {mean }} \times \ell$ n $2=T_{1 / 2}$
$\mathrm{T}_{\text {mean }}=\mathrm{T}_{1 / 2(1 / \ell \mathrm{n} 2)}$
$=1.44 \mathrm{~T}_{1 / 2}$
10. For the following nuclear disintegration process ${ }_{92}^{238} \mathrm{U} \rightarrow{ }_{82}^{206} \mathrm{~Pb}+\mathrm{x}\left[{ }_{2}^{4} \mathrm{He}\right]+\left[{ }_{-2}^{0} \mathrm{e}\right]$ then value of x is \qquad .
(A) 8
(B) 6
(C) 4
(D) 10

Ans. (A)
Sol. Mass should be conserved
$238=206+4 x+0$
$x=32 / 4=8$
11. If the radii of ${ }_{30}^{64} Z n$ and ${ }_{13}^{27}$ Al nuclei are R_{1} and R_{2} respectively then $\frac{R_{1}}{R_{2}}=$ \qquad .
(A) $\frac{64}{27}$
(B) $\frac{4}{3}$
(C) $\frac{3}{4}$
(D) $\frac{27}{64}$

Ans. (B)
Sol. $\quad R \propto A^{1 / 3}$
$\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}=\left(\frac{64}{27}\right)^{1 / 3}=\frac{4}{3}$
12. For PN junction, the intensity of electric field is $1 \times 10^{6} \mathrm{~V} / \mathrm{m}$ and the width of depletion region is $5000 \AA$. The value of potential barrier $=$ \qquad V.
(A) 0.05
(B) 0.005
(C) 0.5
(D) 5

Ans. (C)
Sol. $V=E d=10^{6} \times 5 \times 10^{-7}=0.5 \mathrm{~V}$
13. The logic circuit in the figure represents characteristics of which logic gate ?

(A) NOR
(B) $O R$
(C) NAND
(D) NOT

Ans. (D)
Sol.

Input	Output
0	1
1	0

14. For PN junction, the width of space charge region is approximately \qquad $\mu \mathrm{m}$.
(A) 0.5
(B) 6
(C) 5
(D) 0.05

Ans. (A)
Sol.

Resonance Eduventures Limited

REGISTERED \& CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph.No. : 0744-2777777, 0744-2777700 | Toll Free : 18002585555 | FAX No. : +91-022-39167222| To Know more : sms RESO at 56677
15. A modulating signal of frequency 5 kHz and peak voltage of 8 V is used to modulate a carrier of frequency 10 MHz and peak voltage 10 V . Then the amplitude of USB is \qquad V.
(A) 3
(B) 4
(C) 2
(D) 5

Ans. (B)
Sol. $\frac{\mu A_{C}}{2}=\frac{A_{m}}{A_{C}} \times \frac{A_{C}}{2}=\frac{A_{m}}{2}=\frac{8}{2}=4 \mathrm{~V}$
16. The propagation of radio waves with frequency 2 MHz to 30 MHz is due to \qquad .
(D) Sky wave

Ans. (D)
Sol.
17. When two spheres having $4 Q$ and $-2 Q$ charge are placed at a certain distance, the force acting between them is F. Now they are connected by a conducing wire and again separated from each other. Now they are kept at a distance half of the previous one. The force acting between them is \qquad -.
(A) F
(B) $F / 4$
(C) $F / 2$
(D) F/8

Ans. (C)
Sol. $\quad F=\frac{K(4 Q)(2 Q)}{r^{2}}=\frac{8 K Q^{2}}{r^{2}}$
$F^{\prime}=\frac{K(Q)(Q)}{\left(\frac{r}{2}\right)^{2}}=\frac{4 K Q^{2}}{r^{2}}$
18. Charge of $1 \mu \mathrm{C}$ each is placed on the five corners of a regular hexagon of side 1 m . The electric field at its centre is \qquad N/C
(A) $\frac{5}{6} \times 10^{-6} \mathrm{~K}$
(B) $5 \times 10^{-6} \mathrm{~K}$
(C) $\frac{6}{5} \times 10^{-6} \mathrm{~K}$
(D) $10^{-6} \mathrm{~K}$

Ans. (D)
Sol. Electric field at centre due to five charges is equal to E.F due to one charge
$E=\frac{K Q}{r^{2}}$
$=\frac{\mathrm{K} \times\left(10^{-6}\right)}{1^{2}}=10^{-6} \mathrm{~K}$
19. An electric dipole is placed in a non-uniform electric field, then \qquad
(A) The resultant force acting on the dipole is always zero
(B) Torque acting on it may be zero
(C) The resultant force acting on the dipole may be zero
(D) Torque acting on it is always zero.

Ans. (B)

Resonance Eduventures Limited

REGISTERED \& CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph.No. : 0744-2777777, 0744-2777700| Toll Free : 18002585555 |FAX No. : +91-022-39167222| To Know more : sms RESO at 56677

Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLCO24029
Toll Free : 18002585555 © 7340010333 facebook.com/ResonanceEdu Y twitter.com/ResonanceEdu vine www.youtube.com/resowatch

Sol.
(i)

$\mathrm{F}_{\text {net }} \neq 0$
$\tau_{\text {net }} \neq 0$
(ii)

$\mathrm{F}_{\text {net }} \neq 0$
$\tau_{\text {net }}=0$
20. The unit of intensity of polarization is \qquad .
(A) $\mathrm{C} / \mathrm{m}^{2}$
(B) $\mathrm{C}^{2} / \mathrm{m}^{2}$
(C) $\mathrm{C}^{2} / \mathrm{m}$
(D) $\mathrm{m}^{2} / \mathrm{C}$

Ans. (A)
Sol. $\mathrm{I}=\frac{\text { Dipolemoment }}{\text { volume }}=\frac{\mathrm{Cm}}{\mathrm{m}^{3}}=\frac{\mathrm{C}}{\mathrm{m}^{2}}$
21. In the figure area of each plate is A and the distance between consecutive plates is as shown in the figure. What is the effective capacitance between points A \& B

(A) $\frac{A \varepsilon_{0}}{d}$
(B) $\frac{3 A \varepsilon_{0}}{d}$
(C) $\frac{2 A \varepsilon_{0}}{d}$
(D) $\frac{4 \mathrm{~A} \varepsilon_{0}}{d}$

Ans. (C)
Sol.

$C_{e q}=\frac{\varepsilon_{0} A}{d}+\frac{\varepsilon_{0} A}{2 d}+\frac{\varepsilon_{0} A}{2 d}=\frac{2 \varepsilon_{0} A}{d}$

Resonance Eduventures Limited

REGISTERED \& CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
22. A moving positive charge approaches a negative charge. What will happen to the potential energy of the system?
(A) will remain constant
(B) will decrease
(C) will increase
(D) may increase or decrease

Ans. (B)
Sol. $U=\frac{K\left(q_{1}\right)\left(-q_{2}\right)}{r}$
$r \downarrow \Rightarrow U \downarrow$
23. The heat produced per unit time, on passing electric current through a conductor at a given temperature, is directly proportional to the \qquad -.
(A) Electric current
(B) Reciprocal of electric current
(C) Square of electric current
(D) Reciprocal of square of electric current

Ans. (C)
Sol. $\quad \mathrm{P}=I^{2} \mathrm{R}$
24. A carbon resistor has three bands as brown, black and green in order. What will be the range of resistance it offers.
(A) $7 \times 10^{5} \Omega-13 \times 10^{5} \Omega$
(B) $9 \times 10^{5} \Omega-11 \times 10^{5} \Omega$
(C) $8 \times 10^{5} \Omega-12 \times 10^{5} \Omega$
(D) None of these

Ans. (C)
Sol. $R=\left(10 \times 10^{5}\right) \pm 20 \%$
$R_{\text {min }}=8 \times 10^{5} \Omega$
$R_{\text {max }}=12 \times 10^{5} \Omega$
25. In the network shown in the figure the equivalent resistance between points $X \& Y$ will be \qquad Ω. Value of each resistance is 2Ω.

(A) 2
(B) 4
(C) 1
(D) $2 / 3$

Ans. (C)
Sol.

$R_{x y}=1 \Omega$

Resonance Eduventures Limited

REGISTERED \& CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

$\backslash \underset{\text { Educating forbbeter tomarow }}{\text { Res }}$ Gujarat Common Entrance Test (GUJCET) 2019 | PHYSICS | 26-04-2019 | Code-05

26. Shunt wire should be \qquad .
(A) Thick and long
(B) Thick and short
(C) Thin and long
(D) Thin and short

Ans. (B)
Sol. Shunt should have low resistance
$R=\frac{\rho \ell}{A}$
ℓ should be less
A should be large
27. The dimensional formula of effective torsional constant of spring is \qquad .
(A) $\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-3}$
(B) $\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2} \mathrm{~A}^{-2}$
(C) $\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2}$
(D) $\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}$

Ans. (C)
Sol. $\tau=\mathrm{C} \theta$
$C=\tau / \theta$
$\mathrm{C} \equiv\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]$
28. There are 50 turns per cm length in a very long solenoid. It carries a current of 2.5 A . The magnetic field at its centre on the axis is \qquad T.
(A) $5 \pi \times 10^{-3}$
(B) $6 \pi \times 10^{-3}$
(C) $2 \pi \times 10^{-3}$
(D) $4 \pi \times 10^{-3}$

Ans. (A)
Sol. $B=\mu 0 n i=4 \pi \times 10^{-7} \times \frac{50}{10^{-2}} \times 2.5$
$=5 \pi \times 10^{-3}$
29. The gyromagnetic ratio of an electron $=$ \qquad specific charge of an electron.
(A) 1
(B) 2
(C) $1 / 2$
(D) 4

Ans. (C)
Sol. Ratio $=q / 2 m=1 / 2 \times$ specific charge
30. Alnico is an alloy of \qquad (B) AI, Ni, Cu, Co
(C) AI, Ni, As, P
(D) AI, As $, \mathrm{P}, \mathrm{Pt}$

Ans. (B)
31. The focal length of a thin lens made from the material of refractive index 1.5 is 15 cm . When it is placed in a liquid of refractive index $4 / 3$, its focal length will be \qquad cm .
(A) 80.31
(B) 50
(C) 78.23
(D) 60

Ans. (D)
Sol. $\frac{1}{15}=(1.5-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$
$\frac{1}{f}=\left(\frac{1.5}{4 / 3}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$
$\frac{f}{15}=\frac{1 / 2}{(1 / 8)}$
$\mathrm{f}=4 \times 15=60 \mathrm{~cm}$

Resonance Eduventures Limited

REGISTERED \& CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph.No. : 0744-2777777, 0744-2777700 | Toll Free : 18002585555 | FAX No. : +91-022-39167222 | To Know more: sms RESO at 56677
32. Time taken by the sunlight to pass through a slab of 4 cm and refractive index 1.5 is \qquad sec.
(A) 2×10^{-8}
(B) 2×10^{-11}
(C) 2×10^{-10}
(D) 2×10^{11}

Ans. (C)
Sol. $\mathrm{t}=\frac{\mathrm{d}}{\mathrm{v}}=\frac{\mathrm{dn}}{\mathrm{c}}=\frac{4 \times 10^{-2}}{3 \times 10^{8}} \times \frac{3}{2}$ $\mathrm{t}=2 \times 10^{-10} \mathrm{sec}$.
33. If the tube length of astronomical telescope is 96 cm and magnifying power is 15 for normal setting, then the focal length of the objective is \qquad cm .
(A) 100
(B) 90
(C) 105
(D) 92

Ans. (B)
Sol. $|m|=\frac{f_{0}}{f_{e}}=15$
$f_{0}=15 f_{e}$
tube length $=f_{0}+f_{e}=96$
$15 f_{e}+f_{e}=96$
$\mathrm{f}_{\mathrm{e}}=6 \mathrm{~cm}$
$\mathrm{f}_{0}=15 \times 6=90 \mathrm{~cm}$
34. Photons of energy 2 eV and 2.5 eV successively illuminate a metal whose work function is 0.5 eV . The ratio of maximum speed of emitted electron is \qquad .
(A) $\sqrt{3}: 2$
(B) $2: 1$
(C) $1: 2$
(D) $2: \sqrt{3}$

Ans. (A)
Sol. K. $E_{\max }=h \nu-\phi$
$\frac{1}{2} m v^{2}=h v-\phi$
$\frac{v_{1}^{2}}{v_{2}^{2}}=\frac{2-0.5}{2.5-0.5}=\frac{1.5}{2}=\frac{3}{4}$
$\frac{v_{1}}{v_{2}}=\frac{\sqrt{3}}{2}$
35. To increase de-Broglie wavelength of an electron from $0.5 \times 10^{-10} \mathrm{~m}$ to $10^{-10} \mathrm{~m}$, its energy should be
\qquad .
(A) increased to 4 times
(B) halved
(C) doubled
(D) decreased to fourth part

Ans. (D)
Sol. $\lambda=\frac{h}{\mathrm{p}}=\frac{\mathrm{h}}{\sqrt{2 \mathrm{mK}}}$
$\lambda \rightarrow 2 \lambda . \quad \Rightarrow \quad \mathrm{K} \rightarrow \frac{\mathrm{K}}{4}$

Resonance Eduventures Limited

REGISTERED \& CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

36. A wheel of radius $2 m$ having 8 conducting concentric spokes is rotating about its geometrical axis with an angular velocity of $10 \mathrm{rad} / \mathrm{s}$ in a uniform magnetic field of 0.2 T perpendicular to its plane. The value of induced emf between the rim of the wheel and centre is \qquad ,
(A) 2
(B) 6
(C) 4
(D) 8

Ans. (C)
Sol.

$\varepsilon=\frac{1}{2} B \omega R^{2}$
$\varepsilon=\frac{1}{2} \times 0.2 \times(10)(2)^{2}=0.1 \times 4 \times 10=4 V$
37. A coil of surface area $200 \mathrm{~cm}^{2}$ having 25 turns is held perpendicular to the magnetic field of intensity $0.02 \mathrm{~Wb} / \mathrm{m}^{2}$. The resistance of the coil is 1Ω. If it is removed from the magnetic field in 1 s , the induced charge in the coil is \qquad C.
(A) 1
(B) 0.01
(C) 0.1
(D) 0.001

Ans. (B)
Sol. $\mathrm{q}=\frac{\phi_{\mathrm{i}}-\phi_{\mathrm{f}}}{\mathrm{R}}=\frac{\mathrm{NBA}}{\mathrm{R}}=\frac{25 \times 0.02 \times 200 \times 10^{-4}}{1}$
$=25 \times 2 \times 2 \times 10^{-4}$
$=10^{-2} \mathrm{C}=0.01 \mathrm{C}$
38. The dimensional formula of JWL is \qquad Take Q as the dimension of charge.
(A) $M^{-1} L^{2} T^{-1} Q^{-2}$
(B) $\mathrm{M}^{-1} \mathrm{~L}^{-2} \mathrm{~T}^{-1} \mathrm{Q}^{-2}$
(C) $M^{1} L^{2} T^{-1} Q^{-2}$
(D) $M^{1} L^{2} T^{1} Q^{-2}$

Ans. ()
39. If in an A.C., L-C series circuit $X_{c}>X_{L}$. Hence potential \qquad .
(A) lags behind the current by $\pi / 2$
(B) leads the current by π in phase
(C) leads the current by $\pi / 2$ in phase
(D) lags behind the current by π in phase.

Ans. (A)
Sol. Phasor diagram

Potential lags by $\pi / 2$ phase
40. In L-C-R, A.C. series circuit, $L=9 H, R=10 \Omega \& C=100 \mu F$. Hence Q-factor of the circuit is \qquad .
(A) 25
(B) 45
(C) 35
(D) 30

Ans. (D)
Sol. $\quad Q=\frac{1}{R} \sqrt{\frac{L}{C}}=\frac{\omega_{0} L}{R}$
$\mathrm{Q}=\frac{1}{10} \sqrt{\frac{9}{100 \times 10^{-6}}}=\frac{3}{10 \times 10^{-2}}=30$

Resonance Eduventures Limited

REGISTERED \& CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph.No. : 0744-2777777, 0744-2777700 | Toll Free : 18002585555 | FAX No. : +91-022-39167222| To Know more : sms RESO at 56677
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

Success at JEE Advanced 2018

CHAMPIONS RARELY TALK. THEY LET THERR RESULTS

 DO1HE ALKNG
AIR 39

Shashank Roy

AIR 34
Sayantan Pal

Classroom student

 since class XI

Sukhmanjit Mann
Classroom student since class XI

AIR45

Utkarsh Agarwal
Classroom student since class XI

Pawan Goyal
Classroom student since class VIII

Students in AIR Top - 50

7
Students in AIR Top - 100

ALL FROM CLASSROOM PROGRAM

ADMISSIONS
 OPEN
 FOR 2019-20

Classes: V to XII \& XII+
Target: JEE (Main + Advanced) JEE (Main) | AllMS/ NEET Pre-foundation I Commerce \& CLAT

ResoNET Dates $9^{\prime \prime} \& 16^{\text {th }}$ June 2019

Resonance Eduventures Limited
Registered \& Corporate Office: CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Rajasthan) - 324005
Tel. No.: 0744-2777777, 2777700 | CIN: U80302RJ2007PLC024029

Toll Free:
18002585555
website: www.resonance.ac.in

COURSE: VIJAY (JR) FOR CLASS: XIII

Target: JEE (Main+Advanced) 2020
Course Starts from
$10^{\text {an }}$ June 2019

