

SUBJECT : PHYSICS & CHEMISTRY

Test Booklet Set No.

05

GUJARAT COMMON ENTRANCE TEST (GUJCET) 2019

Date: 26 April, 2019 | Duration: 2 Hours | Max. Marks: 80

:: IMPORTANT INSTRUCTIONS ::

- 1. The Physics and Chemistry test consists of 80 questions. Each question carries 1 mark. For each correct response, the candidate will get 1 mark. For each incorrect response 1/4 mark will be deducted. The maximum marks are 80.
- 2. This test is of 2 hrs. duration.
- 3. Use Black Ball Point Pen only for writing particulars on OMR Answer Sheet and marking answer by darkening the circle '•'.
- 4. Rough work is to be done on the space provided for this purpose in the Test Booklet only.
- 5. On completion of the test, the candidate must handover the Answer Sheet to the Invigilator in the Room/Hall. The candidates are allowed to take away this Test Booklet with them.
- 6. The Set No. for this Booklet is **05**. Make sure that the Set No. printed on the Answer Sheet is the same as that on this booklet. In case of discrepancy, the candidate should immediately.
- 7. The candidate should ensure that the Answer Sheet is not folded. Do not make any stray marks on the Answer Sheet.
- 8. Do not write you Seat No. anywhere else, except in the specified space in the Test Booklet/Answer Sheet.
- 9. Use of White fluid for correction is not permissible on the Answer Sheet.
- 10. Each candidate must show on demand his/her Admission Card to the Invigilator.
- 11. No candidate, without special permission of the Superintendent or Invigilator, should leave his/her sent.
- 12. Use of Manual Calculator is permissible.
- 13. The candidate should not leave the Examination Hall without handing over their Answer Sheet to the Invigilator on duty and must sign the Attendance Sheet (Patrak 01). Cases where a candidate has not signed the Attendance Sheet (Patrak 01) will be deemed not to have handed over the Answer Sheet and will be dealt with as an unfair means case.
- 14. The candidates are governed by all Rules and Regulations of the Board with regard to their conduct in the Examination Hall. All cases of unfair means will be dealt with as per Rules and Regulations of the Board.
- 15. No part of the Test Booklet and Answer Sheet shall be detached under any circumstances.
- 16. The candidates will write the Correct Test Booklet Set No. As given in the Test Booklet/Answer Sheet in the Attendance Sheet. (Patrak 01)

Candidate's Name :	
Exam. Seat No. (in figures)	(in words)
Name of Exam. Centre :	Exam. Centre No. :
Test Booklet Set No. :	Test Booklet No. :

Candidate's Sign.....Block Supervisor Sign....

Resonance Eduventures Ltd.

 Registered & Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

 Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Toll Free: 1800 258 5555 | Fax: +91-022-39167222 |

 Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029

 Toll Free : 1800 258 5555 | Fax: +91-022-39167222 |

 O8003 444 888

 Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029

 Toll Free : 1800 258 5555

 Image: Im

Success at JEE Main 2019

E 2019

HIGHEST number of CLASSROOM Students Qualified for JEE (Advanced) 2019 from any Institute of India*

Resonance Eduventures Limited Registered & Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall,

Jhalawar Road, Kota (Rajasthan) - 324005 Tel. No.: 0744-2777777, 2777700 | CIN: U80302RJ2007PLC024029 Toll Free: 1800 258 5555 website: www.resonance.ac.in

PART-I : PHYSICS

1.	The dimensional formu	la of $\sqrt{\mu_r \in_r}$ is		
Ans.	(A) M ¹ L ⁻¹ T ⁻² A ⁻¹ (C)	(B) M ¹ L ¹ T ⁻² A ⁰	(C) MºLºTºAº	(D) M ^o L ² T ⁻² A ^o
Sol.	$V = \frac{1}{\sqrt{\mu_0 \in_0 \mu_r \varepsilon_r}} = \frac{c}{\sqrt{\mu_r}}$ $\sqrt{\mu_r \in_r} = \frac{c}{-1} = \text{Dimension}$	c ∈ _r onless.		
	v			
2.	At large distances from slower with distance r a	source Ē and Ē are in pl as per	nase and the decrease in	their magnitude is comparitively
Δns	(A) r ⁻¹	(B) r	(C) ⊢ ³	(D) r ²
Sol.	For at point source $I = \frac{P}{4\pi r^2} = \frac{1}{2} \varepsilon_0 E^2 C$			
	$\Rightarrow \qquad E \propto \frac{1}{r}$			
3.	The angular spread of	central maximum, in diffra	action pattern, does not o	lepend on
	(A) the distance betwee (C) wavelength of light	en the slit and source	(B) width of slit (D) frequency of light	
Ans.	(A)			
Sol.	Angular spread of cent	ral maxima is $\theta = 2\lambda/a$.		
4.	The ratio of resolving p	ower of telescope, when	lights of wavelength 4400)Å and 5500Å are used, is
	(A) 16 : 25	(B) 4 : 5	(C) 9 : 1	(D) 5 : 4
Ans.	(D)			
Sol.	Resolving power $\propto \frac{1}{\lambda}$			
	$\frac{\theta_1}{\theta_2} = \frac{\lambda_2}{\lambda_1} = \frac{5500}{4400} = \frac{5}{4}$			
5.	In Young's experiment of an unknown waveler (A) 4000	fourth bright fringe produc ngth. The unknown wave (B) 6000	ced by light of 5000Å sup ength isÅ. (C) 5000	erposes on the fifth bright fringe (D) 8000
Ans.	(A)		. ,	
Sol.	$4\beta_1 = 5\beta_2$			
	$4 \times 5000 \frac{D}{d} = 5 \times \lambda \frac{D}{d}$			
	λ = 4000Å			
		esonance Eduv	entures Limite	ed
R	REGISTERED & CORPORATE	OFFICE : CG Tower, A-46 & 5	2, IPIA, Near City Mall, Jhalaw	ar Road, Kota (Raj.) - 324005

Ph.No. : 0744-2777777, 0744-2777700 | Toll Free : 1800 258 5555 | FAX No. : +91-022-39167222 | To Know more : sms RESO at 56677

 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

 Toll Free : 1800 258 5555 \$73400 10333
 facebook.com/ResonanceEdu
 twitter.com/ResonanceEdu
 www.youtube.com/resowatch
 blog.resonance.ac.in

This solution was download from Resonance Solution portal

Resonance[®] Gujarat Common Entrance Test (GUJCET) 2019 | PHYSICS | 26-04-2019 | Code-05 IN X-ray tube the potential difference between the anode and the cathode is 20 kV and the current flowing 6. is 1.6 mA. The number of electrons striking the anode in 1s is _____ (Charge of an electron = 1.6×10^{-19} C) (B) 1.25 × 10¹⁶ (A) 10¹⁴ (C) 10¹⁶ (D) 6.25 × 10¹⁸ Ans. (C) $1.6 \times 10^{-3} = \frac{q}{t}$ Sol. \Rightarrow q = 1.6 x 10⁻³C ne = 1.6 × 10⁻³ n x 1.6 x 10⁻¹⁹ $= 1.6 \times 10^{-3}$ $n = 10^{16}$ If the kinetic energy of the electron in the hydrogen atoms is $\frac{e^2}{8\pi \epsilon_0 r}$, then its potential energy is _____. 7. (A) $\frac{e^2}{4\pi \in_0 r}$ (C) $\frac{e^2}{8\pi \in_0 r}$ (D) $-\frac{e^2}{8\pi \in_0 r}$ $(\mathsf{B}) - \frac{\mathsf{e}^2}{4\pi \in_0 \mathsf{r}}$ Ans. (B) $\frac{|\mathsf{P}.\mathsf{E}.|}{2} = \mathsf{K}.\mathsf{E}.$ Sol. P.E. = -2K.E. $= -2 \times \frac{e^2}{8\pi\epsilon_0 r} = \frac{-e^2}{4\pi\epsilon_0 r}$ 8. The wavelength of the first line of Lyman series is λ . The wavelength of the first line in Paschen series is (A) 108/7 (B) 27/5 (C) 7/108 (D) 5/27 Ans. (A) **Sol.** $\frac{1}{\lambda} = R\left(\frac{1}{1^2} - \frac{1}{2^2}\right)$ $\Rightarrow \qquad \frac{1}{\lambda_1} = \mathsf{R}\left(\frac{1}{3^2} - \frac{1}{4^2}\right)$

Resonance Eduventures Limited

 $\Rightarrow \qquad \frac{\lambda_1}{\lambda} = \frac{\frac{3}{4}}{\frac{7}{16 \times 9}}$

 $\Rightarrow \qquad \lambda_1 = \frac{108}{7}\lambda$

 $\Rightarrow \qquad \lambda_1 = \frac{3}{4} \times \frac{16 \times 9}{7} \lambda$

REGISTERED & CORPORATE OFFICE : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph.No. :** 0744-2777777, 0744-2777700 | **Toll Free :** 1800 258 5555 | **FAX No. :** +91-022-39167222 | **To Know more :** sms **RESO** at **56677**

v	Nebsite : www.	resonance.ac.in	E-mail : <u>contact@reso</u>	nance.ac.in CIN : U	80302RJ2007PLC0240	29
Toll Free : 18	00 258 5555	오 73400 10333	facebook.com/ResonanceEdu	😏 twitter.com/ResonanceEdu	www.youtube.com/resowatch	blog.resonance.ac.in

This solution was download from Resonance Solution portal

		t Common Entrance T	est (GUJCET) 2019 PHY	/SICS 26-04-2019 Cod	le-05
9.	For a radioactive	element, $\tau = ___ \tau$	1/2.		
	(A) 0.693	(B) 693	(C) 144	(D) 1.44	
Ans.	(D)				
Sol.	$T_{mean} \times \ell n \ 2 = T_{1/2}$	2			
	$T_{mean} = T_{1/2}(1/\ell n2)$)			
	=1.44T _{1/2}				
10.	For the following	nuclear disintegration	process $^{238}_{92}$ U $\rightarrow ^{206}_{82}$ Pb + >	${\binom{4}{2}}$ He]+ ${\binom{0}{-2}}$ e] then value of	x is
	(A) 8	(B) 6	(C) 4	(D) 10	
Ans.	(A)				
Sol.	Mass should be o	conserved			
	238 = 206 + 4x +	0			
	x = 32/4 = 8				
11.	If the radii of $\frac{64}{20}$ Z	n and $\frac{27}{13}$ Al nuclei are	R_1 and R_2 respectively the	$en \frac{R_1}{R_1} = .$	
	30	13		R ₂	
	(A) $\frac{64}{27}$	(B) $\frac{4}{3}$	(C) $\frac{3}{4}$	(D) $\frac{27}{64}$	
Ans.	(B)				
Sol.	$R \propto A^{1/3}$				
	$\frac{R_1}{R_2} = \left(\frac{64}{27}\right)^{1/3} = \frac{64}{3}$	4 <u>3</u>			
12.	For PN junction,	the intensity of electric	field is 1 × 10 ⁶ V/m and	the width of depletion region	on is 5000Å.
	The value of pote	ential barrier =	V.		
Anc	(A) 0.05	(B) 0.005	(C) 0.5	(D) 5	
Sol.	$V = Fd = 10^6 \times 5$	× 10 ⁻⁷ = 0.5V			
13.	The logic circuit in	n the figure represents	characteristics of which l	ogic gate ?	
		_			
	(A) NOR	(B) OR	(C) NAND	(D) NOT	
Ans.	(D)				
501.	Input Output				
	$\frac{1}{0}$ 1				
	1 0				
14.	For PN junction, t	the width of space cha	rge region is approximate	ly μm.	
۸ne	(A) 0.5	(B) 6	(C) 5	(D) 0.05	
Sol.	(~)				
		Resonance	Eduventures I	imited	
	REGISTERED & CORPO	DRATE OFFICE : CG Towe	r, A-46 & 52, IPIA, Near City Ma	all, Jhalawar Road, Kota (Raj.) - 3	324005
Ph.Nc	. : 0744-2777777, 0744	-2777700 Toll Free : 1800 2	258 5555 FAX No. : +91-022-391	67222 To Know more : sms RE	SO at 56677

 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

 Toll Free : 1800 258 5555 73400 10333

 If facebook.com/ResonanceEdu

 Image: State Stat

This solution was download from Resonance Solution portal

	SONANCe® Gujarat Con	nmon Entrance Test (GU	JCET) 2019 PHYSICS	26-04-2019 Code-05			
15.	A modulating signal of	frequency 5 kHz and pea	k voltage of 8V is used to	modulate a carrier of frequency			
	10 MHz and peak voltage 10V. Then the amplitude of USB isV.						
	(A) 3	(B) 4	(C) 2	(D) 5			
Ans.	(B)						
Sol.	$\frac{\mu A_{\rm C}}{2} = \frac{A_{\rm m}}{A_{\rm C}} \times \frac{A_{\rm C}}{2} = \frac{A_{\rm m}}{2}$	$\frac{m}{2} = \frac{8}{2} = 4V$					
16.	The propagation of rac	lio waves with frequency	2 MHz to 30 MHz is due	to			
	(A) Space wave	(B) Optical fibre	(C) Ground wave	(D) Sky wave			
Ans.	(D)						
Sol.							
17.	When two spheres having 4Q and $-2Q$ charge are placed at a certain distance, the force acting between them is F. Now they are connected by a conducing wire and again separated from each other. Now they are kept at a distance half of the previous one. The force acting between them is						
	(A) F	(B) F/4	(C) F/2	(D) F/8			
Ans.	(C)						
Sol.	$F = \frac{K(4Q)(2Q)}{r^2} = \frac{8KQ}{r^2}$ $F' = \frac{K(Q)(Q)}{\left(\frac{r}{2}\right)^2} = \frac{4KQ^2}{r^2}$	2					
18.	Charge of 1µC each is	placed on the five come	rs of a regular hexagon o	f side 1m. The electric field at its			
	centre is N/C						
	(A) $\frac{5}{6} \times 10^{-6}$ K	(B) 5 × 10 ^{−6} K	(C) $\frac{6}{5} \times 10^{-6}$ K	(D) 10 ⁻⁶ K			

Ans. (D)

Sol. Electric field at centre due to five charges is equal to E.F due to one charge

$$E = \frac{KQ}{r^2}$$
$$= \frac{K \times (10^{-6})}{1^2} = 10^{-6} K$$

19. An electric dipole is placed in a non-uniform electric field, then_____

- (A) The resultant force acting on the dipole is always zero
- (B) Torque acting on it may be zero
- (C) The resultant force acting on the dipole may be zero
- (D) Torque acting on it is always zero.

Ans. (B)

Resonance Eduventures Limited

REGISTERED & CORPORATE OFFICE : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph.No.** : 0744-2777777, 0744-2777700 | **Toll Free** : 1800 258 5555 | **FAX No.** : +91-022-39167222 | **To Know more** : sms **RESO** at **56677**

 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

 Toll Free : 1800 258 5555
 73400 10333

 If facebook.com/ResonanceEdu
 twitter.com/ResonanceEdu

 Image: State of the state of the

This solution was download from Resonance Solution portal

21. In the figure area of each plate is A and the distance between consecutive plates is as shown in the figure. What is the effective capacitance between points A & B

Ans. Sol.

$$C_{eq} = \frac{\varepsilon_0 A}{d} + \frac{\varepsilon_0 A}{2d} + \frac{\varepsilon_0 A}{2d} = \frac{2\varepsilon_0 A}{d}$$

Resonance Eduventures Limited

REGISTERED & CORPORATE OFFICE : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph.No. :** 0744-2777777, 0744-2777700 | **Toll Free :** 1800 258 5555 | **FAX No. :** +91-022-39167222 | **To Know more :** sms **RESO** at **56677**

 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

 Toll Free : 1800 258 5555
 73400 10333

 If facebook.com/ResonanceEdu
 twitter.com/ResonanceEdu

This solution was download from Resonance Solution portal

Resonance[®] Gujarat Common Entrance Test (GUJCET) 2019 | PHYSICS | 26-04-2019 | Code-05

Resonance Eduventures Limited

REGISTERED & CORPORATE OFFICE : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph.No. : 0744-2777777, 0744-2777700 | Toll Free : 1800 258 5555 | FAX No. : +91-022-39167222 | To Know more : sms RESO at 56677

The solution of the solution o	
Toll Free : 1800 258 5555 🛇 73400 10333 📑 facebook.com/ResonanceEdu 🕑 twitter.com/ResonanceEdu 🔠 www.youtube.com/resowatch 🕒 blog.	g.resonance.ac.in

This solution was download from Resonance Solution portal

	SONANCe [®] Gujarat Com	nmon Entrance Test (GU	JCET) 2019 PHYSICS	26-04-2019 Code-05
26. Ans.	Shunt wire should be _ (A) Thick and long (B)		(C) Thin and long	(D) Thin and short
Sol.	Shunt should have low	resistance		
	$R = \frac{\rho\ell}{A}$			
	ℓ should be less			
	A should be large			
27	The dimensional formu	ula of offoctive torgional o	onstant of spring is	
21.	(A) $M^{1}L^{2}T^{-3}$	(B) $M^1L^2T^{-2}A^{-2}$	(C) $M^1L^2T^{-2}$	 (D) MºLºTº
Ans.	(C)	· · /		
Sol.	$\tau = C\theta$			
	$C = \tau/\theta$			
	$\mathbf{C} = [\mathbf{W}\mathbf{L}^{-1}]$			
28.	There are 50 turns per	cm length in a very long	solenoid. It carries a cur	rent of 2.5A. The magnetic field
	at its centre on the axis	s isT.		
Ans.	(A) 5π × 10 ⁻³ (A)	(B) 6π × 10 ⁻³	(C) $2\pi \times 10^{-3}$	(D) $4\pi \times 10^{-3}$
Sol	$B = \mu_0 n i = 4\pi \times 10^{-7} \times 10^{-$	<u>50</u> ×25		
001.		10 ⁻² ×2.0		
	$= 5\pi \times 10^{-3}$			
29.	The gyromagnetic ratio	o of an electron =	specific charge of an ele	ectron.
_	(A) 1	(B) 2	(C) 1/2	(D) 4
Ans.	(C) Ratio = $a/2m = 1/2 \times st$	pecific charge		
501.	Ratio = q/211 = 1/2 × 3	pecine charge		
30.	Alnico is an alloy of (A) Ai, Ni, Cu, P	(B) Al. Ni. Cu. Co	(C) Al. Ni. As. P	(D) Al. As. P. Pt
Ans.	(B)	(_),,,	(-)	(-),,
31.	The focal length of a th	nin lens made from the m	aterial of refractive index	1.5 is 15 cm. When it is placed
	in a liquid of refractive	index 4/3, its focal length	will be cm.	
A	(A) 80.31	(B) 50	(C) 78.23	(D) 60
Ans.	(D))		
Sol.	$\frac{1}{15} = (1.5 - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$			
	$\frac{1}{f} = \left(\frac{1.5}{4/3} - 1\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$	-)		
	$\frac{f}{15} = \frac{1/2}{(1/8)}$			
	$f = 4 \times 15 = 60 \text{ cm}$			

Resonance Eduventures Limited

REGISTERED & CORPORATE OFFICE : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph.No. :** 0744-2777777, 0744-2777700 | **Toll Free :** 1800 258 5555 | **FAX No. :** +91-022-39167222 | **To Know more :** sms **RESO** at **56677**

	Website : www.	resonance.ac.in	E-mail: contact@reso	nance.ac.in CIN: U	80302RJ2007PLC0240	29
Toll Free : 1	800 258 5555	오 73400 10333	facebook.com/ResonanceEdu	😏 twitten.com/ResonanceEdu	www.youtube.com/resowatch	Blog.resonance.ac.in

This solution was download from Resonance Solution portal

PAGE # 7

Resonance[®] Gujarat Common Entrance Test (GUJCET) 2019 | PHYSICS | 26-04-2019 | Code-05

32.	Time taken by the sunli (A) 2×10^{-8}	ight to pass through a sla (B) 2 × 10 ^{−11}	b of 4 cm and refractive (C) 2 × 10^{-10}	index 1.5 is sec. (D) 2 × 10 ¹¹		
Ans.	(C)					
Sol.	$t=\frac{d}{v}=\frac{dn}{c}=\frac{4\times10^{-2}}{3\times10^8}\times$	$\frac{3}{2}$				
	$t = 2 \times 10^{-10}$ sec.					
33.	If the tube length of ast	ronomical telescope is 96	6 cm and magnifying pow	ver is 15 for normal setting, then		
	the focal length of the c	bjective is cm.				
A no	(A) 100	(B) 90	(C) 105	(D) 92		
Ans.	(D)					
Sol.	$ m = \frac{f_0}{f_e} = 15$					
	$f_0 = 15 f_e$					
	tube length = $f_0 + f_e = 9$	6				
	$15l_e + l_e = 90$					
	$f_0 = 15 \times 6 = 90 \text{ cm}$					
34.	Photons of energy 2eV ratio of maximum spee	/ and 2.5eV successively d of emitted electron is _	v illuminate a metal who: 	se work function is 0.5 eV. The		
	(A) √3:2	(B) 2 : 1	(C) 1 : 2	(D) 2 : $\sqrt{3}$		
Ans.	(A)					
Sol.	$K.E_{max} = hv - \phi$					
	$\frac{1}{2}mv^2 = hv - \phi$					
	$\frac{v_1^2}{v_2^2} = \frac{2 - 0.5}{2.5 - 0.5} = \frac{1.5}{2} =$	$\frac{3}{4}$				
	$\frac{v_1}{v_2} = \frac{\sqrt{3}}{2}$					
	L					
35.	To increase de-Broglie	wavelength of an electr	on from 0.5 × 10 ⁻¹⁰ m to	o 10 ⁻¹⁰ m, its energy should be		
	·					
	(A) increased to 4 times	s (B) halved	(C) doubled	(D) decreased to fourth part		
Ans.	(D)					
Sol.	$\lambda = \frac{h}{p} = \frac{h}{\sqrt{2mK}}$					
	$\lambda \rightarrow 2\lambda$. \Rightarrow	$K \rightarrow \frac{K}{-}$				
		4				
Resonance Eduventures Limited REGISTERED & CORPORATE OFFICE : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005						
PR.NO.	Website : www.recond	unce ac in E-mail : contact@	resonance ac in CIN + USO	30281200701 C024020		
Toll Free	e: 1800 258 5555 \$734	00 10333 f facebook.com/Resonand	ceEdu 😏 twitter.com/ResonanceEdu	www.youtube.com/resowatch		
	This	solution was download fr	om Resonance Solution po	ortal PAGE # 8		

Code-05 Resonance[®] Gujarat Common Entrance Test (GUJCET) 2019 | PHYSICS | 26-04-2019 | Code-05

Toll Free : 1800 258 5555 S 73400 10333

This solution was download from Resonance Solution portal

Success at JEE Advanced 2018

CHAMPIONS RARELY TALK. THEY LET THEIR RESULTS DO THE TALKING.

1 Student in AIR Top - 5

5 Students in AIR Top - 50

ALL FROM CLASSROOM PROGRAM

ADMISSIONS OPEN FOR 2019-20

Classes: V to XII & XII+ Target: JEE (Main+Advanced) JEE (Main) | AIIM5/ NEET Pre-foundation | Commerce & CLAT

XII+
ed)ResoNET Datesgth89th816thJune 2019

Resonance Eduventures Limited

Registered & Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Rajasthan) - 324005 Tel. No.: 0744-2777777, 2777700 | CIN: U80302RJ2007PLC024029 Toll Free: 1800 258 5555 website: www.resonance.ac.in COURSE: VIJAY (JR) FOR CLASS: XIII Target: JEE (Main+Advanced) 2020 Course Starts from 10th June 2019

Students in

AIR Top - 100