HINTS \& SOLUTIONS

SECTION-A

11. Ans (D)

Argon $\rightarrow{ }_{18}^{40} \mathrm{Ar}$
Atomic No. $=18$
Mass No. $=40$
No. of $\mathrm{n}^{0}=40-18=22$
No. of $p^{+}=18$
If mass of n^{0} in Argon made half then, number of $n^{0}=11$
If mass of electron is doubled
Here mass of electron is negligible.
Now, new mass of Argon $=11+18=29$
Now change in mass $=40-29=11$
In $\%=\frac{11}{40} \times 100$
$=\frac{110}{40}=27.5 \%$
Mass is reduced by approximately 27%
12. Ans (B)

Common salt $(\mathrm{NaCl})=0.5 \mathrm{~g}$
Sodium $=40 \%$
lodine $=380 \mu \mathrm{gm}$
Mass of Na in common salt $=0.5 \times \frac{40}{100}=0.2 \mathrm{gm}$
Mass of iodine $=380 \times 10^{-6} \mathrm{gm}$
\therefore Mass of chloride $=0.5-0.2-\left(380 \times 10^{-6}\right)=0.29962$
No. of chloride ions $=\frac{0.29962}{35.5} \times 6.023 \times 10^{23}=5 \times 10^{21}$
13. Ans (B)

LPG \rightarrow Butane + Propane
LPG $+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
5 17ℓ
$\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{x} \ell \quad 3 \mathrm{x} \ell$
$\mathrm{C}_{4} \mathrm{H}_{10}+\mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+5 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{y} \ell \quad 4 \mathrm{y} \ell$
For LPG \rightarrow
$x+y=5$
$x=5-y$
for $\mathrm{CO}_{2} \rightarrow$
$3 x+4 y=17$
From equation (i)
$3(5-y)+4 y=17$
$15-3 y+4 y=17$
$y=2 \rightarrow \mathrm{C}_{4} \mathrm{H}_{10}$ (butane)
$x=3 \rightarrow \mathrm{C}_{3} \mathrm{H}_{8}$ (propane)
ratio $($ butane to proane $)=2: 3$
14. Ans. (D)

Acid $\rightarrow 0.42$ gm. $\left(\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{4}\right)$
Base $\rightarrow 0.17 \mathrm{M} \mathrm{(NaOH)}$,
moles of acid $=\frac{0.42}{72+10+64}$

$$
\begin{aligned}
& =\frac{0.42}{146} \\
& =2.87 \times 10^{-3} \mathrm{~mol} \\
& =2.87 \mathrm{~m} \mathrm{~mol}
\end{aligned}
$$

Milli moles of Base $=0.17 \times 33.8$

$$
\text { = } 5.746 \mathrm{~m} \mathrm{~mol} .
$$

$\because 2.87 \mathrm{~m} \mathrm{~mol}$ of Acid Neutralize 5.74 m mol of base.
So. $\quad 1 \mathrm{~m} \mathrm{~mol}$ of Acid Neutralise $=\frac{5.74}{2.87}=2 \mathrm{~m} \mathrm{~mol}$.
Means two protons per acid molecule are taking part in reaction.
For 1 mol of base Acid is required $=\frac{1}{2} \mathrm{~mol}$.

$$
\begin{aligned}
& =\frac{1}{2} \times 146 \\
& =73 \mathrm{gm}
\end{aligned}
$$

15. Ans.(D)

From Ideal gas equation.
$\mathrm{PV}=\mathrm{nRT}$.
At constant temperature.
$\mathrm{P} \propto \frac{1}{V}$
So correct graph between P vs.V

16. Ans.(D)

Given series
$\mathrm{Mg}>\mathrm{Al}>\mathrm{Zn}>\mathrm{Cu}>\mathrm{Ag}$
If copper rod is used to stir a solution of aluminium nitrate then there will be no reaction because according to given series copper is less reactive than aluminium.
17. Ans.(A)

Compound (P) is $\mathrm{NaCl} \rightarrow$
Electrolysis of aqueous NaCl :

"P"

Gas 'Q' will be Cl_{2} because it will form germicide, Bleaching powder $\left(\mathrm{CaOCl}_{2}\right)$ with $\mathrm{Ca}(\mathrm{OH})_{2}$
$\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{Cl}_{2} \longrightarrow \mathrm{CaOCl}_{2}$
" R " "Q" Bleaching powder
18. Ans,. (D)
$\mathrm{Fe}^{2+}+\mathrm{MnO}_{4}^{-}+\mathrm{H}^{+} \longrightarrow \mathrm{Fe}^{3+}+\mathrm{Mn}^{2+}+\mathrm{H}_{2} \mathrm{O}$
Balanced Eq.
$5 \mathrm{Fe}^{2+}+\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+} \longrightarrow 5 \mathrm{Fe}^{3+}+\mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$
$5+1+8+5+1+4 \Rightarrow 24$
19. Ans. (C)
(a) $\quad 2 \stackrel{+4}{\mathrm{NO}_{2}}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}^{+5} \mathrm{O}_{3}+\mathrm{H}^{+3} \mathrm{NO}_{2}$

Oxidation No. of Nitrogen (+4) in NO_{2} changed to +5 and +3 . In a disproportionation reaction an element in one oxidation state is simultaneously oxidised and reduced". So it is disproportionation reaction.
(b)

$$
3 \stackrel{0}{\mathrm{~S}}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \stackrel{+4}{\mathrm{SO}_{2}}+2 \mathrm{H}_{2}^{-2} \mathrm{~S}
$$

O.S. of sulphur changed from 0 to +4 and -2

So it is disproportionation Reaction
(c)

O.N. of Nitrogen changed from $-3 \&+5$ to +1 .

In comproportionation reaction, two different oxidation state of an element in reactant state is simultaneously oxidised and reduced to a single oxidation state in product.
So it is comproportionation Reaction.
(d) $\quad 3 \stackrel{0}{\mathrm{Cl}}_{2}+6 \mathrm{OH}^{-} \longrightarrow 5 \mathrm{Cl}^{-1}+\stackrel{+5}{\mathrm{ClO}_{3}^{-}}+3 \mathrm{H}_{2} \mathrm{O}$
O.N. of Cl changed from 0 to $-1 \&+5$

So it is disproporationation Reaction.
20. Ans. (C)
$(n-1) s^{2} p^{6}, n s^{1}$
21. (B)

$v_{1}=\frac{u_{1}+u_{2}}{2}$
$v_{2}=\frac{u_{2}+u_{3}}{2}$
$v_{3}=\frac{u_{3}+u_{4}}{2}$
$\mathrm{u}_{2}=\mathrm{u}_{1}+\mathrm{a} \Delta \mathrm{t}_{1}$
$\mathrm{u}_{3}=\mathrm{u}_{2}+\mathrm{a} \Delta \mathrm{t}_{2}=\mathrm{u}_{1}+\mathrm{a}\left(\Delta \mathrm{t}_{1}+\Delta \mathrm{t}_{2}\right)$
$u_{4}=u_{3}+a \Delta t_{3}=u_{1}+a\left(\Delta t_{1}+\Delta t_{2}+\Delta t_{3}\right)$
$\frac{v_{2}-v_{1}}{v_{3}-v_{2}}=\frac{u_{2}+u_{3}-u_{1}-u_{2}}{u_{3}+u_{4}-u_{2}-u_{3}}=\frac{u_{3}-u_{1}}{u_{4}-u_{2}}=\frac{a\left(\Delta t_{1}+\Delta t_{2}\right)}{a\left(\Delta t_{2}+\Delta t_{3}\right)}$
$\frac{v_{2}-v_{1}}{\Delta t_{1}+\Delta t_{2}}=\frac{v_{3}-v_{2}}{\Delta t_{3}+\Delta t_{2}}$
22. (D)

$\mathrm{t}=\frac{\mathrm{d}}{\mathrm{v}_{\mathrm{mr}} \sin \theta}$
If $\sin \theta=1$ them t will be minimum and for Q., $\theta=90^{\circ}$
so Q will reach in minimum time towards east of x.
23. (C)

By work energy theorem between A \& C
W = $\Delta \mathrm{K}$
$\mathrm{W}_{\mathrm{f}}+\mathrm{W}_{\mathrm{g}}=\mathrm{K}_{\mathrm{f}}-\mathrm{K}_{\mathrm{i}}$
$-f\left(\frac{H}{2}\right)+m\left(H+\frac{H}{2}\right) g=0-0$
$m\left(\frac{3 H}{2}\right) g=\frac{f H}{2}$
$\mathrm{f}=3 \mathrm{mg}$
24. (B)

Potential difference across unit length $(x)=\frac{10}{L}$
In balanced condition no current will flow through galvanometer (G) so there will not be any effect of resistance r.
$E=x \ell=\frac{10}{L} \ell \Rightarrow \ell=\frac{E \times L}{10}$
25. (D)

$\mu_{1} \sin \mathrm{i}=\mu_{2} \sin \mathrm{r}$
$\frac{4}{3} \sin i=\sin r$
$\frac{4}{3} i=r \quad\left[\because \sin i=i=\tan i=\frac{x}{f} \& \sin r=r=\tan r=\frac{x}{v}\right]$
$\frac{4}{3} \frac{x}{f}=\frac{x}{v}$
$v=\frac{3}{4} f=0.75 f$
26. (D)

Image by $\mathbf{M}_{\mathbf{1}}$	Image by $\mathbf{M}_{\mathbf{2}}$
25°	25°
75°	75°
125°	125°
175°	175°

$4+4=8$
$175+175 \neq 360^{\circ}$
So no image coincide

27.
(B)

Efficiency of heating element is 50%
So power $=210 \mathrm{~J} / \mathrm{S}$
That means in 1 sec supplied heat is 210 J
So in 60 sec in supplied heat is $=210 \times 60 \mathrm{~J}$
Now $\quad Q=m S \Delta t$

$$
\begin{aligned}
& 210 \times 60=m \times 4.2 \times 10^{3} \times 5 \\
& m=\frac{210 \times 60}{4.2 \times 10^{3} \times 5}=\frac{210 \times 60}{21 \times 10^{3}}=\frac{600}{1000}=0.6 \mathrm{~kg} / \mathrm{min}
\end{aligned}
$$

Now

$$
\rho=\frac{\mathrm{m}}{\mathrm{~V}}
$$

So

$$
\mathrm{V}=\frac{\mathrm{m}}{\rho}=\frac{0.6}{10^{3}} \times 10^{3} \frac{\mathrm{~L}}{\mathrm{~min}}=0.6 \frac{\mathrm{~L}}{\mathrm{~min}}
$$

28. (C)

Total resistance in || combination $=\frac{r}{N}$ (Assuming each resistance is of value r)
Total resistance in series combination $=r \mathrm{~N}$
$\therefore \quad$ Power displacement in $\|=\frac{\mathrm{E}^{2}}{\mathrm{r} / \mathrm{N}}$

$$
\text { Power dissipated in series }=\frac{\mathrm{E}^{2}}{\mathrm{rN}}
$$

$$
\therefore \quad \text { Ratio }=\mathrm{N}^{2}
$$

29. (D)

Since $R+G=$ Yellow colour .
So image will be yellow.
30. (A)
$N(\theta) \alpha \frac{1}{\sin ^{4} \frac{\theta}{2}}$
So, graph between number of particles and scattered angle is

SECTION-B

31. A .

$$
\begin{array}{lll}
\text { A. } & \text { (C) } \quad \frac{\text { Leaf weight }+ \text { Stem Weight }}{\text { Root weight }} \\
\text { B. } & \text { (i) } \frac{\text { Leaf weight }+ \text { Stem Weight }}{\text { Root weight }} \\
& & \frac{0.126+0.283}{0.239}=1.711 \\
& \text { (ii) } \frac{0.061+0.138}{0.089}=2.2359 \\
\text { C. } & \text { (i) } X=\text { Yes } \\
& \text { (ii) } \mathrm{No} \\
\text { D. } & \text { (a) } \frac{\text { Leaf weight }}{\text { Leaf area }}
\end{array}
$$

32. A. 0.0055 M
B.

Corporate Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

C. $\quad 120 \mathrm{mg} \%$
D. $\quad 50 \mathrm{mg}$ \%
33. (A)
(i) Z (More in number so producers).
(ii) Y (Herbivores)
(iii) X (Carnivores)
(B) Average weight of $Z=0.0060 \mathrm{gm}$.

Total weight $=0.0060 \times 200=1.2$
Average weight of $\mathrm{Y}=0.0025$
Total weight $=0.0025 \times 40=0 \%$
$=\frac{.1 \times 100}{1.2}=8.3$
(C) 17
(D) a
34. (A) $\left\{16 \mathrm{H}^{+}+10 \mathrm{e}^{-}+2 \mathrm{MnO}_{4}^{-} \rightarrow 2 \mathrm{Mn}^{+2}+8 \mathrm{H}_{2} \mathrm{O} \ldots \ldots\right.$. (i) $\} \times 2$
$\left\{5 \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \rightarrow 10 \mathrm{CO}_{2}+10 \mathrm{e}^{-}\right.$
(ii) $\} \times 5$

Solving equation (i) and (ii)
$2 \mathrm{KMnO}_{4}+5 \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{MnSO}_{4}+8 \mathrm{H}_{2} \mathrm{O}+10 \mathrm{CO}_{2}$
(B) (i) KMnO_{4}
(ii) $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
(C) Mole of KMnO_{4} participated $=\mathrm{M} \times \mathrm{V}=0.1 \times 17.8 \times 10^{-3}$

$$
=1.78 \times 10^{-3}
$$

according to above equation -
for 2 mole of $\mathrm{KMnO}_{4} 5$ moles of oxalic acid required
\therefore for $1.78 \times 10^{-3} \mathrm{~mol}$ of KMnO_{4}, moles of oxalic acid required $=\frac{5 \times 1.78 \times 10^{-3}}{2}=4.45 \mathrm{~m} \mathrm{~mol}$
(D) $\quad \mathrm{CaCO}_{3}+\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \rightarrow \mathrm{CaC}_{2} \mathrm{O}_{4}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
$\mathrm{CaC}_{2} \mathrm{O}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+\mathrm{CaSO}_{4}$
According to above equation for 4.45 m mol of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}, \mathrm{CaCO}_{3}$ required $=4.45 \times 100 \times 10^{-3} \mathrm{~g}$ $=0.445 \mathrm{~g}$
(E) Given mass of sample $=0.626 \mathrm{~g}$

So, mass of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ in sample $=0.626-0.445=0.181 \mathrm{~g}$
$\%$ of $\mathrm{Na}_{2} \mathrm{SO}_{4}=\frac{0.181}{0.626} \times 100=28.91 \%$
35.
$\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\ell)+(\mathrm{E})$
Mass of water (M) $=90 \mathrm{~g}$
$\mathrm{S}=4.18 \mathrm{~J} / \mathrm{gm}^{\circ} \mathrm{C}$
$\Delta T=30.5-29=1.5$
(A) Heat absorbed by water
$\mathrm{Q}_{\text {water }}=\mathrm{M} \mathrm{S} \Delta \mathrm{T}$
$=90 \times 4.18 \times 1.5$
$Q_{\text {water }}=564.3 \mathrm{~J}$
(B) For 0.01 mole of water formation heat absorbed by water is $=564.3 \mathrm{~J}$
$\begin{array}{ll}\mathrm{OH}^{-}(\mathrm{aq})\end{array}+\mathrm{H}^{+}(\mathrm{aq}) \rightarrow+\mathrm{H}_{2} \mathrm{O}(\ell)$
\because From 0.01 mole heat released $=564.3 \mathrm{~J}$
\therefore Now for 1 mole heat evolved $=\frac{564.3 \mathrm{~J} \times 1}{0.01}$
$=56430 \mathrm{~J}=56.430 \mathrm{~kJ}$
36.

	\% by mass	Atomic mass	Relative mole	
C	85.7	12	$85.7 / 12$	7.14
H	14.30	1	$14.30 / 1$	14.3

	Simplest ratio
C	1
H	2

Empirical formula $=\mathrm{CH}_{2}$
Empirical formula mass $=14 \mathrm{gm}$
Molecular formula $=($ Empirical formula $) \times n$
Molecular mass $(M)=\frac{\text { density } \times R \times T}{P}=\frac{2.28 \times 0.0821 \times 300}{1}$
Molecular mass (M) $=56.15 \mathrm{~g}$
(A) No. of moles of carbon in 100 g of compound
\% of $C=85.7 \%$
Number of Moles $=\frac{85.7}{12}=7.14$
(B) No. of moles of $\mathrm{H}=14.3$ mole
(C) Empirical formula of the compound $=\mathrm{CH}_{2}$
(D) Moles / Litre of compound $=\frac{\operatorname{density}(\mathrm{g} / \mathrm{L})}{\mathrm{M}}=0.0406$
(E) Empirical formula unit $(\mathrm{n})=4$
(F) Molecular formula $=\mathrm{C}_{4} \mathrm{H}_{8}$

$$
\begin{aligned}
& \mathrm{n}=\frac{\text { Molecularmass }}{\text { empiricalformulamass }} \\
& \mathrm{n}=\frac{56.14}{14}=4 \\
& \text { Molecular formula }=\mathrm{C}_{4} \mathrm{H}_{8}
\end{aligned}
$$

37.

For point $\mathrm{A}_{1} \mathrm{~A}_{2}$
$u=-18^{\prime \prime}$ and $f=-12^{\prime \prime}$
so from mirror formula $\frac{1}{f}=\frac{1}{v_{1}}+\frac{1}{u}$
$\frac{1}{v_{1}}=\frac{1}{f}-\frac{1}{u}=\frac{-1}{12}-\left(-\frac{1}{18}\right)$
$=-\frac{1}{12}+\frac{1}{18}=\frac{-3+2}{36}$
$v_{1}=-36^{\prime \prime}$
Now for point $B_{1} B_{2}$
$\mathrm{u}=-30^{\prime \prime}$ and $\mathrm{f}=-12^{\prime \prime}$
So from mirror formula
$\frac{1}{f}=\frac{1}{v_{2}}+\frac{1}{u}$
$\frac{1}{v_{2}}=\frac{1}{f}-\frac{1}{u}$
$=\frac{-1}{12}-\left(-\frac{1}{30}\right)=\frac{-30+12}{360}$
$\frac{1}{v_{2}}=\frac{-18}{360} \Rightarrow v_{2}=-20^{\prime \prime}$.
Image of $\mathrm{C}_{1} \mathrm{C}_{2}$ will be at $-24^{\prime \prime}$
for point $A_{1} A_{2}$
$h_{2}=-\frac{v}{u} h_{1}=-\frac{-36}{-18} \times 3=-6^{\prime \prime}$.
And for point $\mathrm{B}_{1} \mathrm{~B}_{2}$
$h_{2}=\frac{v}{u} h_{1}=\frac{-20}{-30} \times 3=-2^{\prime \prime}$.

So for point $\mathrm{C}_{1} \mathrm{C}_{2}$
$h_{2}=\left(\frac{6-2}{36-20}\right)(24-20)+2=\frac{4 \times 4}{16}+2$
$h_{2}=3^{\prime \prime}$.
(A) $\frac{\lambda}{4}=L+e$
$\frac{\lambda}{4}=L+0.3 \times D$
$\therefore \frac{\lambda}{4}=\mathrm{L}+0.015 \quad \mathrm{D}=0.05 \mathrm{~m}$
$\frac{v}{4 f}=L+0.015$
$\frac{1}{f}=\frac{4}{v}[L+0.015]$
$T=\frac{4}{v}[L+0.015]$
(i) $\quad \mathrm{X}$-axis $\rightarrow \mathrm{L}$
(ii) \quad-axis $\rightarrow T$

$$
\begin{aligned}
& y=\frac{4}{v}[x+0.015] \\
& \text { or } y=m x+c \\
& \text { where } m=\frac{4}{v} \& c=\frac{0.06}{v}
\end{aligned}
$$

(B)

L(cm) X-axis	19.9	16	10	7.5	5.1
T(s)	0.0025	.002	.00133	.001	0.0008

(C) Graph

(D) From graph $\mathrm{C}=0.00018$

$$
\therefore \quad 0.00018=\frac{0.06}{v} \Rightarrow v=333 \mathrm{~m} / \mathrm{s}
$$

