

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

	SONANCE JEE MAIN-2023 DATE : 01-02-2023 (SHIFT-1) PAPER-1 MATHEMATICS	
63.	The shortest distance between the lines	
	$\frac{x-5}{1} = \frac{y-2}{2} = \frac{z-4}{-3} \text{ and } \frac{x+3}{1} = \frac{y+5}{4} = \frac{z-1}{-5} \text{ is}$	
	(1) $7\sqrt{3}$ (2) $6\sqrt{3}$ (3) $4\sqrt{3}$ (4) $5\sqrt{3}$	
Ans.	(2)	
Sol.	The shortest distance between lines	
	$\frac{x-5}{1} = \frac{y-2}{2} = \frac{z-4}{-3}$ and $\frac{x+3}{1} = \frac{y+5}{4} = \frac{z-1}{-5}$	
	$\vec{r}_1 = (5i+2j+4k) + \lambda_1(i+2j-3k) = \vec{a}_1 + \lambda_1 \vec{b}_1$	
	$\vec{r_2} = (-3i - 5j + k) + \lambda_2(i + 4j - 5k) = \vec{a_2} + \lambda_2 \vec{b_2}$	
	Shortest distance between $\vec{r_1}$ and $\vec{r_2}$ be	
	$\left[\left(\vec{\mathbf{b}}_{1}\times\vec{\mathbf{b}}_{2}\right),\left(\vec{\mathbf{a}}_{2}-\vec{\mathbf{a}}_{1}\right)\right]$	
	$d = \left \frac{1}{ \vec{r} + \vec{r} } \right $	
	$ \mathbf{D}_1 \times \mathbf{D}_2 $	
	Where , $\vec{b_1} \times \vec{b_2} = \begin{vmatrix} 1 & 2 & -3 \end{vmatrix} = 2\hat{i} + 2\hat{j} + 2\hat{k}$	
	1 4 -5	
	and $ \vec{\mathbf{b}}_1 \times \vec{\mathbf{b}}_2 = 2\sqrt{3}$	
	$d = \left[(2\hat{i} + 2\hat{j} + 2\hat{k}) \cdot (-8\hat{i} - 7\hat{j} - 3\hat{k}) \right]$	
	2√3	
	$d = \frac{-16 - 14 - 6}{2\sqrt{3}}$	
	$d = \frac{36}{2\sqrt{2}} = 6\sqrt{3}$	
64	$2\sqrt{3}$	
04.	1 2 3	
	$\frac{1}{1+1^2+1^4} + \frac{1}{1+2^2+2^4} + \frac{1}{1+3^2+3^4} + \dots $ is	
	(1) $\frac{56}{111}$ (2) $\frac{58}{111}$ (3) $\frac{55}{111}$ (4) $\frac{59}{111}$	
Ans.		
Sol.	$t_n = \frac{n}{1 + n^2 + n^4} = \frac{n}{(n^2 + n + 1)(n^2 - n + 1)}$	
	$\frac{1}{2} \left(\left(n^2 - n + 1 \right) \left(n^2 + n + 1 \right) \right)$	
	$t_1 = \frac{1}{2} \left(1 - \frac{1}{3} \right)$	

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 F facebook.com/ResonanceEdu www.youtube.com/resowatch bog.resonance.ac.in

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 **| FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

$$\begin{split} \hline \textbf{Construction} & \textbf{Y} \text{ JEE MAIN-2023 | DATE : } 01-02-2023 (SHIFT-1) | PAPER-1 MATHEMATICS} \\ & \textbf{S} = \frac{35 + \alpha^2 + \beta^2}{5} - 25 \\ & \textbf{33} \times 5 - 35 = \alpha^2 + \beta^2 \\ & \alpha^2 + \beta^2 = 130 \qquad (2) \\ & (\alpha + \beta)^2 = \alpha^2 + \beta^2 + 2\alpha\beta \\ & 256 - 130 - 2\alpha\beta \Rightarrow \alpha\beta = 63 \\ & \alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta (\alpha + \beta) \\ & = 4096 - 3024 \\ & = 1072 \\ \hline \textbf{67.} \quad \text{Let S be the set of all solutions of the equation $\cos^{-1}(2x) - 2\cos^{-1}\left(\sqrt{1-x^2}\right) = \pi, \ x \in \left[-\frac{1}{2}, \frac{1}{2}\right]. \text{ Then } \\ & \sum_{x=5}^{2} 2 \sin^{-1}(x^2-1) \text{ is equal to} \\ & (1) 0 \qquad (2) - \frac{2\pi}{3} \qquad (3) \pi - 2\sin^{-1}\left(\frac{\sqrt{3}}{4}\right) \qquad (4) \pi - \sin^{-1}\left(\frac{\sqrt{3}}{4}\right) \\ & \textbf{Ans.} \quad (2) \\ \hline \textbf{Sol.} \quad \text{Given, } \cos^{-1}(2x) - 2\cos^{-1}\left(\sqrt{1-x^2}\right) = \pi, \ x \in \left[-\frac{1}{2}, \frac{1}{2}\right] \\ & \therefore -2\cos^{-1}\left(\sqrt{1-x^2}\right) = \pi - \cos^{-1}(2x) \\ & \text{by using } 2\cos^{-1}x = \cos^{-1}(2x) \\ & \Rightarrow -\cos^{-1}(2x^2-1) = \pi - \cos^{-1}(2x) \\ & \Rightarrow -\cos^{-1}(2-2x^2-1) = \pi + \cos^{-1}(2x) \\ & \Rightarrow -\cos^{-1}(2-2x^2-1) = \pi - \cos^{-1}(2x) \\ & \Rightarrow -\cos^{-1}(2-2x^2-1) = \pi - \cos^{-1}(2x) \\ & \Rightarrow -\cos^{-1}(2-2x^2-1) = \pi - \cos^{-1}(2x) \\ & \Rightarrow -\cos^{-1}(2-2x^2-1) = 2\sin^{-1}\left(\frac{1}{2}, \frac{1}{2}\right) \\ & \therefore x = \frac{1 - \sqrt{3}}{2} = \left(-\frac{1}{2}, \frac{1}{2}\right) \\ & \therefore x = \frac{1 + \sqrt{3}}{2} = \frac{1 - \sqrt{3}}{2} \\ & \therefore x = \frac{1 + \sqrt{3}}{2} = \frac{1 - \sqrt{3}}{2} \\ & \therefore x = \frac{1 - \sqrt{3}}{2} = 2 \sin^{-1}\left(\left(\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)^2 - 1\right) = 2\sin^{-1}\left(\frac{1}{4}, \frac{4}{4}, -\frac{\sqrt{3}}{2}, -1\right) \\ & = 2\sin^{-1}\left[-\frac{\sqrt{3}}{2}\right] = 2 \times \left(-\frac{\pi}{3}\right) = -\frac{2\pi}{3} \end{aligned}$$$

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 555
Tol

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

EXECUTIVE:
$$| \textbf{JEE MAIN-2023 | DATE : 01-02-2023 (SHIFT-1) | PAPER-1 MATHEMATICS}$$

72. Let S denote the set of all real values of λ such that the system of equations $\lambda x + \gamma + z = 1$
 $x + \lambda \gamma + z = 1$
 $x + \lambda \gamma + z = 1$
is inconsistent, then $\sum_{\lambda = 5}^{1} \left(\lambda |^2 + | \lambda | \right)$ is equal to
(1) 12 (2) 4 (3) 2 (4) 6
Ans. (4)
Sol. $D = \begin{vmatrix} \lambda & 1 & 1 \\ 1 & \lambda & 1 \\ 1 & 1 & 1 \\ 1 & 1 & \lambda \end{vmatrix}$ ($\lambda = (\lambda - 1)^2 (\lambda + 2)$) If $D = 0 \Rightarrow \lambda = 1, -2$
 $D = \begin{vmatrix} 1 & 1 & 1 \\ 1 & \lambda & 1 \\ 1 & 1 & \lambda \end{vmatrix}$ ($\lambda = (\lambda - 1)^2$ ($\lambda = 2$) If $D = 0 \Rightarrow \lambda = 1, -2$
when $\lambda = 1$, all equations are identical so number of solutions are infinite.
So for inconsistent system , λ can be equal to -2 only.
 $\therefore \sum_{\lambda = 5}^{1} (\lambda |\lambda|^2 + |\lambda|) = |-2|^2 + |-2| = 4 + 2 = 6$
73. Let $f(x) = \begin{vmatrix} 1 + \sin^2 x & \cos^2 x & \sin 2x \\ \sin^2 x & \cos^2 x & 1 + \sin 2x \\ \sin^2 x & \cos^2 x & 1 + \sin 2x \end{vmatrix}$, $x \in \begin{bmatrix} \pi & \pi \\ 6 & 3 \end{bmatrix}$. If α and β respectively are the maximum and the minimum values of 1 , then
(1) $\beta^2 + 2\sqrt{\alpha} = \frac{19}{4}$ (2) $\alpha^2 + \beta^2 = \frac{9}{2}$ (3) $\alpha^2 - \beta^2 = 4\sqrt{3}$ (4) $\beta^2 - 2\sqrt{\alpha} = \frac{19}{4}$
Ans. (4)
Sol. $f(x) = \begin{vmatrix} 1 + \sin^2 x & \cos^2 x & \sin 2x \\ \sin^2 x & \cos^2 x & 1 + \sin 2x \end{vmatrix}$, $x \in \begin{bmatrix} \pi & \pi \\ 6 & 3 \end{bmatrix}$
 $f(x) = \sum_{x \to 5} R_1 - R_2$
 $f(x) = \sum_{x \to 7} R_1 - R_3$
 $f(x) = 2 + \sin 2x$ $\begin{bmatrix} x c \begin{pmatrix} \pi & \pi \\ 3 & 3 \end{pmatrix} \\ 2x c \begin{pmatrix} \pi & 2\pi \\ 3 & -3 \end{pmatrix} \end{bmatrix}$
max($f(x) = 3 = \alpha$
Min $f(x) = 2 + \frac{\sqrt{3}}{2} = \beta$
 $\therefore \beta^2 = \left(2 + \frac{\sqrt{3}}{2}\right)^2 = 4 + \frac{3}{4} + 2\sqrt{3} = \frac{19}{4} + 2\sqrt{3}$ $\therefore \beta^2 - 2\sqrt{\alpha} = \frac{19}{4} + 2\sqrt{3} - 2\sqrt{3} = \frac{19}{4}$

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 bwitter.com/ResonanceEdu

🔨 Resonance" | JEE MAIN-2023 | DATE : 01-02-2023 (SHIFT-1) | PAPER-1 MATHEMATICS

74. The combined equation of the two lines ax + by + c = 0 and a'x + b'y + c' = 0 can be written as (ax + by + c) (a'x + b'y + c') = 0. The equation of the angle bisectors of the lines represented by the equation $2x^2 + xy - 3y^2 = 0$ is (1) $3x^2 + 5xy + 2y^2 = 0$ (2) $x^2 - y^2 - 10xy = 0$ (3) $3x^2 + xy - 2y^2 = 0$ (4) $x^2 - y^2 + 10xy = 0$ Ans. (2)Equation of angle bisectors is $\frac{x^2 - y^2}{2 + 3} = \frac{xy}{1}$ Sol. $\Rightarrow \frac{x^2 - y^2}{5} = 2xy$ \Rightarrow $x^2 - y^2 = 10xy$ \Rightarrow x² - y² - 10xy = 0 75. For a triangle ABC, the value of cos2A + cos2B + cos2C is least. If its inradius is 3 and incentre is M, then which of the following is NOT correct ? (1) area of $\triangle ABC$ is $\frac{27\sqrt{3}}{2}$ (2) $\sin 2A + \sin 2B + \sin 2C = \sin A + \sin B + \sin C$ (3) perimeter of $\triangle ABC$ is $18\sqrt{3}$ (4) \overrightarrow{MA} . $\overrightarrow{MB} = -18$ Ans. (1)Sol. cos2A + cos2B + cos2C is least when $A = B = C = 60^{\circ}$ So M will be coincident with circumcentre $r = \frac{\Delta}{s} = 3 \Rightarrow \frac{\frac{\sqrt{3}}{4}a^2}{\frac{3a}{2}} = 3$ 6 $2\pi/3$ $\frac{a}{2\sqrt{3}} = 3 \Rightarrow a = 6\sqrt{3}$ M С в Perimeter = $3a = 18\sqrt{3}$ Area of $\triangle ABC = \frac{\sqrt{3}}{4}a^2 = \frac{\sqrt{3}}{4} \times 36 \times 3 = 27\sqrt{3}$ sin2A + sin2B + sin2c = $\frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} = \frac{3\sqrt{3}}{2}$ $\sin A + \sin B + \sin C = \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} = \frac{3\sqrt{3}}{2}$ $\overrightarrow{MA}.\overrightarrow{MB} = \overrightarrow{MA}\overrightarrow{MB}$ cos $\frac{2\pi}{3}$ $\left|\overrightarrow{\mathsf{MA}}\right| = \left|\overrightarrow{\mathsf{MB}}\right| = \mathsf{R} = \frac{\mathsf{a}^3}{4 \cdot \frac{\sqrt{3}}{4} \mathsf{a}^2} = \frac{\mathsf{a}}{\sqrt{3}} = \mathsf{6}$ So, $\overrightarrow{MA}.\overrightarrow{MB} = 6 \times 6 \times \left(-\frac{1}{2}\right) = -18$

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

Resonance[®] | JEE MAIN-2023 | DATE : 01-02-2023 (SHIFT-1) | PAPER-1 MATHEMATICS

76.	If y = y(x) is the solution curve of the differential equation $\frac{dy}{dx} + y \tan x = x \sec x$, $0 \le x \le \frac{\pi}{3}$, y(0) = 1,				
	then $y\left(\frac{\pi}{6}\right)$ is equal to				
	(1) $\frac{\pi}{12} - \frac{\sqrt{3}}{2} \log_{e} \left(\frac{2}{e\sqrt{3}} \right)$ (2) $\frac{\pi}{12} + \frac{\sqrt{3}}{2} \log_{e} \left(\frac{2}{e\sqrt{3}} \right)$				
	(3) $\frac{\pi}{12} + \frac{\sqrt{3}}{2} \log_{e} \left(\frac{2\sqrt{3}}{e} \right)$ (4) $\frac{\pi}{12} - \frac{\sqrt{3}}{2} \log_{e} \left(\frac{2\sqrt{3}}{e} \right)$				
Ans.	(1)				
Sol.	$\frac{dy}{dx} + y \tan x = x \sec x \text{ and } 0 \le x \le \frac{\pi}{3}$ it is LDE in y I. F.= $e^{\int \tan x dx} = e^{\ln \sec x} = \sec x$ \therefore solution is				
	$x_{x} \sec x = \int x \sec x dx + c$				
	$ysecx = \int x sec^2 x dx + c$				
	$y \sec x = x \tan x - \int \tan x dx + c$				
	$y \sec x = x \tan x - \ell n \sec x + c$				
	$y(0) = 1$ $\therefore 1 = 0 - 0 + c$ c = 1				
	$\therefore y \sec x = x \tan x - \ln \sec x + 1$				
	$\frac{\pi}{2} \cdot \frac{1}{\sqrt{2}} - \ell n \frac{2}{\sqrt{2}} + 1 \frac{\pi}{\sqrt{2}} - \ell n \frac{2}{\sqrt{2}}$				
	now y $\left(\frac{\pi}{6}\right) = \frac{6\sqrt{3}}{2} = \frac{\sqrt{3}}{2} = \frac{6\sqrt{3}}{2} = \frac{\pi}{12} - \frac{\sqrt{3}}{2} \ln \frac{2}{\sqrt{2}}$				
	$\frac{1}{\sqrt{3}} \qquad \frac{1}{\sqrt{3}} \qquad 1$				
77	If the centre and radius of the circle $ z-2 = 2$ are respectively (α, β) and γ , then $3(\alpha + \beta + \gamma)$ is equal to				
	in the centre and radius of the circle $\left \frac{z-3}{z-3}\right = 2$ are respectively (a,p) and y, then $5(a + p + y)$ is equal to				
Ans.	(1) 12 (2) 11 (3) 10 (4) 9 (1)				
Sol.	$\left \frac{z-2}{z}\right = 2$				
	z-3 $(z-2)(\overline{z}-2) - 4(\overline{z}-3)(z-3)$				
	$\Rightarrow z\overline{z} - 2z - 2\overline{z} + 4 = 4(z\overline{z} - 3z - 3\overline{z} + 9)$				
	$3z\overline{z} - 10z - 10\overline{z} + 32 = 0$				
	$z\overline{z} - \frac{10}{3}z - \frac{10}{3}\overline{z} + \frac{32}{3} = 0$				
	$\alpha = -\frac{10}{3} \qquad \qquad c = \frac{32}{3}$				
	centre $\left(\frac{10}{3},0\right)$ $\gamma = \sqrt{ \alpha ^2 - c} = \sqrt{\frac{100}{9} - \frac{32}{3}} = \frac{2}{3}$				
	$\alpha = \frac{10}{3}, \beta = 0, \gamma = \frac{2}{3}$				
	$\therefore \alpha + \beta + \gamma = \frac{10}{3} + \frac{2}{3} = \frac{12}{3} \therefore 3(\alpha + \beta + \gamma) = 12$				
	Resonance Eduventures Ltd.				

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-277777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 f acebook.com/ResonanceEdu vww.youtube.com/resowatch com/resowatch building b

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

80.	The negation of the expression $q \vee ((\sim q) \wedge p)$ is equivalent to
	(1) $p \land (\sim q)$ (2) $(\sim p) \land (\sim q)$ (3) $(\sim p) \lor (\sim q)$ (4) $(\sim p) \lor q$
Ans.	(2)
Sol.	Ne <mark>gat</mark> ion of given statement is
	~ (q ∨ (~ q) ∧ p))
	$\equiv \sim \mathbf{q} \wedge \sim ((\sim \mathbf{q}) \wedge \mathbf{p})$
	$\equiv \sim \mathbf{q} \land (\mathbf{q} \lor \sim \mathbf{p})$
	$\equiv (\sim q \land q) \lor (\sim q \land \sim p)$
	$\equiv \sim q \wedge \sim p$
	$= p \wedge \nabla q$
81.	If $\int_{0}^{1} (x^{21} + x^{14} + x^7)(2x^{14} + 3x^7 + 6)^{1/7} dx = \frac{1}{\ell} (11)^{m/n}$ where ℓ , m, n \in N, m and n are co-prime then
	ℓ + m + n is equal to
Ans.	(63)
Sol.	$\int (x^{20} + x^{13} + x^6)(2x^{21} + 3x^{14} + 6x^7)^{1/7} dx$
	0^{1}
	$\frac{2x^{-1} + 5x^{-1} + 6x^{-1} = 1}{42(x^{20} + x^{13} + x^6) dx} = dt$
	$(\mathbf{a})^{11}$
	$1 \frac{11}{1} \frac{1}{7} \frac{1}{7} \frac{1}{7} \frac{1}{7} = 1 \frac{1}{7} \frac{1}{$
	$\frac{1}{42}\int_{0}^{1}t' dt = \left \frac{1}{8} \times \frac{1}{42}\right = \frac{1}{48}\left \frac{t'}{48}\right = $
	$\left(\frac{7}{7}\right)_0$
	$\ell = 48, m = 8, n = 7$
	$\ell + m + n = 63$
B	
82.	Let $v = \alpha i + 2j - 3k$, $w = 2\alpha i + j - k$ and u be a vector such $ u = \alpha > 0$. If the minimum value of the
	scalar triple product $[\vec{u} \ \vec{v} \ \vec{w}]$ is $-\alpha\sqrt{3401}$ and $ \vec{u} \ \hat{i} ^2 = \frac{m}{r}$ where m and n are co-prime natural number
	then $m + n$ is equal to
Ans.	(3501)
Sol.	$\left[\vec{u}\vec{v}\vec{w}\right] = \vec{u}\left(\vec{v}\times\vec{w}\right)$
	$= \vec{u} \vec{v}\times\vec{w} \cos\theta$
	$=\alpha \vec{x} \times \vec{w} \cos \theta$
	when $\theta = \pi$
	$\begin{bmatrix} \vec{u} \vec{v} \vec{w} \end{bmatrix} = -\alpha \vec{v} \times \vec{w} = -\alpha \sqrt{3401}$
	\Rightarrow $\mathbf{v} \times \mathbf{w} \models \sqrt{3401}$
	$\Rightarrow \alpha 2 -3 = \sqrt{3401}$
	$\Rightarrow \begin{vmatrix} \alpha & 2 & -3 \\ 2\alpha & 1 & -1 \end{vmatrix} = \sqrt{3401}$
	$\Rightarrow \begin{vmatrix} \alpha & 2 & -3 \\ 2\alpha & 1 & -1 \end{vmatrix} = \sqrt{3401}$ $\Rightarrow \begin{vmatrix} \hat{i} - 5\alpha \hat{i} - 3\alpha \hat{k} \end{vmatrix} = \sqrt{3401}$
	$\Rightarrow \begin{vmatrix} \alpha & 2 & -3 \\ 2\alpha & 1 & -1 \end{vmatrix} = \sqrt{3401}$ $\Rightarrow \begin{vmatrix} \hat{i} - 5\alpha \hat{j} - 3\alpha \hat{k} \end{vmatrix} = \sqrt{3401}$ $\Rightarrow 1 + 25\alpha^2 + 9\alpha^2 = 3401$
	$\Rightarrow \begin{vmatrix} \alpha & 2 & -3 \\ 2\alpha & 1 & -1 \end{vmatrix} = \sqrt{3401}$ $\Rightarrow \begin{vmatrix} \hat{i} - 5\alpha \hat{j} - 3\alpha \hat{k} \end{vmatrix} = \sqrt{3401}$ $\Rightarrow 1 + 25\alpha^2 + 9\alpha^2 = 3401$ $\Rightarrow 34\alpha^2 = 3400$

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 F facebook.com/ResonanceEdu www.youtube.com/resowatch bog.resonance.ac.in

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

84.	Let A be the area bounded by the curve $y = x x - 3 $, the x-axis and the ordinates $x = -1$ and $x = 2$. There is equal to
Ans.	(62)
Sol.	$A = -\int_{0}^{0} (3x - x^{2}) dx + \int_{0}^{2} (3x - x^{2}) dx$
	$= -\left(\frac{3x^2}{2} - \frac{x^3}{3}\right)_{-1}^0 + \left(\frac{3x^2}{2} - \frac{x^3}{3}\right)_0^2$
	$= -\left(-\frac{3}{2} - \frac{1}{3}\right) + \left(6 - \frac{8}{3}\right)$
	$=\frac{3}{2}+\frac{1}{3}+6-\frac{8}{3}=\frac{31}{6}$
	\Rightarrow 12A = 62
85.	The number of words, with or without meaning, that can be formed using all the letters of the word "ASSASSINATION" so that the yowels occur together, is
Ans.	(50400)
Sol.	ASSASSINATION
	Vowels \rightarrow A,A,A,I,I,O
	all vowels are together <u>I.A.A.A.I.I.O.I.</u> S.S.S.S.N.N.I
	$\therefore \text{ Number of words} = \frac{8!}{4!2!} \times \frac{6!}{3!2!} = \frac{8 \times 7 \times 8 \times 5}{2} \times \frac{8 \times 5 \times 4}{2}$
	$= 56 \times 30 \times 30$ = 56 \times 900 = 50400
86.	A(2, 6, 2) B(-4, 0, λ) C(2, 3, -1) and D(4, 5, 0) $ \lambda < 5$ are the vertices of a quadrilateral ABCD. If its
Re	area is 18 square units, then $5 - 6\lambda$ is equal to
Ans.	(11)
Sol.	
	D(4,5,0) $C(2,3,-1)$
	$A(2,6,2)$ $B(-4,0,\lambda)$
	AC = -3j - 3k
	$BD = 8i + 5j - \lambda k$
	\vec{k}
	$AC \times BD = \begin{bmatrix} 0 & -3 & -3 \\ 0 & 5 & -3 \end{bmatrix}$
	$\begin{vmatrix} \delta & -\lambda \end{vmatrix}$

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 F facebook.com/ResonanceEdu www.youtube.com/resowatch bog.resonance.ac.in

$$\frac{||\mathbf{x}||^{2}}{||\mathbf{x}||^{2}} = \frac{||\mathbf{x}||^{2}}{||\mathbf{x}||^{2}} = \frac{||\mathbf{x}||^{2}}{||\mathbf{x}||^{$$

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mail, Jhalawar Road, Rota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 **| FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 f acebook.com/ResonanceEdu vww.youtube.com/resowatch com/resowatch building b

🔨 Resonance® | JEE MAIN-2023 | DATE : 01-02-2023 (SHIFT-1) | PAPER-1 MATHEMATICS

 \therefore f'(x) + f(x) = a f'(x) = a - f(x)f'(x) = 1a - f(x) $\therefore -\ell n (a - f(x)) = x + c$ Put x = 0 $-\ell n (a - e^{-2}) = c$:. $-\ell n (a - f(x)) = x - \ell n (a - e^{-2})$ $\ell n \frac{a - e^{-2}}{a - f(x)} = x$ $\Rightarrow \frac{a-e^{-2}}{a-f(x)} = e^{x}$ $a - f(x) = (a - e^{-2}) e^{-x}$ $f(x) = a - (a - e^{-2})e^{-x}$ Now $\int f(t) dt = a$ $\Rightarrow \int_{0}^{2} (a - (a - e^{-2})e^{-t})dt = a$ $\Rightarrow \left[at + (a - e^{-2})e^{-t}\right]_{0}^{2} = a$ $\Rightarrow \frac{2a}{a} + (a - e^{-2}) e^{-2} - (a - e^{-2}) = a$ $\Rightarrow a + ae^{-2} - e^{-4} - a + e^{-2} = 0$ $a = \frac{e^{-4} - e^{-2}}{e^{-2}} = e^{-2} - 1$ Now 2f(0) - f(2) $= 2e^{-2} - a + (a - e^{-2}) e^{-2}$ $= 2e^{-2} - e^{-2} + 1 - e^{-2}$ = 1 If a1 = 8, a2, a3.....an, be an A.P. If the sum of first four terms is 50 and the sum of its last four terms is 89. 170, then the product of its middle two terms is Ans. (754) $S_4 = 50$ Sol. 2(16 + 3d) = 50d = 34a + d(4n - 10) = 17032 + 3(4n - 10) = 1704n - 10 = 46n = 14 Middle terms are T7, T8 $T_7 T_8 = (8 + 6 \times 3) (8 + 7 \times 3) = 26 \times 29$

= 754

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 555
Tol

