

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

	asting for better tomorrow JEE MAIN-2023 DATE : 01-02-2023 (S	HIFT-2) PAPER-1 MATHEMATICS
65.	Let S = { x \in R, 0 < x < 1 and 2 tan ⁻¹ $\left(\frac{1-x}{1+x}\right) = \cos^{-1}$	$-1\left(\frac{1-x^2}{1+x^2}\right)$ }. If n(S) denotes the number of elements
	in S then	
	(1) $n(S) = 2$ and only one element in S is less than	
	(2) $n(S) = 1$ and the element in S is less than $\frac{1}{2}$.	
	(3) n(S) = 1 and the element in S is more than $\frac{1}{2}$.	
	(4) $n(S) = 0$	
Ans.	(2)	
Sol.	Put x = tan θ $\theta \in \left(0, \frac{\pi}{2}\right)$	
	(',4)	
	$2\tan^{-1}\left(\frac{1-\tan\theta}{1+\tan\theta}\right) = \cos^{-1}\left(\frac{1-\tan^2\theta}{1+\tan^2\theta}\right)$	
	$(1+\tan\theta)$ $(1+\tan\theta)$	
	$2\tan^{-1}\left[\tan\left(\frac{\pi}{4}-\theta\right)\right] = \cos^{-1}[\cos(2\theta)]$	
	$\Rightarrow \frac{2}{2}\left(\frac{\pi}{4} - \theta\right) = 2\theta \Rightarrow \theta = \frac{\pi}{8}$	
	$\Rightarrow x = \tan\frac{\pi}{8} = \sqrt{2} - 1 < \frac{1}{2}$	
66.	For the system of linear equations $\alpha x + y + z = 1$, z following statements is NOT correct ? (1) It has infinitely many solutions if $\alpha = 2$ and $\beta = -2$	$x + \alpha y + z = 1$, $x + y + \alpha z = \beta$ which one of the - 1
	(2) $x + y + z = \frac{3}{4}$ if $\alpha = 2$ and $\beta = 1$	
	(3) It has infinitely many solutions if $\alpha = 1$ and $\beta =$ (4) It has no solution if $\alpha = -2$ and $\beta = 1$	1
Ans.	(1)	
Sol.	$\begin{vmatrix} \alpha & 1 & 1 \\ 1 & \alpha & 1 \\ 1 & 1 & \alpha \end{vmatrix} = \alpha(\alpha^2 - 1) - (\alpha - 1) + (1 - \alpha) = \alpha^3 - 3\alpha$	$\alpha + 2 = (\alpha - 1) (\alpha^2 + \alpha - 2)$
	$(\alpha - 1) (\alpha - 1) (\alpha + 2)$	θ .f $\alpha = 2, \beta = -1$ then
	for $\alpha = 1$ system of equations is	$\theta x + y + z = 1$
	x + y + z = 1	x + 2y + z = 1
	x + y + z =1	x + y + 2z = -1 No solution
	$x + y + z = \beta \Rightarrow \beta = 1$ then infinitely equation	

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 bwitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🗾 twitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No. :** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🗾 twitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 🔊 7340010333 🚹 facebook.com/ResonanceEdu 🗾 twitter.com/ResonanceEdu 🔡 www.youtube.com/resowatch blog.resonance.ac.in

80.	Let the plane P pass through the intersection perpendicular to the plane $2x + y - z + 1 =$ equal to	on of the planes 2x + 3 0. If d is the distance o	by $-z = 2$ and $x + 2y + 3z = 6$, and be of P from the point ($-7,1,1$), then d ² is				
	(1) $\frac{25}{250}$ (2) $\frac{250}{250}$	$(3) \frac{15}{15}$	(4) 250				
	⁽¹⁾ 83 ⁽²⁾ 83	(⁰) <mark>53</mark>	(⁴) 82				
Ans.	(2)						
Sol .	A plane through intersection of $2x + 3y - z$	= 2 & x + 2y + 3z = 61	S S				
	$2x + 3y - z - 2 + \lambda (x + 2y + 3z - 6) = 0$						
	$\Rightarrow (2 + \lambda)x + (3 + 2\lambda)y + (3\lambda - 1)z - (2 + \lambda)y + (3\lambda - 1)z - (2 + \lambda)z + (3\lambda - 1)z + ($	6λ) = 0					
	Plane is \perp to 2x + y - z + 1 = 0						
	$\therefore 2 (2 + \lambda) + 1 (3 + 2 \lambda) - (3 \lambda - 1) = 0$						
	$4 + 2\lambda + 3 + 2\lambda - 3\lambda + 1 = 0$						
	$\lambda = -8$						
	∴ plane is 6x + 13y + 25z – 46 = 0						
	-42+13+25-46 50	-42+13+25-46 50					
	$\therefore d = \frac{1}{\sqrt{36+169+625}} = \frac{1}{\sqrt{830}}$						
	E0. E0 2E0						
	$\therefore d^2 = \frac{50 \times 50}{820} = \frac{250}{82}$						
	630 63						
04	The late is a share of all shares have for						
81.	The total number of six digit numbers, formed using the digits 4, 5, 9 only and divisible by 6, is						
Ans. Sol.	(81)						
	Unit digit must be 4 since number should be divisible by 2.						
	Four out of remaining five places, each has 3 options and remaining one place will have only one optic						
	so total number of six digit numbers = 3.3.3	3.3.1 = 81					
82.	Number of integral solutions to the equation	n x + v + z = 21 where	$x \ge 1$, $y \ge 3$, $z \ge 4$, is equal to				
Ans.	(105)	, , , , , , , , , , , , , , , , , , ,	,, ,				
Sol.	$x \ge 1$, $y \ge 3$, $z \ge 4 \Rightarrow x - 1 \ge 0$, $y - 3 \ge 0$, $z - 4 \ge 0$						
	Let $x - 1 = X$, $y - 3 = Y$, $z - 4 = Z$	Let $x - 1 = X$, $y - 3 = Y$, $z - 4 = Z$					
	50 x + y + 2 = 21 x + 1 + y + 3 + 7 + 4 - 21						
	$X + Y + Z = 13$ $X \ge 0, Y \ge 0, Z \ge 0$						
	No of integral colution $-13+3-10$ -150 $-$	15×14 _ 105					
	100: of integral solution = 1000 of 02 = 1002 m	2 = 105					
00	Lat the side terms in the binemial evenesia	$\int \sqrt{\left(\log_2(10-3^{\times}) - 5 \right)} $	$\overline{(x-2)\log_3^3}$ ^m				
83.	Let the sixth term in the binomial expansion	1 Of $\left(\sqrt{2^{-3/2}} + \sqrt{2}\right)$, in the increasing powers				
	of $9^{(x-2)\log^3}$ be 21. If the binomial coefficients of the second third and fourth terms in the surgersizer						
	are respectively the first third and fifth term	is of an A P then the	sum of the squares of all possible				
	values of x is						
Ans.	(4)						
Sol.	$t_1 = {}^{m}C_1, t_3 = {}^{m}C_2, t_5 = {}^{m}C_3$						
	$\rightarrow 2^{m}C = {}^{m}C + {}^{m}C$						
	$\rightarrow 2$ $O_2 - O_1 + O_3$						
	$^{m}C_{1}$ $^{m}C_{3}$						
	\rightarrow γ						

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 F facebook.com/ResonanceEdu www.youtube.com/resowatch bog.resonance.ac.in

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555
Toll Free : 1800 258 5555
Toll Free : 1800 258 5555

	The point of intersection C of the plane $8x + y + 2z = 0$ and the li $B(2,4,-3)$ divides the line segment AB internally in the ration $k \cdot 1$	ne joining the	points $A(-3, -6, 1)$ and $A(-3, -6, 1)$ and $A(-3, -6, 1)$
		$\frac{1-x}{1-x}$ v+4	1 7+2
	the direction ratios of the perpendicular from the point C on the line	$e \frac{1}{1} = \frac{1}{2}$	$\frac{1}{3} = \frac{2+2}{3}$ then $ a + b + c $
	is equal to		
ıs.	(10)		
ol.	$C\left(\frac{2k-3}{2k-4},\frac{4k-6}{2k-4},\frac{-3k+1}{2k-4}\right)$		
	$\left(\begin{array}{c} \mathbf{k} + 1 & \mathbf{k} + 1 & \mathbf{k} + 1 \end{array} \right)$	C .	
	C lies on 8x + y +2z = 0		in the second
	$\therefore 8 (2k-3) + (4k-6) + 2 (-3k+1) = 0 \qquad A (-3, -6, 1)$		B (2, 4, -3)
	16k - 24 + 4k - 6 - 6k + 2 = 0		
	$14k = 28 \implies k = 2$		
	(12-5)		
	$\therefore C \text{ is } \left[\frac{1}{3}, \frac{\pi}{3}, \frac{\pi}{3}\right]$		
	Any point on line $\frac{x-1}{1} = \frac{y+4}{2} = \frac{z+2}{2}$ is D (1- λ , -4 + 2 λ , -2 + 3 λ	λ)	
	-1 2 2		
	Drs of CD = $1 - \lambda - \frac{1}{2}$, $-4 + 2\lambda - \frac{2}{2}$, $-2 + 3\lambda + \frac{5}{2}$		
	3 3 3		
	$=\frac{2-3\lambda}{2}, \frac{-14+6\lambda}{2}, \frac{-1+9\lambda}{2}$		
	3 3 3		
	CD \perp to line : -1 (2 - 3 λ) + 2 (6 λ -14) + 3 (9 λ - 1) = 0		
	$\Rightarrow -2 + 3 \lambda + 12 \lambda - 28 + 27 \lambda - 3 = 0$		
	$42 \ \lambda = 33 \ \Rightarrow \lambda = \frac{1}{42} = \frac{1}{14}$		
	33 , 66 , 99		
	$\frac{2-1}{14} - \frac{-14}{14} - \frac{-1+14}{14}$		
	3 3 3		
	= - 5, - 130, 85		
	= - 1, - 26, 17		
	∴ <mark>(-1 –</mark> 26 + 17) = 10		
	The sum of common terms of the following three arithmetic progre	ssions.	
	3,7 <mark>,11</mark> ,15,,399	nance	
	2,5,8,11,,359 and		
	2,7,12,17,		
5.	(321)		
•	S ₁ = {2,5,8,11,14,,359} S ₂		
	$S_2 = \{3,7,11,15, _, 239\} S_1$		
	$S_3 = \{7, 12, 17, 22, \ 197\} S_3$		
	Respondence" Respondence" Resp		
	S = {47,107,167}		

Hence sum of common AP = 321

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 555
Tol

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🗾 twitter.com/ResonanceEdu

	250077C2 JEE MAIN-2023 DATE : 01-02-2023 (SHIFT-2) PAPER-1 MATHEMATICS
89. Ans.	Let $\alpha x + \beta y + \gamma z = 1$ be the equation of a plane passing through the point (3, -2, 5) and perpendicular to the line joining the points (1,2,3) and (-2,3,5). Then the value of $\alpha\beta\gamma$ is equal to (6)
Sol.	$\alpha x + \beta y + \gamma z = 1$
	Drs of line A (1, 2, 3) & B (-2, 3, 5) is 3, -1, -2
	$\therefore \ \frac{\alpha}{3} = \frac{\beta}{-1} = \frac{\gamma}{-2} = \lambda$
	$\Rightarrow \alpha = 3\lambda, \beta = -\lambda, \gamma = -2\lambda$
	$8 3 \alpha - 2 \beta + 5 y = 1$
	$\therefore 9 \lambda + 2 \lambda - 10 \lambda = 1 \therefore \lambda = 1$
	$\therefore \alpha = 3, \beta = -1, y = -2 \therefore \alpha \cdot \beta \cdot y = 6$
	$x^2 y^2$
90.	The line x = 8 is the directrix of the ellipse E : $\frac{x}{a^2} + \frac{y}{b^2} = 1$ with the corresponding focus (2, 0). If the
	tangent to E at the point P in the first quadrant passes through the point $(0, 4\sqrt{3})$ and intersects the x-
	axis at Q, then (3PQ) ² is equal to
Ans.	(39) y
Sol.	$E: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ $ae = 2$ $(2. Q = 1)$ $(2. Q = 1)$ $(2. Q = 1)$
	$e^{-a^{2}} = 0$ $e^{-a^{2}} = 16$ $a^{2} = 16$ $a^{2} = 16$ $a^{2} = 4$
	b ² = a ² (1 - e ²) = 16 $\left(1 - \frac{1}{4}\right)$ = 16 x $\frac{3}{4}$ = 12 ∴ Ellipse is $\frac{x^2}{4} + \frac{y^2}{4} = 1$
	16 12
	Tangent at P is $\frac{x\cos\theta}{4} + \frac{y\sin\theta}{2\sqrt{3}} = 1$
	Passing through $(0, 4\sqrt{3})$
	$4\sqrt{3}\sin\theta$
	$1.0 + \frac{1}{2\sqrt{3}} = 1$
	$\sin \theta = \frac{1}{2} \implies \theta = 30^{\circ}$
	: Tangent is $\frac{x}{4}$. $\frac{\sqrt{13}}{2} + \frac{y}{2\sqrt{3}}$. $\frac{1}{2} = 1$

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 F facebook.com/ResonanceEdu www.youtube.com/resowatch bog.resonance.ac.in

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 5555
Toll Free : 1800 258 5555

