

	PART : MATHEMATICS	
1. R	Let the number of elements in sets A and B be five and two respectively. Then the	ne number of subsets o
	A ×B each having at least 3 and at most 6	
	(1) 782 (2) 792 (3) 752 (4) 772	nance*
NTA.	(2) Resonance" Resonance" Resonance"	
RESO	(2) nance [*] Resonance [*] Resonance [*] Resonance [*]	
Sol.	n(A) = 5, $n(B)=2$	
	$e:n(A \times B) = 5 \times 2 = 10$	
	Number of subsets = ${}^{10}C_3 + {}^{10}C_4 + {}^{10}C_5 + {}^{10}C_6$	
	E = 120+420 + 252 = 792	
2. Real	The number of arrangements of the letters of the word "INDEPENDENCE" in whoccur together is	nich all the vowels alwa
	(1) 18000 (2) 33600 (3) 16800 (4) 148	300 Sonance'
ITA.		
RESO	(3)	
Sol.	Vol. I, , E, E, E, E	
	Constant N, D, P, N, D, N, C	
	No of ways = $\frac{8!}{3!2!} \cdot \frac{5!}{4!} = 16800$	
8. Ra	The number of ways, in which 5 girls and 7 boys can be seated at a round so the	at no two girls sit togeth
	(1) $7(360)^2$ (2) $7(720)^2$ (3) $126(5!)^2$ (4) 720^2	Resonance
NTA.	(3) nance" Resonance" Resonance Resonance Resonance	
RESO	(3) Resonance Resonance Resonance Resonance	
Sol. R	7 boys can sit = 6	
	which create 7 gap between then in which 5 girls have to set	
	No of ways = $6! \times {^7C_5}5! = 126(5!)^2$	

This solution was download from Resonance JEE(Main) 2023 Solution portal PAGE # 1

4.	If the equation o	f the plane containing the	e line x + 2y + 3z - 4 = 0	0 = 2x + y - z + 5 and	perpendicular to the			
	plane $\vec{r} = (\hat{i} - \hat{j})$	$+ \lambda(\hat{i} + \hat{j} + \hat{k}) + \mu(\hat{i} - 2\hat{j} + 3\hat{k})$	$\hat{k})$ is ax + by + cz = 4, th	an (<mark>a - b</mark> + c) is equ	lal			
	(1) 20	nance(2) 2 <mark>2</mark> Resc	(3) 21 Res	(4) 18				
NTA.	(2)							
RESO	(2) Reso							
Sol.	Equation of plan	e containing line of inters	section of plane x + 2y -	+ 3z – 4 = 0 and 2x	+ y – z+ 5 = 0 will be			
	$P_1 + \lambda P_2 = 0 \Rightarrow (1 + 2\lambda)x + (2 + \lambda)y + (3 - \lambda)z + (5\lambda - 4) = 0 \qquad \dots (1)$							
	This plane is \perp t	o plane						
	$\vec{r} = (\vec{i} - \vec{j}) + \lambda(\vec{i}$							
	Normal of plane							
	Now both plane							
	$5(1 + 2\lambda) - 2(2 + \lambda)$							
	ating for better to							
	$-0 + 11\lambda = 0 \rightarrow 0$							
	Now equation of plane $\frac{27}{11}x + \frac{30}{11}y + \frac{25}{11}z - \frac{4}{11} = 0$							
	27x + 30y + 25z = 4							
	Hence $a - b + c = 27 - 30 + 25 = 22$							
5.	If the points with position vectors $\alpha \hat{i} + 10 \hat{i} + 13 \hat{k}$, $6 \hat{i} + 11 \hat{i} + 11 \hat{k}$, $-\hat{i} + \beta \hat{i} - 8\hat{k}$ are collinear, then $(19\alpha - 6\beta)$							
	is equal to							
	(1) 25	(2) 16	(3) 49	(4) 36				
NTA.	(4)							
RESO	(4)							
Sol.	If A(ā), B(b), C	(\vec{c}) are collinear then						

 Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

 To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

Toll Free : 1800 258 55555 S 7340010333 f acebook.com/ResonanceEdu vitter.com/ResonanceEdu www.youtube.com/resowatch blog.resonance.ac.in

Resonance Eduventures Ltd.

 Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

 To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

 Toll Free : 1800 258 5555 [S] 7340010333 [f] facebook.com/ResonanceEdu

7.	Negation of $(p \Rightarrow q) \Rightarrow (q \Rightarrow p)$ is						
	(1) (~p) ∨ q	(2) q 🔨 (~p)					
	(3) (~ q) ∧ p	(4) p v (~ q)					
NTA.	(2) Educating for better tomorrow						
RESO	(2)						
	$P \mid q \mid p \rightarrow q \mid q \rightarrow p \mid (p \rightarrow q)$	$(\mathbf{q} \rightarrow \mathbf{q}) \rightarrow (\mathbf{q} \rightarrow \mathbf{q}) \rightarrow (\mathbf{q} \rightarrow \mathbf{q}) \rightarrow (\mathbf{q} \rightarrow \mathbf{q})$					
			Reson				
Sol.		T F					
]				
8.	If for $z = \alpha + i\beta$, $ z + 2 = z + 4$ ($(1 + i)$, then $\alpha + \beta$ and $\alpha\beta$ are the	roots of the				
	(1) <mark>x² +</mark> 3x- 4 =0	(2) x ² + x -12 =	=0				
	(3) $x^2 + 2x - 3 = 0$	(4) $x^2 + 7x + 12$	2 =0				
NTA.	(4)						
RESO	(4)						
Sol.	$z = \alpha + i\beta$						
	z + 2 = z + 4(1 + i)						
	$ (\alpha + 2) + i\beta = \alpha + i\beta + 4 + 4i$						
	$\sqrt{(\alpha+2)^2 + \beta^2} = (\alpha+4) + i(\beta+4)$	t)					
	compare real and imaginary pa	rt from both sides					
	$\beta + 4 = 0 \Longrightarrow \beta = -4$						
	and $\sqrt{(\alpha+2)^2+16} = \alpha+4$						
	$\Rightarrow \alpha^2 + 4 + 4\alpha + \frac{16}{16} = \alpha^2 + 16 + \frac{16}{16} = \frac{16}{16} + \frac{16}{16} = \frac{16}{16} + $	ance Resonance					
	$\Rightarrow \alpha = 1, \beta = -4$						
	$\alpha + \beta = -3, \ \alpha\beta = -4$						
	Hence equation is x ² – (–3–4)x	+ (-3) (-4) = 0					
	$x^2 + 7x + 12 = 0$						

Resonance Eduventures Ltd.

 Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

 To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

 Toll Free : 1800 258 5555 S 7340010333 F facebook.com/ResonanceEdu

 Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

 To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

Toll Free : 1800 258 5555 😥 7340010333 👫 facebook.com/ResonanceEdu 🗾 twitter.com/ResonanceEdu 🛗 www.youtube.com/resowatch 🕒 blog.resonance.ac.in

 Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

 To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

 Toll Free : 1800 258 5555 S 7340010333 F facebook.com/ResonanceEdu

 Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

 To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

 Toll Free : 1800 258 5555 [S] 7340010333 [f] facebook.com/ResonanceEdu

 Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

 To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

 Toll Free : 1800 258 5555 S 7340010333 F facebook.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No. :** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 🔊 7340010333 📑 facebook.com/ResonanceEdu 💆 twitter.com/ResonanceEdu 📓 www.youtube.com/resowatch 🗈 blog.resonance.ac.in

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222 To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

Toll Free : 1800 258 5555 i 7340010333 i facebook.com/Resonance.ac.in | CIN : U80302RJ2007PLC024029

Resonance Eduventures Ltd.

 Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

 To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

Toll Free : 1800 258 5555 💿 7340010333 🚹 facebook.com/ResonanceEdu 🔽 bwitter.com/ResonanceEdu 🔠 www.youtube.com/resowatch 🗈 blog.resonance.ac.in

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222 To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

Toll Free : 1800 258 5555 🔊 7340010333 👔 facebook.com/ResonanceEdu 💟 twitter.com/ResonanceEdu 🔡 www.youtube.com/resowatch 🗈 blog.resonance.ac.in

 Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

 To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

 Toll Free : 1800 258 5555 S 7340010333 F facebook.com/ResonanceEdu

Resonance Eduventures Ltd.

 Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 F facebook.com/ResonanceEdu twitter.com/ResonanceEdu www.youtube.com/resowatch

Resonance Eduventures Ltd.

 Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

 To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

 Toll Free : 1800 258 5555 [S] 7340010333 [f] facebook.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mail, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 **| FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 🔊 7340010333 📑 facebook.com/ResonanceEdu 💆 twitter.com/ResonanceEdu 🔡 www.youtube.com/resowatch 😢 blog.resonance.ac.in

Resonance Eduventures Ltd.

 Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

 To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

 Toll Free : 1800 258 5555 (S) 7340010333 ff facebook.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 🔊 7340010333 📑 facebook.com/ResonanceEdu 👻 twitter.com/ResonanceEdu 📓 www.youtube.com/resowatch 🗈 blog.resonance.ac.in

Resonance Eduventures Ltd.

 Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

 To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

 Toll Free : 1800 258 5555 S 7340010333 F facebook.com/ResonanceEdu

| JEE(Main) 2023 | DATE : 08-04-2023 (SHIFT-1) | PAPER-1 | | MATHEMATICS

Resonance®

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 **| FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 🔊 7340010333 📑 facebook.com/ResonanceEdu 💆 twitter.com/ResonanceEdu 📓 www.youtube.com/resowatch 📔 blog.resonance.ac.in

30.	Let $\vec{a} = 6\hat{i} + 9\hat{j} + 12\hat{k}, \vec{b} = \alpha\hat{i} + 1\hat{j} - 2\hat{k}$ and \vec{c} be vectors such that $\vec{a} \times \vec{c} = \vec{a} \times \vec{b}$. If $\vec{a}.\vec{c} = -12$, $\vec{c}.(\hat{i} - 2\hat{j} + \hat{k}) = \hat{c}.(\hat{i} - 2\hat{j} + \hat{k})$							
	then $\vec{c}.(\hat{i} + \hat{j} + \hat{k})$ is equal to							
NTA.	(11) Rest							
RESO	(11)							
Sol.	ā = <mark>6i +</mark> 9j + 12	ŵ.	ā.b <mark>= 6α</mark> +	99–24 = 6	δα+75			
	$\vec{b} = \alpha \hat{i} + 11\hat{j} - 2$	ĥ	ā =√36+	81+144 =	√261			
	$\vec{a} \times \vec{c} = \vec{a} \times \vec{b}$.		ā.c = −12,	ċ.(î − 2ĵ +	- ĥ) = 5,			
	ā×c=ā×b.	\Rightarrow	ā×c−ā×b	. = 0				
		\Rightarrow	$\vec{a} \times (\vec{c} - \vec{b}) =$	= 0				
		\Rightarrow	c−b ∥a					
		\Rightarrow	$\vec{c} = \vec{b} + \lambda \vec{a}$					
	Now	⇒ c̃.á :	$= \vec{b}.\vec{a} + \lambda(\vec{a}.\vec{a})$	= -12				
		6α + 7	5 + λ(261) =	-12				
		6α + 26	$\delta 1 \lambda = -87$	(i)				
		c .(î −2	$(\hat{j} + \hat{k}) = 5, \Rightarrow$	$(\alpha - 22 - 2)$	$(1) + \lambda (6 - 18)$	+12)=5		
			\Rightarrow	α = 29				
		From e	equation (i)	λ = -1				
		Hence	$= \vec{c}.(\hat{i}+\hat{j}+\hat{k})$	$\hat{\mathbf{x}} = \left(\vec{\mathbf{b}} - \vec{\mathbf{a}} \right)$	$(\hat{i} + \hat{j} + \hat{k}) =$	=11		
				~~ [®]	Gosoo		Pasan	⁰

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222 To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

Toll Free : 1800 258 5555 S 7340010333 f acebook.com/ResonanceEdu titter.com/ResonanceEdu titter.com/ResonanceEdu boy.com/ResonanceEdu

