

(R) Aromatic amines react with nitrous acid at low temperatures (273-278 K) to form diazonium salts, which form red/orange dye with β -Napthol.

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No. :** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

🗥 Resonance[®] | JEE(Main) 2023 | DATE : 10-04-2023 (SHIFT-1) | PAPER-1 | OFFICIAL PAPER | CHEMISTRY

63.	The number of molecules and mo	oles in 2.8	375 litres of O2 at STP are respect	ively		
	(1) 7.527 × 10 ²² and 0.125 mol					
	(2) 7.527 × 10 ²² and 0.250 mol					
	(3) 7.527 \times 10 ²³ and 0.125 mol					
	(4) 1.505 × 10 ²² and 0.250 mol					
Ans.	NTA : (1)					
	Reso: (1)					
	2.8375 0 405					
Sol.	$-\frac{1}{22.7}$ = 0.125 mol					
	$0.125 \times 6.02 \times 10^{23} = 7.527 \times 10^{23}$	² molecule	S			
64 .	Match List I with List II					
	List-I Industry		List-II Waste Generatedd			
	(A) Steel plants	(i)	Gypsum			
	(B) Thermal power plants	(ii)	Fly ash			
	(C) Fertilizer industries	(111)	Slag			
	(D) Paper mills	(IV)	Bio-degradable wastes			
	(1) (A) (ii) \cdot (B) (iii) \cdot (C) (iv)		s given below.			
	(1)(A) - (ii), (B) - (ii), (C) - (iv) (2) (A) - (iii) : (B) - (ii) : (C) - (i) :	(D) - (i)				
	(3) (A) - (iii); (B) - (iv); (C) - (i);	(D) – (ii)				
	(4) (A) - (iv) ; (B) - (i) ; (C) - (ii) ;	(D) – (iii)				
Ans.	NTA : (2)					
	Reso : (2)					
Sol.	Biodegradable wastes are generated by cotton mills, food processing units, paper mills, and textile					
	factories.					
	integrated iron and steel plants w	hich produ	ice blast furnace slag and steel me	alting slag		
	Fertilizer industries produce gyps	um.	tee blast famalee blag and steer me	shing slug.		
<u>65.</u>	The enthalpy change for the adso	orption pro	cess and micelle formation respec	tively are		
	(1) $\Delta H_{ads} < 0$ and $\Delta H_{mic} < 0$					
	(2) $\Delta H_{ads} < 0$ and $\Delta H_{mic} > 0$					
	(3) $\Delta H_{ads} > 0$ and $\Delta H_{mic} < 0$					
	(4) $\Lambda H_{ads} > 0$ and $\Lambda H_{min} > 0$					
Ans.	NTA : (2)					
	Reso : (2)					
Sol	Enthalpy of Adsorption is negative	because	attraction force increases in Adsorr	ntion Enthalow of formation		
Re	of micelle is in general positive.	, Decladed				
	- Boggoogogi (30000	ana'i Racapaper'			
66.	Suitable reaction condition for pre	eparation of	of Methyl p <mark>hen</mark> yl ether is			
	(1) Ph –Br,MeO [⊚] Na [⊕]					
	(2) PhO [⊝] Na [⊕] , M <mark>e</mark> OH					
	(3 <mark>) PhO[⊝]Na[⊕], MeBr</mark>					
	(4) Benzene, MeBr					
Ans.	NTA : (3)					
	Reso : (3)					

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555 S 7340010333 F acebook.com/ResonanceEdu www.youtube.com/resowatch bog.resonance.ac.in

🔨 Resonance[®] | JEE(Main) 2023 | DATE : 10-04-2023 (SHIFT-1) | PAPER-1 | OFFICIAL PAPER | CHEMISTRY

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

NRESONANCE[®] | JEE(Main) 2023 | DATE : 10-04-2023 (SHIFT-1) | PAPER-1 | OFFICIAL PAPER | CHEMISTRY

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 555
Tol

Resonance[®] | JEE(Main) 2023 | DATE : 10-04-2023 (SHIFT-1) | PAPER-1 | OFFICIAL PAPER | CHEMISTRY

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 💿 7340010333 👔 facebook.com/ResonanceEdu 💟 twitter.com/ResonanceEdu 🔛 www.youtube.com/resowatch 🕒 blog.resonance.ac.in

🗥 Resonance[®] | JEE(Main) 2023 | DATE : 10-04-2023 (SHIFT-1) | PAPER-1 | OFFICIAL PAPER | CHEMISTRY

73.	Using colu	imn cyhro	omatograph	y, mixture of	two compounds 'A'	and 'B' was separated.	
	A eluted f	nrst, this	indicates 'B	an innotiow			
	(1) IOW R_f ,	stronger	adsorption		(2) high R_f , str	onger adsorption	
Ano	(3) IOW R _f ,	weaker	ausorption		(4) nign R _f , We	eaker ausorption	
Ans.	NIA: (1) Boso : (4)						
Sol.	Theory Ba	ised					
0.			Deces				
74.	The comp	ound wh	ich does no	ot exist is	(2) PoU		
Ano	(1) INAU ₂		(Z) (IN	П4)2DEF4	(3) Den ₂		
AII5.	Reso : (1)						
Sol.	Alkali meta	als gener	ally form ox	ides and per	oxides.		
	$M+O_2 \longrightarrow M_2O$ (Oxide) $\xrightarrow{O_2} M_2O_2$ (Peroxide)						
	Th <mark>e al</mark> kali	metals ta	arnish in dry	air due to the	e formation of their	oxides on their surface.	
	4M + O ₂ -	$\rightarrow 2M_2C$)				
	They react	t vigorou:	sly in oxyge	n torming foll	owing oxides.		
	$4 LI + U_2 - 2 N_2 + 0_2$	$\rightarrow 2 Ll_2$	O_{1} (IVIOI10XIO) O_{2} (Perovid	le) le)			
	$M + O_2 - $	$\rightarrow MO_2$ (Superoxide) where M =	K. Rb. Cs		
	Principa	I Combu	stion Produ	ct (Minor Pro	duct)		
	Metal	Oxide	Peroxide	Superoxide	9		
	Li	Li ₂ O	(Li ₂ O ₂)				
	Na	(Na ₂ O)	Na ₂ O ₂				
	K Ph			RO ₂ (Orange	e/Yellow Crystalline)	
	Cs			CsO_2 (Oran	ge/Tellow Crystallin		
				0002(01011	go, i onow orystanni		e
<mark>75</mark> .	Lime react	ts exothe	rmally with	water to give	'A' which has low s	solubility in water. Aqueou	us solution of 'A'
	is often us	sed for th	le test of Co	J ₂ , a test in \	which insoluble B is	s formed. If B is further re	eacted with CO2
	(1) White I	lim o	ound is form	ied. A is	(2) Lime water	r (1) Cloked lime	DR HAL BRUNK PROVIDING
AnRe		lime	(2) QL	lick lime	(3) Lime water	r (4) Slaked lime	9
Ans.	NTA: (4)						
	Reso . (4)						
Sol.	CaO2	\rightarrow Ca(C)2(A)				
	Ca(OH) ₂ ad	q + CO ₂ -	→CaCO ₃	\downarrow (B) + H ₂ O			
	CaCO₃↓ +	$H_2O + C$	CO ₂ → Ca	a(HCO ₃)2aq			
76	Which of t	he follow	ing stateme	ents are corre	ct?		
Educ	(A) The M	³⁺ /M ²⁺ rec	duction pote	ential for iron	s greater than man	gane <mark>se.</mark>	
	(B) The hid	gher oxid	lation states	of first row d	-block elements ae	t stabilized by oxide ion.	
	(C) Aqueo	us solutio	on of Cr ²⁺ c	an liberate hv	drogen from dilute a	acid.	
	(D) Magne	etic mom	ent of V ²⁺ is	observed be	tween 4.4 – 5.2 BM	* Resonance	
	Choose th	e correct	answer fro	m the options	aiven below :	Educating for better tomate	
	(1) (A). (B)) only		Resona	(2) (<mark>A). (</mark> B). (D)) only incest 📃 Re	
	(3) (B). (C)) only			(4) (C). (D) on	tor befor tomorrow Educat	
Ans.	NTA : (3)				() (-), (-) •	Decembra	
	Reso : (3))					
	·····						

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No. :** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555 S 7340010333 F acebook.com/ResonanceEdu www.youtube.com/resowatch bog.resonance.ac.in

Sol.	(A) Mn^{+2} is having stable d ⁵ configration (B) CrO_4^{-2} , MnO_4^{-2}					
	$(C) Cr^{+2}(2a) + H^{+}(2a) $	+ ³ (an) + H₀ [↑]				
	(D) three uppaired a_{-} therefore	$a(aq) + 1_2$				
77.	Match List I with List II					
	List I (Polymer)	List II (Type/class)				
	(A) Nylon-2-Nylon-6	(i) Thermosetting pol	ymer en Reser			
	(B) Buna-N	(ii) Biodegradable po	lymer			
	(C <mark>) Ur</mark> ea-formaldehyde resin	(iii) Synthetic rubber				
	(D) Dacron	(iv) Polyester				
	Choose the correct answer from	m the options given bel	ow :			
	(1) $(A) - (iv)$, $(B) - (i)$, $(C) - (iii)$), (D) – (ii)				
	(2) (A) – (ii), (B) – (i), (C) – (iv)	, (D) – (iii)				
	(3) (A) – (II), (B) – (III), (C) – (I), (A) (A) (III), (B) – (III), (C) – (I),	(D) - (IV)				
Ana	(4) (A) - (IV), (B) - (III), (C) - (I)	(D) - (II)				
AII5.	NTA . (3) Boso : (3)					
Sol	Nylon-2-Nylon-6 is biodegrada	ble polymer				
	Runa-N is synthetic rubber					
	Urea-formaldehyde resin is thermosetting polymer					
	Dacron is polyester					
78	Which of the following is used	as a stabilizer during th	e concentration of sulphic	le ores?		
	(1) Pine oils (2) Xa	nthates (3) F	atty acids (4) Cr	resols		
Ans.	NTA : (4)	(0)				
	Reso : (4)					
Sol.	In Froth floatation process, a s	suspension of the powo	dered ore is made with wa	ater. To it, collectors and		
	froth stabilisers are added. C	ollectors (e. g. xantha	tes, etc.) enhance non-w	vettability of the minera		
	particles and froth stabilisers (e	e. g., cresols, aniline) st	tabilise the froth.			
79.	The one that does not stabilize	e 2° and 3° structures of	f proteins is			
	(1) – O – O – linkage	(2) H	' I-bonding			
	(3) vander waals forces	(4) –	S –S – linkage			
Ans.	NTA : (1)		Resonance"			
	Reso : (1)					
Sol.	The main forces which stabilis linkages, van der Waals and e	se the 2° and 3° struc lectrostatic forces of att	tures of prote <mark>ins</mark> are hyd raction.	rogen bonds, disulphide		
80.	The pair from the following pairs having both compounds with net non-zero dipole moment is (1) cis-butene, trans-butene					
5 0.	(2) 1 1 Dichlerobenzone 1 2 D	Dichlorobenzene				
80. R						
BU. R	(2) 1,4-Dichlorobenzene, 1,3-L (3) CH ₂ Cl ₂ , CHCl ₃					
	 (2) 1,4-Dichloroberizerie, 1,3-L (3) CH₂Cl₂, CHCl₃ (4) Benzene, anisidine 					
Ans.	(2) 1,4-Dichlorobenzene, 1,3-L (3) CH_2Cl_2 , $CHCl_3$ (4) Benzene, anisidine NTA : (3)					

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No. :** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 bwitter.com/ResonanceEdu

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 bwitter.com/ResonanceEdu

Resonance" | JEE(Main) 2023 | DATE : 10-04-2023 (SHIFT-1) | PAPER-1 | OFFICIAL PAPER | CHEMISTRY

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

87. Re	In the following reactions, the total number of o	oxygen atoms in X and Y is			
	$Na_2O + H_2O \rightarrow 2X$				
_	$Cl_2O_7 + H_2O \rightarrow 2Y$				
Ans.	NTA : (5)				
	Reso : (5)				
Sol.	$Na_2O + H_2O \longrightarrow 2NaOH$				
	$Cl_2O_7 + H_2O \longrightarrow 2HCIO_4$ Encoding for below term				
	$HCIO_4 = 4 Oxygen - atom$				
	Total Oxygen atoms in X and $Y = 1 + 4 = 5$				
~~					
88. Re	At constant temperature, a gas is at a press	ure of 940.3 mm Hg. The pressure at which its volun			
Edoca	decreases by 40% is mm Hg. (Neares	t integer)			
Ans.	NIA: (1567)				
	Reso : (1567)				
Sol.	For ideal gas at constant temperature $P_{1}V_{1} = P_{2}V_{2}$				
	$P_1 v_1 = P_2 v_2$ 940.3 x V = $P_2 [0.6V]$				
	(940.3)				
	$P_2 = \left(\frac{0.000}{0.6}\right)$				
	-1567.16 mm Hg				
	- 1007.10 min 11g				
89.	If the degree of dissociation of aqueous solution	on of weak monobasic acid is determined to be 0.3, the			
	the observed freezing point will be % hi	gher than the expected/theoretical freezing point.			
	(Nearest integer)	sonance'			
Ans.	NTA : (65)				
	Reso : (65)				
Sol.	For calculated value ΔT_{f}				
	$(\Delta T_f) = K_f \times m$				
	For observed value of ΔT_f				
	$\Delta T_{\rm f} = {\rm i}[{\rm K}_{\rm f} \times {\rm m}]$				
	$i = 1 + (n - 1)\alpha$				
	I = 1 + (2 - 1) 0.3				
	$[AT_i]_{i=1.5}$				
	$(\Delta T_{\ell})_{\ell} = -(\Delta T_{\ell})_{\ell}$				
	% greater observed $\Delta T_f = \frac{(\Delta T_f)_{observed}}{(\Delta T_f)_{calculated}}$	$\frac{2 \text{alculated}}{2 \text{ solution}} \times 100 = 0.3 \times 100 = 30 \%$			
<mark>90</mark> .	The number of correct statement/s involving ed	quilibria in physical processes from the following is			
	(A) Equilibrium is possible only in a closed sys	tem at a given temperature.			
	(B) Both the opposing processes occur at the s	same ra <mark>te.</mark>			
	(C) When equilibrium is attained at a given temperature, the value of all its parameters became equal.				
	(D) For dissolution of solids in liquids, the solul	bility is constant at a given temperature.			
Ans.	NTA: 3				
	Reso : 3 and a best in the second sec				
Sol.	A, B and D				
	(C) \longrightarrow values of parameters becomes cons	stant.			
	Decenera Er	duvonturoe I td			

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 Toll 7340010333 f acebook.com/ResonanceEdu tecm/ResonanceEdu tecm/Reson

