

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-277777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 👫 facebook.com/ResonanceEdu 🕑 twitter.com/ResonanceEdu

Resonance[®] | JEE (Main) 2023 | DATE : 10-04-2023 (SHIFT-2) | PAPER-1 | PHYSICS

^{34.} Re	The variation of stoppi	ng potential (V ₀) as a fu	inction of frequency (v)	of the incident lig	ht for a metal is
	shown in figure. The w	ork function of the surface	ce is		
		- j			
		<u></u>			
			/		
		iti 2			
		l gu			
		× 12345	678910		
			$v(\times 10^{14} \mathrm{Hz})$		
	(1) 2.98 eV	(2) 1.36 eV	(3) 2.07 eV	(4) 18.6 eV	
NTA A	nting for better to ns. (3)				
Reso A	Ans. (3)				
	¹⁵⁰ 663×10 ⁻³⁴ ×5×	10 ¹⁴			
Sol.	$W = \frac{0.03 \times 10^{-19}}{1.6 \times 10^{-19}}$	eV			
				7	
35.	The half life of a radioa	active substance is T. Th	e time taken, for disinte	egrating $\frac{1}{8}$ th part of	of its better tomorrow
	original mass will be				
	(1) T	(2) 3T	(3) 8T	(4) 2T	
NTA A	ns. (2)				
Reso A	Ans. (2)				
	1. 6				
Sol.	- th part will remain so	5 3 half life i.e. 31 time ta	aken.		
36.	The amplitude of mag	netic fi <mark>eld i</mark> n an electrom	agnetic <mark>wav</mark> e propagati	ng along y <mark>-axi</mark> s is	6.0×10 ^{−7} T.
	The maximum value o	f electric field in the elec	tromagnetic wave is	Posonanc	
	(1) 180 Vm ⁻¹	(2) 2 × 10^{15} Vm ⁻¹	(3) 5×10 ¹⁴ Vm ⁻¹	(4) 6.0 × 10 ⁻⁷ \	/m ⁻¹
ΝΤΑ Α	ns. (1)	re, Resonan tor, Educating for better tor	ce Resona		esonance ^d
Reso A	Ans. (1)				
Sol.	E = CB				
	$= 3 \times 10^8 \times 6 \times 10^{-7}$				
	= 180 V/m				

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 () 7340010333 f facebook.com/ResonanceEdu vww.youtube.com/resowatch blog.resonance.ac.in

Resonance" | JEE (Main) 2023 | DATE : 10-04-2023 (SHIFT-2) | PAPER-1 | PHYSICS

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No. :** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 Told 40010333 facebook.com/ResonanceEdu blog.resonanceEdu blog.resonance.ac.in | CIN : U80302RJ2007PLC024029

Resonance | JEE (Main) 2023 | DATE : 10-04-2023 (SHIFT-2) | PAPER-1 | PHYSICS

40. R	A person travels x distance	e with velocity v ₁ and	d then x dista	nce with velo	city v2 in the sa	me direction. The	
	average velocity of the pe	rson is v, then th <mark>e re</mark>	alation betwe	en v, v₁ and v	2 will be		
	$(1) \frac{2}{2} \frac{1}{1} \frac{1}{1} \frac{1}{1}$		$(2) \frac{1}{1} \frac{1}{1}$	Resonan Educating for better tor			
	$(1) \frac{1}{v} - \frac{1}{v_1} + \frac{1}{v_2}$		$(2) \frac{1}{v} \frac{1}{v} \frac{1}{v}$	1 V2			
	Educat		(4) V_1	$+V_2$			
	(3) $v = v_1 + v_2$			2250030			
NTA A	ns. (1) Re						
Reso /	Ans. (1)						
Sal	$2x 2v_1v_2$	_ 2 _ 1 _ 1					
Re	$v_{avg} = \frac{x}{x_{+}} = \frac{x}{v_{1} + v_{2}}$	$\rightarrow \overline{v_{avg}} = \overline{v_1} + \overline{v_2}$					
	v ₁ v ₂						
41.	A bar magnet is released	from rest along the a	ixis of a very	long vertical c	copper tube. Af	ter some time the	
	magnet will						
	(1) move down with an ac	celeration equal to g	1				
	(2) oscillate inside the tul	be					
	(3) move down with almost	st constant speed					
	(4) move down with an ac	celeration greater th	an g				
	ns. (3)		U				
Reso	Ans. (3)						
Sol	Because of negligible net	force bar magnet y	vill move with	almost const	tant speed as v	veight will almost	
501.	balance with large magne	tic force due to indu	ction				
	balance with large magne						
42	A gas mixture consists o	f 2 moles of oxyge	n and 4 mol	les of neon a	t temperature	T Neglecting all	
R	vibrational modes, the tot	a internal operation	the evetors w			T. Neglecting an	
				viii De,			
		2) 4RT	(3) 881		(4) 1681		
	ns. (1)						
Reso	Ans. (1)						
Sol.	$U = \frac{5}{-} \times 2 \times RT + \frac{3}{-} \times 4 \times RT$	= 11RT					
Re	esor ² ance ⁴ ² Re						
43.	The ratio of intensities at	two points P and Q	on the scree	en in a Young	y's double slit e	xperiment where	
	sonance" Resonance" Resonance" π Resonance"						
	phase difference betweer	two waves of same	amplitude a	$re \frac{1}{3}$ and $\frac{1}{2}$	respectively are)	
		2) 1 <mark>:3</mark>	(3) 3:2		(4) 2: 3		
NTA A	ns. (3)						
Reso /	Ans. (3)						

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 f facebook.com/ResonanceEdu vww.youtube.com/resonance.ac.in Cin : U80302RJ2007PLC024029

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 💿 7340010333 👔 facebook.com/ResonanceEdu 🕑 twitter.com/ResonanceEdu

	SONANCe [®] JEE (N	lain) 2023 DATE : 10-04	4-2023 (SHIFT-2) PAPER-1	PHYSICS
46.	For a periodic mot	on represented by the e	equation	
	$y = \sin \omega t + \cos \omega t$			
	the amplitude of th	e motion i <mark>s</mark>		
	(1) √2	R (2) 1 nance	(3) 2	
	uns. (1)			
Reso	Ans. (1)			
Sol.				
	$y = \sin\omega t + \sin\left(\omega t\right)$	$A = \sqrt{2}$		
47. R	Given below are tw Reason R Assertion A : An e Reason R : Fan co In the light of abov (1) Both A and R a	vo statements: one is la electric fan continues to ontinues to rotate due to e statements, choose th re correct but R is NOT	belled as Assertion A and t rotate for some time after t o inertia of motion. ne most appropriate answe the correct explanation of	he other is labelled as the current is switched off. r from the options given below. A
	(2) A is correct but	R is not correct		
	(3) Both A and R a	re correct and R is the o	correct explanation of A	
	(4) <mark>A is</mark> not correct	but R is correct		
	uns. (3)			
Reso	Ans. (3)			
Sol.	Fa <mark>n wi</mark> ll retard afte	r current is switched off	and stop after some time	
48. R	A message signal 1.5 MHz. The band	of frequency 3kHz is us dwidth of the amplitude	ed to modulate a carrier sig modulated wave is	gnal of frequency
	(1) 0 WI12			
Reen	$\Delta ns(2)$			
Sol	hand width $= 2 \text{ f}_{\text{max}}$	$-2 \times 3 - 6 \text{kHz}$		
501.				

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 Tol 7340010333 facebook.com/ResonanceEdu vww.youtube.com/resowatch blog.resonance.ac.in

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

Resonance | JEE (Main) 2023 | DATE : 10-04-2023 (SHIFT-2) | PAPER-1 | PHYSICS

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 👔 facebook.com/ResonanceEdu 🕑 twitter.com/ResonanceEdu

53. An electron revolves around an infinite cylindrical wire having uniform linear charge density 2×10⁻⁸Cm⁻¹ in circular path under the influence of attractive electrostatic field as shown in the figure. The velocity of

54. Figure below shows a liquid being pushed out of the tube by a piston having area of cross section 2.0 cm². The area of cross section at the oulet is 10 mm². If the piston is pushed at a speed of 4 cm s⁻¹, the speed of outgoing fluid is _____ cm s⁻¹

55. If the maximum load carried by an elevator is 1400 kg (600 kg - Passengers + 800 kg - elevator), which is moving up with a uniform speed of 3 ms⁻¹ and the frictional force acting on it is 2000 N, then the maximum power used by the motor is _____ kW (g=10 m/s²)

NTA Ans. 48	
Reso Ans. 48	

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 f facebook.com/ResonanceEdu vww.youtube.com/resonanceEdu blog.resonance.ac.in

57. A point object, 'O' is placed in front of two thin symmetrical coaxial convex lenses L1 and L2 with focal length 24 cm and 9 cm respectively. The distance between two lenses is 10 cm and the object is placed 6 cm away from lens L1 as shown in the figure. The distance between the object and the image formed by the system of two lenses is _____ cm.

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-277777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 f acebook.com/ResonanceEdu vww.resonanceEdu kwww.youtube.com/resowatch

Resonance[®] | JEE (Main) 2023 | DATE : 10-04-2023 (SHIFT-2) | PAPER-1 | PHYSICS

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-277777, 2777700 | FAX No.: +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 5555
Toll Free : 1800 258 5555

