



**Reg. Office & Corp. Office :** CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555 
Toll Free : 1800 258 5555 
Toll Free : 1800 258 5555

| Re                                 | Molecule/Species                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Structure<br>□                                                             | Shape                                                                                                                                                                                                                                                                                                                        |  |  |  |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                    | H₃O <sup>+</sup> Resonance                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                            | Pyramidal                                                                                                                                                                                                                                                                                                                    |  |  |  |
|                                    | Acetalide                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H−C≡C<br>┌─ <sup>H</sup> ─┐+                                               | Linear                                                                                                                                                                                                                                                                                                                       |  |  |  |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                            | Tetrahedral                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                                    | CIO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                            | Bent                                                                                                                                                                                                                                                                                                                         |  |  |  |
| Re                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                            |                                                                                                                                                                                                                                                                                                                              |  |  |  |
| 64.                                | 25 mL of silver nitrate solution (1M) is added dropwise to 25 mL of potassium iodide (1.05 M) solution<br>The ion(s) present in very small quantity in the solution is/are                                                                                                                                                                                                                                                                                             |                                                                            |                                                                                                                                                                                                                                                                                                                              |  |  |  |
| Ans.<br>Sol.                       | (1) Ag <sup>+</sup> and I <sup>-</sup> both (2) I <sup>-</sup> only (3) K <sup>+</sup> only (4) NO <sub>3</sub> <sup>-</sup> only<br><b>NTA (1)</b><br>AgNO <sub>3</sub> = 25 millmole<br>KI = 26.25 millmole<br>AgNO <sub>3</sub> + KI $\longrightarrow$ AgI + KNO <sub>3</sub><br>so most of the Ag <sup>+</sup> + KNO <sub>3</sub><br>precipitated as AgI (sparingly soluble salt)<br>so ion remaining in small quantities are Ag <sup>+</sup> and I <sup>-</sup> . |                                                                            |                                                                                                                                                                                                                                                                                                                              |  |  |  |
| 65.<br>Ri                          | When a solution of mixture having two inorganic salts was treated with freshly prepared ferrous sulph in acidic medium. a dark brown ring was formed whereas on treatment with neutral FeCl <sub>3</sub> . it gave de red colour which disppeared on boiling and a brown red ppt was formed. The mixture contains                                                                                                                                                      |                                                                            |                                                                                                                                                                                                                                                                                                                              |  |  |  |
| Ans.                               | (1) $C_2O_4^{2-} \& NO_3^{-}$ (2) $SO_3^{2-} \& C_2O_4^{2-}$ (3) $CH_3COO^{-} \& NO_3^{-}$ (4) $SO_3^{2-} \& CH_3COO^{-}$<br><b>NTA (3)</b><br>$CH_3COO^{-}$ gives deep red colour with FeCl <sub>3</sub> $NO_3^{-}$ ion gives brown ring test with FeSO <sub>4</sub> .                                                                                                                                                                                                |                                                                            |                                                                                                                                                                                                                                                                                                                              |  |  |  |
| Sol.                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                            |                                                                                                                                                                                                                                                                                                                              |  |  |  |
| Sol.<br>66.                        | The complex that diss<br>(1) [Fe <sub>3</sub> (OH) <sub>2</sub> (OAc) <sub>6</sub> ]                                                                                                                                                                                                                                                                                                                                                                                   | solves in water as                                                         | (2) K <mark>3[Co(NO<sub>2</sub>)6]</mark>                                                                                                                                                                                                                                                                                    |  |  |  |
| Sol.<br>66.<br>Ans.<br>Sol.        | The complex that diss<br>(1) [Fe <sub>3</sub> (OH) <sub>2</sub> (OAc) <sub>6</sub> ]<br>(3) (NH <sub>4</sub> ) <sub>3</sub> [As(Mo <sub>3</sub> O <sub>10</sub> )<br><b>NTA (1)</b><br>Factual.                                                                                                                                                                                                                                                                        | solves in water as<br>Cl<br>)4]                                            | (2) K <sub>3</sub> [Co(NO <sub>2</sub> ) <sub>6</sub> ]<br>(4) Fe4[Fe(CN) <sub>6</sub> ] <sub>3</sub>                                                                                                                                                                                                                        |  |  |  |
| Sol.<br>66.<br>Ans.<br>Sol.<br>67. | The complex that diss<br>(1) $[Fe_3(OH)_2(OAc)_6]$<br>(3) $(NH_4)_3[As(Mo_3O_{10})$<br><b>NTA (1)</b><br>Factual.<br>The set which does n<br>(1) EDTA <sup>4</sup> - NCS <sup>-</sup> , C <sub>2</sub> C                                                                                                                                                                                                                                                               | solves in water as<br>Cl<br>)4]<br>ot have ambidentate<br>O4 <sup>2-</sup> | (2) K <sub>3</sub> [Co(NO <sub>2</sub> ) <sub>6</sub> ]<br>(4) Fe <sub>4</sub> [Fe(CN) <sub>6</sub> ] <sub>3</sub><br>(4) Se <sub>4</sub> [Fe(CN) <sub>6</sub> ] <sub>3</sub><br>(2) C <sub>2</sub> O <sub>4</sub> <sup>2-</sup> NO <sub>2</sub> <sup>-</sup> , N<br>(4) C <sub>2</sub> O <sub>2</sub> <sup>2-</sup> othulon |  |  |  |

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-277777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 
Toll Free : 1800 258 555 
Toll

|              | SONANCE <sup>®</sup>   JEE(Main) 2023   DATE : 11-04-2023 (SHIFT-1)   PAPER-1   CHEMISTRY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 68.          | Thin layer chromatography of a mixture shows the following observation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|              | C     A     C     C     C     A     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C |  |  |  |  |
|              | Besonance" Resonance" Resonance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| Ans.<br>Sol. | The correct order of elution in the silica gel column chromatography is<br>(1) B, A, C (2) A, C, B (3) B, C, A (4) C, A, B<br><b>NTA (2)</b><br>Less polar will be less adsorbed on silica gel and will rise more with eluent (mobile phase) so correct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|              | order of elution (rising) is $A > C > B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| 69.<br>Ans.  | Which of the following complex has a possibility to exist as meridional isomer?<br>(1) $[Co(en)_2Cl]$ (2) $[Co(NH_3)_3(NO_2)_3]$ (3) $[Co(en)_3]$ (4) $[Pt(NH_3)_2Cl_2]$<br><b>NTA (2)</b><br>[Mashal can show facial and meridional isomerism                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| 501.         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| 70.          | In the extraction process of copper. the product obtained after carrying out the reactions<br>(i) $2Cu_2S + 3O_2 \rightarrow 2Cu_2O + 2SO_2$<br>(ii) $2Cu_2O + Cu_2S \rightarrow 6Cu + SO_2$ is called                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| A            | (1) Copper matte (2) Blister copper (3) Copper scrap (4) Reduced copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| Sol.         | NTA (2)<br>During this process obtained copper has blistered appearance due to the evolution of SO <sub>2</sub> so it is called<br>as blister copper.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| 71.          | For compound having the formula GaA1C14, the correct option from the following is<br>(1) Cl forms bond with both Al and Ga in GaA1C1 <sub>4</sub><br>(2) Oxidation state of Ga in the salt GaAlCl <sub>4</sub> is +3.<br>(3) Ga is more electronegative than Al and is present as a cationic part of the salt GaAlCl <sub>4</sub><br>(4) Ga is coordinated with Cl in GaAlCl <sub>4</sub><br>NTA (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| Alls.        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| 501.         | $Ga[A C _4]$<br>$F_N \rightarrow B > T  > Ga > A  > In$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| Re           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| 72.          | Given below are two statements:<br>Statement-I : Methane and steam passed over a heated Ni catalyst produces hydrogen gas.<br>Statement-II: Sodium nitrite reacts with NH₄CI to give H₂O,N₂ and NaCI.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
|              | In the light of the above statements, choose the most appropriate answer from the options given below: (1) Statement I is incorrect but Statement ilis correct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|              | <ul> <li>(2) Both the statements I and II are incorrect</li> <li>(3) Statement I is correct but Statement II is incorrect</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| Ans          | (4) Both the statements I and II are correct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| Sol.         | $CH_4 + H_2O \longrightarrow CO(g) + 3H_2(g)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
|              | Water gas<br>NaNO <sub>2</sub> (ag) + NH <sub>4</sub> CI(s) $\longrightarrow$ NaCI + NH <sub>4</sub> NO <sub>2</sub> $\longrightarrow$ N <sub>2</sub> (g) + 2H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| 73.          | The polymer X - consists of linear molecules and is closely packed. It is prepared in the presence of triethylaluminium and titanium tetrachloride under low pressure. The polymory X is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| Anc          | <ul> <li>(1) Polytetrafluoroethane</li> <li>(2) High density polythene</li> <li>(3) Polyacrylonitrile</li> <li>(4) Low density polythene</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| ANS.         | NTA (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

|              | SONANCe <sup>®</sup>   JEE(Main) 2023   DATE : 11-04-2023 (SHIFT-1)   PAPER-1   CHEMISTRY                                                                                                                                                                                                                                                                                                                                                                                |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sol.         | $CH_2=CH_2  TiCl_4 + AI(C_2H_5)_3  CH_2-CH_2  HDP$                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 74.<br>Re    | Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R:<br>Assertion A: In the photoelectric effect. the electrons are ejected from the metal surface as soon as the<br>beam of light of frequency greater than threshold frequency strikes the surface.                                                                                                                                                                   |
|              | <b>Reason R:</b> When the photon of any energy strikes an electron in the atom, transfer of energy from the photon to the electron takes place.                                                                                                                                                                                                                                                                                                                          |
| Ans.<br>Sol. | In the light of the above statements. choose the most appropriate answer from the options given below :<br>(1) A is correct but R is not correct<br>(2) A is not correct but R is correct<br>(3) Both A and R are correct and R is the correct explanation of A<br>(4) Both A and R are correct but R is NOT the correct explanation of A<br><b>NTA (1)</b><br>Electron are ejected if light has more frequency than threshold frequency. Photon is energy itself. It is |
|              | absorbed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 75.          | Given below are two statements:<br>Statement I: If BOD is 4 ppm and dissolved oxygen is 8 ppm. then it is a good quality water.<br>Statement II: If the concentration of zinc and nitrate salts are 5 ppm each, then it can be a good quality water                                                                                                                                                                                                                      |
| Ans.<br>Sol. | In the light of the above statements, choose the most appropriate answer from the options given below:<br>(1) Both the statements I and II are incorrect<br>(2) Statement i: is correct but Statement II is incorrect<br>(3) Statement i is incorrect but Statement II is correct<br>(4) Both the statements I and II are correct<br><b>NTA (4)</b><br>Environmental chemistry <b>refer table</b>                                                                        |
| <b>76</b> .  | For elements B, C, N. Li. Be. O and F, the correct order of first ionization enthalpy is<br>(1) Li < B < Be < C < O < N < F<br>(2) Li < Be < B < C < O < N < F                                                                                                                                                                                                                                                                                                           |
| Ans.<br>Sol. | <ul> <li>(3) B &gt;Li &gt; Be &gt; C &gt; N &gt; O &gt; F</li> <li>(4) Li &lt; Be &lt; B &lt; C &lt; N &lt; O &lt; F</li> <li>NTA (1)</li> <li>The correct increasing order of first ionization enthalpies is</li> <li>Li &lt; B &lt; Be &lt; C &lt; O &lt; N &lt; F</li> </ul>                                                                                                                                                                                          |
| 77.          | o-Phenylenediamine — HNO <sub>2</sub> -> 'X'                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              | 'X' is                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              | (1) NH (2) $N_{N}$ (3) $N_{N}$ (4) $N_{N}$<br>(4) $N_{N}$                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ans.         | NTA (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Sol.         | $( ) NH_2 \xrightarrow{HNO_2} ( ) N=N \xrightarrow{HNO_2} HNO_2 \xrightarrow{N=N} N$                                                                                                                                                                                                                                                                                                                                                                                     |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

**Reg. Office & Corp. Office :** CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555 S 7340010333 F acebook.com/ResonanceEdu www.youtube.com/resowatch bog.resonance.ac.in





Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555 
Toll Free : 1800 258 5555 
Toll Free : 1800 258 5555



**Reg. Office & Corp. Office :** CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555 
Toll Free : 1800 258 5555 
Toll Free : 1800 258 5555

#### 🔨 Resonance<sup>®</sup> | JEE(Main) 2023 | DATE : 11-04-2023 (SHIFT-1) | PAPER-1 | CHEMISTRY



### Resonance Eduventures Ltd.

**Reg. Office & Corp. Office :** CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

| Resonance <sup>®</sup>   JEE(Main) 2023   DATE : 11-04-2023 (SHIFT-1)   PAPER-1   CHEMISTRY |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| -                                                                                           | ОН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|                                                                                             | ating Me Kesonance Resonance Educating for better tomorrow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| 87.                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|                                                                                             | Major Product                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|                                                                                             | The number of hyper conjugation structures involved to stablize carbocation formed in the above reaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| Ans                                                                                         | NTA (7) Reso ans (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Re                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| Sol.                                                                                        | $ \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} $ |  |  |  |
|                                                                                             | Number of hyper conjugative structures are 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| 88.                                                                                         | A mixture of 1 mole of H <sub>2</sub> O and 1 mole of CO is taken in a 10 litre container and heated to 725K. At equilibrium 40% of water by mass reacts with carbon monoxide according to the equation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|                                                                                             | $CO(g) + H_2O(g) \rightleftharpoons CO_2(g) + H_2(g)$ . The equilibrium constant $K_c \times 10^2$ for the reaction is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| Ano                                                                                         | (Nearest integer)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| Sol.                                                                                        | $O(A + H_2O) \Rightarrow O(C_2 + H_2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| Re                                                                                          | t=0 1 1 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|                                                                                             | eq. 1-0.4 1-0.4 0.4 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|                                                                                             | $V = 10 L$ $K_{\rm C} = \frac{0.4 \times 0.4}{0.6 \times 0.6} = \frac{4}{0} = 0.44$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|                                                                                             | $0.0 \times 0.6$ 9<br>Kc x 100 = 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|                                                                                             | thing for better to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| 89.                                                                                         | Solid fuel used in rocket is a mixture of Fe <sub>2</sub> O <sub>3</sub> and AI (in ratio 1:2). The heat evolved (kJ) per gram of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
|                                                                                             | mixture is (Nearest integer)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                             | Given: $\Delta H_i^{\circ}$ (Al <sub>2</sub> O <sub>3</sub> ) = -1700 kJ mol <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                                                                                             | Molar mass of Fe. Al and O are 56, 27 and 16 g mol <sup><math>-1</math></sup> respectively                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| Ans.                                                                                        | NTA (4), Reso ans. Bonus.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| Sol.                                                                                        | ratio = 1 : 2 (not given that it is by mass or by mole)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| 00                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| 90.                                                                                         | $KUIO_3$ of $eSO_4 + 3H_2SO_4 \longrightarrow KUI + 3Fe_2(SO_4)_3 \pm 3H_2O$<br>The above reaction was studied at 300 K by monitoring the concentration of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                                                                                             | $FeSO_4$ in which initial concentration was 10 M and after half an hour became 8.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|                                                                                             | M. The rate of production of $Fe_2(SO_4)_3$ is × 10 <sup>-6</sup> mol L <sup>-1</sup> s <sup>-1</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|                                                                                             | (Nearest integer)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| Ans.                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| 501.                                                                                        | $\operatorname{NCIO}_3 + \operatorname{OFeSO}_4 + \operatorname{SH}_2 \longrightarrow \operatorname{NCI}_4 + \operatorname{SFe}_2(\operatorname{SO}_4)_3 + \operatorname{SH}_2 \bigcirc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|                                                                                             | after 1 hr. = 8.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|                                                                                             | rate of consumption of FeSO <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|                                                                                             | $-\frac{d}{d}$ [FeSO <sub>4</sub> ] $\Rightarrow -\frac{1.2}{d} = 0.000667 \text{ m/sec}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|                                                                                             | dt 30×60sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|                                                                                             | $\frac{d[FeSO_4]}{d[Fe_2(SO_4)_3]}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|                                                                                             | dt es <u>prancedt</u> Kesphance" Kesphance" Kesphance" Kesphance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|                                                                                             | rate of production of $Fe_2(SO_4)_3 = 0.000333$ M SeC <sup>-1</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555 S 7340010333 F acebook.com/ResonanceEdu www.youtube.com/resowatch bog.resonance.ac.in

