

KE

(3)

NTA Ans. (3) Reso Ans. (3) A

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No. :** +91-022-39167222

(4)

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555 () 7340010333 f acebook.com/ResonanceEdu vitter.com/ResonanceEdu blog.resonance.ac.in

This solution was download from Resonance JEE (MAIN) 2023 Solution portal PAGE # 1

KE

A $(x) \rightarrow$

	esonance [®] JEE (Main) 2023 DATE	: 11-04-2023 (SHIFT	-1) PAPER-'	1 PHYSICS			
34.	Two radioactive ele	Two radioactive elements A and B initially have same number of atoms. The half life of A is same as the						
	average life of B. If λ_A and λ_B are decay constants of A and B respectively, then choose the correct							
	relation from the gi	ven options :						
	(1) λ _Α ℓn2 = λ _Β	(2) λ _A = λ _B	(3) λ _A = 2λ _B	(4) λ _A =	<mark>λ</mark> β ℓn2			
NTA	Ans. (4)							
Reso	Ans. <mark>(4)</mark> Resona							
Sol	<u>ℓn2 1</u>							
Ed	$\lambda_A \lambda_B$							
	λ _Α <mark>= λ</mark> β ℓn2							
35.	Given below are tw	<i>i</i> o statements :						
	Statements I : Astronomical unit (Au), Parsec (Pc) and Light year (ly) are units for measuring							
	astronomical distances.							
	Statement II : Au < Parsec (Pc) < ly							
	In the light of the above statements choose the most appropriate answer from the options given below :							
	(1) Both statement	(1) Both statements I and Statements II are correct						
	(2) Statements I is	correct but statements	II is incorrect					
	(3) Both Statement	s I and Statements II a	re incorrect.					
	(4) Statements I is	incorrect but Statement	ts II is correct.					
NTA	Ans. (2)							
Reso	Ans. (2)							
Sol.	1 Parsec. = 2.06 ×	1 Parsec. = 2.06 × 10 ⁵ AU = 3.26 light year						
	AU < Light Year < Parsec							
Ę	Resonar							
36.	A coin placed on a	rotating table just slips	when it is placed at a di	stance of 1 cm	from the centre. If the			
	angular velocity of	the table in halved, it wi	Il just slip when placed a	t a distance of	from the centre L			
	(1) 2 cm	(2) 4 cm	(3) 1 cm	(4) 8 cm				
NIA	Ans. (2)							
Reso	Ans. (2)							
Sol.	$m\omega^2 r = \mu mg$							
	$m\left(\frac{\omega}{\omega}\right)^2 r^1 = umq$							
	(2)							
	r ¹							
	r ¹ = 4 cm							

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 🝥 7340010333 👔 facebook.com/ResonanceEdu 💟 twitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🗾 twitter.com/ResonanceEdu

	esonance [®] JEE (Ma	ain) 2023 DATE :	: 11-04-2023 (SHIFT	-1) PAPER-1	PHYSICS		
40.	The current sensitivity of moving coil galvanometer is increased by 25%. This increase is achieved only by changing in the number of turns of coils and area of cross section of the wire while keeping the resistance of galvanometer coil constant. The percentage change in the voltage sensitivity will be :						
	(1) <mark>– 5</mark> 0%	(2) <mark>+25%</mark>	(3) ze <mark>ro</mark>	(4) –25%			
	Ans. (2)						
Reso	Ans. (2)						
Sol	$CS = \frac{NBA}{NBA}$						
001.	0.0 – К						
	and V.S = $\frac{NBA}{KR}$						
	R remains co	nstant					
	∴ 🥂 % change in V	√.S. is same as of C.	S.				
	lesonar						
41.	The logic performed b	The logic performed by the circuit shown in figure is equivalent to :					
		a •	×				
			Lo	- Y			
		b •					
NITA	(1) NAND	(2) OR	(3) NOR	(4) AND			
NIA /	Ans. (4)						
Reso							
501.	AND						
40		ale IVI, the beiling pe	int of water in GE°V and	the freezing point	in 15°Y Annuma		
42.	that the X scale is line	$rate \Lambda$, the boling po		ng to 05°Y on th	a Eabrophoit scale		
	would be						
	$(1) - 112^{\circ}F$	(2) _148°F	(3) _63°F	(4) _48°F			
NTA	Ans. (2)	(2) 1401		(+) +0 1			
Reso	Ans. (2)						
	C = 0 $X = (-15)$	E = 32					
Sol.	$\frac{0}{100-0} = \frac{\chi(10)}{65-(-15)}$	$=\frac{102}{212-32}$					
	lf X = 65 ⇒	F = ? Reson					
	65 ± 15 F $- 32$						
	$\frac{30000}{80} = \frac{1002}{180}$						
	F <mark>= -1</mark> 48°F						

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555 S 7340010333 F acebook.com/ResonanceEdu www.youtube.com/resowatch bog.resonance.ac.in

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555 () 7340010333 f acebook.com/ResonanceEdu vitter.com/ResonanceEdu blog.resonance.ac.in

		(Main) 2023 DATE	: 11-04-2023 (SHIFT	-1) PAPER-1	PHYSICS			
45.	1 kg of water at 10	00°C is converted into ste	eam at 100°C by boiling	at atmospheric pre	ssure. The volume			
	of water changes from 1.00 × 10 ⁻³ m ³ as a liquid to 1.671 m ³ as steam. The change in internal energy of							
	the system during the process will be : (Given latent heat of vaporisation = 2257 kJ/kg. Atmospheric							
	pressure = 1 × 10 ⁵	⁵ Pa)						
	(1) – 2426 kJ	(2) –2090 kJ	(3) + 2476 kJ	(4) +2090 k	JCC			
NTA A	Ans. (4)							
Reso	Ans. (4)							
Sol.	$W = P\Delta V = 1 \times 10$	5 [1.671 – 0.001]						
	= 1 × 10 ⁵ × 1.670							
	= 167 kJ							
	$\Delta Q = mL$							
	= 1 × 2257 kJ							
	= 2257 kJ							
	$\therefore \Delta U = \Delta Q - W$							
	= 2090 kJ							
	cating for better to							
46.	The radii of two pla	The radii of two planets 'A' an 'B' are 'R' and '4R' and their densities are ρ and ρ /3 respectively. The ratio						
	of acceleration du	e to gravity at their surfa	ce (g _A : g _B) will be					
Edu	(1) 1 : 16	(2) 3 : 16	(3) 4 : 3	(4) 3 : 4				
Ans.	(4)							
Sol.	$g = \frac{4}{3}\pi G\rho R$							
	$\frac{g_1}{g_2} = \frac{\rho_1}{\rho_2} \times \frac{R_1}{R_2} = 3$	$3 \times \frac{1}{4} = \frac{3}{4}$						
47.	A <mark>meta</mark> llic surface	is illuminated with radia	tion of wavelength λ , th	e stopping potentia	I is V_0 . If the same			
	surface is illuminated with radiation of wavelength 2λ , the stopping potential becomes V ₀ /4. The threshold							
	wavelength for this metallic surface will be :							
	(1) 3	(2) 4	$(3) - \lambda$	$(4) - \frac{1}{4}$				
NTA A	Ans. (1)							
Reso	Ans. (1)							

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 🝥 7340010333 👔 facebook.com/ResonanceEdu 💟 twitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🗾 twitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

53. The magnetic field B crossing normally a square metallic plate of area $4m^2$ is changing with time as shown in figure. The magnitude of induced emf in the plate during t = 2s to t = 4s, is _____mV.

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

Resonance[®] | JEE (Main) 2023 | DATE : 11-04-2023 (SHIFT-1) | PAPER-1 | PHYSICS

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🗾 twitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 🔊 7340010333 👫 facebook.com/ResonanceEdu 💟 twitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No. :** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 5555
Toll Free : 1800 258 5555

