

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 🔊 7340010333 👫 facebook.com/ResonanceEdu 💟 twitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

	Rate	[4]	[B]	ie" Res					
	mol L ⁻¹ S ⁻¹	mol L ⁻¹	mol L ⁻¹	IN Educating					
	0.10	20	0.5	sonance					
	0.40	x	0.5	ing nu option containing					
	0.80	40	У	Res					
	What is the value of x and	d y?							
	(1) 80 and 4								
	(2) 160 and 4								
	(3) 40 and 4								
	(4) 80 and 2								
s.	NTA (4)								
R	For reaction A + B \rightarrow p	roduct : rate = k[A							
	From Exp. No. 2/1								
	$\frac{0.4}{1.4} = \frac{k[x]'[0.5]'}{1.4}; \frac{4}{1.4} = \frac{x}{1.4}; x = 80$								
	$0.1 k[20]^{1}[0.5]^{1} 1 20$								
	From Exp. No. 3/1								
	$0.8 k[40]^{1}[v]^{1} = 8 + 40 \times v$								
	$\frac{1}{0.1} = \frac{1}{k[20]^{1}[0.5]^{1}}; \frac{1}{1} =$	$\frac{y}{20 \times 0.5}$ y = 2							
	One mole of P4 reacts wi	th 8 moles of SOC	l2 to aive 4 r	noles of A. x mole of S	SO_2 and 2 moles of B. A				
0	One mole of P4 reacts wi	th 8 moles of SOC	l₂ to give 4 r	noles of A. x mole of S	SO ₂ and 2 moles of B. A				
R	One mole of P_4 reacts wind and x respectively are	th 8 moles of SOC	I₂ to give 4 r	noles of A. x mole of S	SO ₂ and 2 moles of B. <i>I</i>				
R	One mole of P_4 reacts wi and x respectively are (1) POCl ₃ , S ₂ Cl ₂ and 4 (3) PCl ₃ S ₂ Cl ₂ and 4	th 8 moles of SOC	l₂ to give 4 r (2) PC	noles of A. x mole of S l₃, S₂Cl₂ and 2 Cl₂, S₂Cl₂ and 2	6O₂ and 2 moles of B. /				
R	One mole of P ₄ reacts wir and x respectively are (1) POCl ₃ , S ₂ Cl ₂ and 4 (3) PCi3, S ₂ Cl ₂ and 4	th 8 moles of SOC	I₂ to give 4 r (2) PC (4) PO	noles of A. x mole of S l₃, S₂Cl₂ and 2 Cl₃, S₂Cl₂ and 2	SO ₂ and 2 moles of B. A				
s.	One mole of P ₄ reacts with and x respectively are (1) POCl ₃ , S ₂ Cl ₂ and 4 (3) PCi3, S ₂ Cl ₂ and 4 NTA (3)	th 8 moles of SOC	I₂ to give 4 r (2) PC (4) PO	noles of A. x mole of S l₃, S₂Cl₂ and 2 Cl₃, S₂Cl₂ and 2	3O₂ and 2 moles of B. A				
s.	One mole of P ₄ reacts with and x respectively are (1) POCl ₃ , S ₂ Cl ₂ and 4 (3) PCi ₃ , S ₂ Cl ₂ and 4 NTA (3) P ₄ + 8SOCl ₂ \longrightarrow 2S ₂ Cl ₂	th 8 moles of SOC 2 + 4SO ₂ + 4PCl ₃	l₂ to give 4 r (2) PC (4) PO	noles of A. x mole of S l₃, S₂Cl₂ and 2 Cl₃, S₂Cl₂ and 2	SO₂ and 2 moles of B. /				
s.	One mole of P ₄ reacts wir and x respectively are (1) POCl ₃ , S ₂ Cl ₂ and 4 (3) PCi ₃ , S ₂ Cl ₂ and 4 NTA (3) P ₄ + 8SOCl ₂ \longrightarrow 2S ₂ Cl ₂	th 8 moles of SOC	l₂ to give 4 r (2) PC (4) PO	noles of A. x mole of S l₃, S₂Cl₂ and 2 Cl₃, S₂Cl₂ and 2	SO₂ and 2 moles of B. /				
s. I.	One mole of P ₄ reacts wir and x respectively are (1) POCl ₃ , S ₂ Cl ₂ and 4 (3) PCi3, S ₂ Cl ₂ and 4 NTA (3) P ₄ + 8SOCl ₂ \longrightarrow 2S ₂ Cl ₂ Given below are two state	th 8 moles of SOC + 4SO ₂ + 4PCl ₃ ements. one is lab	l₂ to give 4 r (2) PC (4) PO	noles of A. x mole of S l ₃ , S ₂ Cl ₂ and 2 Cl ₃ , S ₂ Cl ₂ and 2	SO ₂ and 2 moles of B. <i>i</i>				
s.	One mole of P ₄ reacts with and x respectively are (1) POCl ₃ , S ₂ Cl ₂ and 4 (3) PCi ₃ , S ₂ Cl ₂ and 4 NTA (3) P ₄ + 8SOCl ₂ \longrightarrow 2S ₂ Cl ₂ Given below are two state Assertion A : A solution	th 8 moles of SOC 2 + 4SO ₂ + 4PCl ₃ ements. one is lab of the product obt	l ₂ to give 4 r (2) PC (4) PO elled as Ass ained by hea	noles of A. x mole of S l ₃ , S ₂ Cl ₂ and 2 Cl ₃ , S ₂ Cl ₂ and 2 sertion A and the othe ating a mole of glycine	SO ₂ and 2 moles of B. A r is labelled as Reasor with a mole of chlorin				
s.	One mole of P ₄ reacts wir and x respectively are (1) POCl ₃ , S ₂ Cl ₂ and 4 (3) PCi ₃ , S ₂ Cl ₂ and 4 NTA (3) P ₄ + 8SOCl ₂ \longrightarrow 2S ₂ Cl ₂ Given below are two state Assertion A : A solution presence of red phospho	th 8 moles of SOC + 4SO ₂ + 4PCl ₃ ements. one is lab- of the product obt rous generates ch	l ₂ to give 4 r (2) PC (4) PO elled as Ass ained by hea iral carbon a	noles of A. x mole of S I_3 , S ₂ Cl ₂ and 2 Cl ₃ , S ₂ Cl ₂ and 2 sertion A and the othe ating a mole of glycine tom.	SO ₂ and 2 moles of B. A r is labelled as Reasor with a mole of chlorin				
s.	One mole of P ₄ reacts wir and x respectively are (1) POCl ₃ , S ₂ Cl ₂ and 4 (3) PCi ₃ , S ₂ Cl ₂ and 4 NTA (3) P ₄ + 8SOCl ₂ \longrightarrow 2S ₂ Cl ₂ Given below are two state Assertion A : A solution presence of red phospho Reason R : A molecule v	th 8 moles of SOC $x + 4SO_2 + 4PCI_3$ ements. one is lab- of the product obt rous generates ch vith 2 chiral carbor	l ₂ to give 4 r (2) PC (4) PO elled as Ass ained by hea iral carbon a is is always	noles of A. x mole of S I_3 , S ₂ Cl ₂ and 2 Cl ₃ , S ₂ Cl ₂ and 2 eertion A and the othe ating a mole of glycine tom. optically active.	SO ₂ and 2 moles of B. A r is labelled as Reasor with a mole of chlorin				
S.R.	One mole of P ₄ reacts wir and x respectively are (1) POCl ₃ , S ₂ Cl ₂ and 4 (3) PCi3, S ₂ Cl ₂ and 4 NTA (3) P ₄ + 8SOCl ₂ \longrightarrow 2S ₂ Cl ₂ Given below are two state Assertion A : A solution presence of red phospho Reason R : A molecule w In the light of the above s	th 8 moles of SOC 2 + 4SO ₂ + 4PCl ₃ ements. one is lab of the product obt rous generates ch with 2 chiral carbor	I ₂ to give 4 r (2) PC (4) PO elled as Ass ained by he ral carbon a is is always the correct	noles of A. x mole of S I ₃ , S ₂ Cl ₂ and 2 Cl ₃ , S ₂ Cl ₂ and 2 eertion A and the other ating a mole of glycine tom. optically active. answer from the optio	SO ₂ and 2 moles of B. A r is labelled as Reasor with a mole of chlorin ns given below:				
s R	One mole of P ₄ reacts wir and x respectively are (1) POCl ₃ , S ₂ Cl ₂ and 4 (3) PCi ₃ , S ₂ Cl ₂ and 4 NTA (3) P ₄ + 8SOCl ₂ \longrightarrow 2S ₂ Cl ₂ Given below are two state Assertion A : A solution presence of red phospho Reason R : A molecule w In the light of the above s (1) A is true but R is false	th 8 moles of SOC $x + 4SO_2 + 4PCl_3$ ements. one is labor of the product obt rous generates ch vith 2 chiral carbor statements, choose	I ₂ to give 4 r (2) PC (4) PO elled as Ass ained by hea iral carbon a is is always the correct	noles of A. x mole of S I_3 , S ₂ Cl ₂ and 2 Cl ₃ , S ₂ Cl ₂ and 2 Sertion A and the other ating a mole of glycine tom. optically active. answer from the optio	SO ₂ and 2 moles of B. A r is labelled as Reasor with a mole of chlorin ns given below:				
R. R.	One mole of P ₄ reacts wir and x respectively are (1) POCl ₃ , S ₂ Cl ₂ and 4 (3) PCi ₃ , S ₂ Cl ₂ and 4 NTA (3) P ₄ + 8SOCl ₂ \longrightarrow 2S ₂ Cl ₂ Given below are two state Assertion A : A solution presence of red phospho Reason R : A molecule w In the light of the above s (1) A is true but R is false (2) Both A and R are true	th 8 moles of SOC + 4SO ₂ + 4PCl ₃ ements. one is lab- of the product obt rous generates ch vith 2 chiral carbor statements, choose	I ₂ to give 4 r (2) PC (4) PO elled as Ass ained by hea ral carbon a is is always the correct correct expla	noles of A. x mole of S I_3 , S ₂ Cl ₂ and 2 Cl ₃ , S ₂ Cl ₂ and 2 eertion A and the othe ating a mole of glycine tom. optically active. answer from the optio	SO ₂ and 2 moles of B. A r is labelled as Reasor with a mole of chlorin ns given below:				
R.	One mole of P ₄ reacts wir and x respectively are (1) POCl ₃ , S ₂ Cl ₂ and 4 (3) PCi ₃ , S ₂ Cl ₂ and 4 NTA (3) P ₄ + 8SOCl ₂ \longrightarrow 2S ₂ Cl ₂ Given below are two state Assertion A : A solution presence of red phospho Reason R : A molecule w In the light of the above ss (1) A is true but R is false (2) Both A and R are true (3) Both A and R are true	th 8 moles of SOC + 4SO ₂ + 4PCl ₃ ements. one is lab- of the product obt rous generates ch vith 2 chiral carbor tatements, choose but R is NOT the and R is the corre	I ₂ to give 4 r (2) PC (4) PO elled as Ass ained by hea iral carbon a is is always the correct correct explanation	noles of A. x mole of S l ₃ , S ₂ Cl ₂ and 2 Cl ₃ , S ₂ Cl ₂ and 2 eertion A and the othe ating a mole of glycine tom. optically active. answer from the optio	SO ₂ and 2 moles of B. A r is labelled as Reasor e with a mole of chlorin ns given below:				
R s. R	One mole of P ₄ reacts wir and x respectively are (1) POCl ₃ , S ₂ Cl ₂ and 4 (3) PCi3, S ₂ Cl ₂ and 4 (3) PCi3, S ₂ Cl ₂ and 4 NTA (3) P ₄ + 8SOCl ₂ \longrightarrow 2S ₂ Cl ₂ Given below are two state Assertion A : A solution presence of red phospho Reason R : A molecule w In the light of the above s (1) A is true but R is false (2) Both A and R are true (3) Both A and R are true (4) A is false but R is true	th 8 moles of SOC $x + 4SO_2 + 4PCI_3$ ements. one is lab- of the product obt rous generates ch vith 2 chiral carbor statements, choose but R is NOT the and R is the correct	I2 to give 4 r (2) PC (4) PO elled as Ass ained by hea iral carbon a is is always the correct correct expla- ation of the correct correct explanation	noles of A. x mole of S I_3 , S ₂ Cl ₂ and 2 Cl ₃ , S ₂ Cl ₂ and 2 eertion A and the other ating a mole of glycine tom. optically active. answer from the optio anation of A on of A	SO ₂ and 2 moles of B. <i>A</i> r is labelled as Reasor with a mole of chlorin ns given below:				
R	One mole of P ₄ reacts wir and x respectively are (1) POCl ₃ , S ₂ Cl ₂ and 4 (3) PCi ₃ , S ₂ Cl ₂ and 4 NTA (3) P ₄ + 8SOCl ₂ \longrightarrow 2S ₂ Cl ₂ Given below are two state Assertion A : A solution presence of red phospho Reason R : A molecule w In the light of the above s (1) A is true but R is false (2) Both A and R are true (3) Both A and R are true (4) A is false but R is true NTA (1)	th 8 moles of SOC $x + 4SO_2 + 4PCI_3$ ements. one is lab- of the product obt rous generates ch vith 2 chiral carbor statements, choose but R is NOT the and R is the corre	I ₂ to give 4 r (2) PC (4) PO elled as Ass ained by hea iral carbon a is is always the correct correct expla-	noles of A. x mole of S I_3 , S ₂ Cl ₂ and 2 Cl ₃ , S ₂ Cl ₂ and 2 ertion A and the other ating a mole of glycine tom. optically active. answer from the option anation of A on of A	SO ₂ and 2 moles of B. A r is labelled as Reasor with a mole of chlorin ns given below:				
R R S.	One mole of P ₄ reacts wir and x respectively are (1) POCl ₃ , S ₂ Cl ₂ and 4 (3) PCi ₃ , S ₂ Cl ₂ and 4 NTA (3) P ₄ + 8SOCl ₂ \longrightarrow 2S ₂ Cl ₂ Given below are two state Assertion A : A solution presence of red phospho Reason R : A molecule w In the light of the above s (1) A is true but R is false (2) Both A and R are true (3) Both A and R are true (4) A is false but R is true NTA (1)	th 8 moles of SOC $x + 4SO_2 + 4PCI_3$ ements. one is lab- of the product obt rous generates ch with 2 chiral carbor statements, choose but R is NOT the and R is the corre	I ₂ to give 4 r (2) PC (4) PO elled as Ass ained by hea aral carbon a is is always the correct correct expla- ect explanation	noles of A. x mole of S l ₃ , S ₂ Cl ₂ and 2 Cl ₃ , S ₂ Cl ₂ and 2 eertion A and the other ating a mole of glycine tom. optically active. answer from the option anation of A on of A	SO ₂ and 2 moles of B. A r is labelled as Reasor e with a mole of chlorin ns given below:				
IS. I. R	One mole of P ₄ reacts wir and x respectively are (1) POCl ₃ , S ₂ Cl ₂ and 4 (3) PCi ₃ , S ₂ Cl ₂ and 4 NTA (3) P ₄ + 8SOCl ₂ \longrightarrow 2S ₂ Cl ₂ Given below are two state Assertion A : A solution presence of red phospho Reason R : A molecule w In the light of the above s (1) A is true but R is false (2) Both A and R are true (3) Both A and R are true (4) A is false but R is true NTA (1) NH ₂ -CH ₂ -COOH $\frac{Cl_2/r}{r}$	th 8 moles of SOC $x + 4SO_2 + 4PCI_3$ ements. one is lab- of the product obt rous generates ch vith 2 chiral carbor tatements, choose but R is NOT the and R is the correct a a a b a b b a b b a b b b b d R b b b d R b b d d d d d d d d	I ₂ to give 4 r (2) PC (4) PO elled as Ass ained by hea iral carbon a is is always the correct correct expla ect explanation	noles of A. x mole of S l ₃ , S ₂ Cl ₂ and 2 Cl ₃ , S ₂ Cl ₂ and 2 eertion A and the other ating a mole of glycine tom. optically active. answer from the option anation of A on of A	SO ₂ and 2 moles of B. A r is labelled as Reason e with a mole of chloring ns given below:				
R R R R	One mole of P ₄ reacts wir and x respectively are (1) POCl ₃ , S ₂ Cl ₂ and 4 (3) PCi3, S ₂ Cl ₂ and 4 NTA (3) P ₄ + 8SOCl ₂ \longrightarrow 2S ₂ Cl ₂ Given below are two state Assertion A : A solution presence of red phospho Reason R : A molecule w In the light of the above s (1) A is true but R is false (2) Both A and R are true (3) Both A and R are true (4) A is false but R is true NTA (1) NH ₂ -CH ₂ -COOH (Cl_2/r)	th 8 moles of SOC $a + 4SO_2 + 4PCI_3$ ements. one is lab- of the product obt rous generates ch vith 2 chiral carbor tatements, choose but R is NOT the and R is the correct a a a a b a b a b a b a b b a b b a b b b b b b b b	I ₂ to give 4 r (2) PC (4) PO elled as Ass ained by hea ral carbon a is is always the correct correct expla- act explanation	noles of A. x mole of S I ₃ , S ₂ Cl ₂ and 2 Cl ₃ , S ₂ Cl ₂ and 2 eertion A and the other ating a mole of glycine tom. optically active. answer from the optio anation of A on of A	SO ₂ and 2 moles of B. A r is labelled as Reasor e with a mole of chlorin ns given below:				
R R R R	One mole of P ₄ reacts wir and x respectively are (1) POCl ₃ , S ₂ Cl ₂ and 4 (3) PCi ₃ , S ₂ Cl ₂ and 4 NTA (3) P ₄ + 8SOCl ₂ \longrightarrow 2S ₂ Cl ₂ Given below are two state Assertion A : A solution presence of red phospho Reason R : A molecule w In the light of the above s (1) A is true but R is false (2) Both A and R are true (3) Both A and R are true (3) Both A and R are true (4) A is false but R is true NTA (1) NH ₂ -CH ₂ -COOH $\frac{Cl_2/r}{r}$	th 8 moles of SOC $x + 4SO_2 + 4PCI_3$ ements. one is lab- of the product obt rous generates ch with 2 chiral carbor tatements, choose but R is NOT the and R is the correct $x = 2^{edP} \rightarrow NH_2 - CH - CC$	I2 to give 4 r (2) PC (4) PO elled as Ass ained by hea ral carbon a is is always the correct correct expla- ect explanation	noles of A. x mole of S I ₃ , S ₂ Cl ₂ and 2 Cl ₃ , S ₂ Cl ₂ and 2 eertion A and the other ating a mole of glycine tom. optically active. answer from the optio anation of A on of A	SO ₂ and 2 moles of B. A r is labelled as Reasor e with a mole of chlorin ns given below:				
R R R R S	One mole of P ₄ reacts wir and x respectively are (1) POCl ₃ , S ₂ Cl ₂ and 4 (3) PCi ₃ , S ₂ Cl ₂ and 4 NTA (3) P ₄ + 8SOCl ₂ \longrightarrow 2S ₂ Cl ₂ Given below are two state Assertion A : A solution presence of red phospho Reason R : A molecule w In the light of the above s (1) A is true but R is false (2) Both A and R are true (3) Both A and R are true (4) A is false but R is true NTA (1) NH ₂ -CH ₂ -COOH $_Cl_2/r$ Optical activity does not o	th 8 moles of SOC $x + 4SO_2 + 4PCI_3$ ements. one is lab- of the product obt rous generates ch vith 2 chiral carbor tatements, choose but R is NOT the and R is the correct $e^{dP} \rightarrow NH_2 - CH - CC$ Cl depend on chiral carbor	I2 to give 4 r (2) PC (4) PO elled as Ass ained by hea ral carbon a is always the correct correct expla ect explanation	noles of A. x mole of S I ₃ , S ₂ Cl ₂ and 2 Cl ₃ , S ₂ Cl ₂ and 2 ertion A and the other ating a mole of glycine tom. optically active. answer from the option anation of A on of A	SO ₂ and 2 moles of B. <i>i</i> r is labelled as Reasor e with a mole of chlorin ns given below:				

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555 S 7340010333 F acebook.com/ResonanceEdu www.youtube.com/resowatch bog.resonance.ac.in

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

Sol.	$nCl_2=CH_2 \xrightarrow{TiCl_4+AIEt_3}$	→HDP						
	as pance" Resonance" Resonance" Resonance							
	$\overset{H_3O^+}{\longrightarrow} NH_2 - (C$	H₂)₅ <mark>-CO</mark> OH						
	potmeri	isation nylon–6						
73.	If Ni ^{2–} is replaced by Pt ²	²⁻ in the complex	NiCl ₂ Br ₂] ²⁻ , which of the	following proper	ties are expected to			
	get changed?							
	A. Geometry							
	B. Geometrical isomeris	sm						
	C. Optical isomerism							
	D. Magnetic properties							
	(1) A, B and C							
	(2) B and D							
	(3) B and C							
	(4) A, B and D							
Ans.	NTA (4)							
	$[NiCl_2Br_2]^2 \longrightarrow sp^3$ unpaired electron = 2 (No geometrical isomerism)							
Sol.	[NiCl₂Br₂]²− → sp³ un	paired electron :	= 2 (No geometrical isome	erism)				
Sol.	$[NiCl_2Br_2]^{2-} \longrightarrow sp^3 un$ $[PtCl_2Br_2]^{2-} \longrightarrow dsp^2 -$	paired electron \Rightarrow shows (geo	= 2 (No geometrical isome metrical isomerism) unpa	erism) ired electron = 0				
Sol.	$[NiCl_2Br_2]^{2-} \longrightarrow sp^3 un$ $[PtCl_2Br_2]^{2-} \longrightarrow dsp^2 -$ No optical isomerism by	paired electron \Rightarrow shows (geo \prime both.	= 2 (No geometrical isome metrical isomerism) unpa	erism) ired electron = 0				
Sol.	$[NiCl_2Br_2]^{2-} \longrightarrow sp^3 \text{ un}$ $[PtCl_2Br_2]^{2-} \longrightarrow dsp^2 - Mo \text{ optical isomerism by}$	paired electron \Rightarrow shows (geo \prime both.	= 2 (No geometrical isome metrical isomerism) unpa	erism) ired electron = C				
Sol.	$[NiCl_2Br_2]^{2-} \longrightarrow sp^3 un$ $[PtCl_2Br_2]^{2-} \longrightarrow dsp^2 - No optical isomerism by$ Match List I with List II	paired electron ∺ —→ shows (geo ⁄ both.	= 2 (No geometrical isome metrical isomerism) unpa	erism) ired electron = C				
Sol.	$[NiCl_2Br_2]^{2-} \longrightarrow sp^3 un$ $[PtCl_2Br_2]^{2-} \longrightarrow dsp^2 - No optical isomerism by$ Match List I with List II	paired electron \Rightarrow shows (geo r both.	= 2 (No geometrical isome metrical isomerism) unpa	erism) ired electron = C				
Sol. 74.	$[NiCl_2Br_2]^{2-} \longrightarrow sp^3 un$ $[PtCl_2Br_2]^{2-} \longrightarrow dsp^2 - No optical isomerism by$ Match List I with List II LIST IComplex	paired electron → shows (geo / both.	= 2 (No geometrical isome metrical isomerism) unpa	erism) ired electron = C				
Sol.	$[NiCl_2Br_2]^{2-} \longrightarrow sp^3 \text{ un}$ $[PtCl_2Br_2]^{2-} \longrightarrow dsp^2 - Mo \text{ optical isomerism by}$ Match List I with List II $\frac{\text{LIST I}}{\text{Complex}}$ A. Mg(NH_4)PO_4	paired electron → shows (geo / both.	= 2 (No geometrical isome metrical isomerism) unpa	erism) ired electron = C				
Sol. 74.	$[\operatorname{NiCl_2Br_2}]^{2-} \longrightarrow \operatorname{sp^3} \operatorname{un}$ $[\operatorname{PtCl_2Br_2}]^{2-} \longrightarrow \operatorname{dsp^2} - \operatorname{No} \operatorname{optical} \operatorname{isomerism} \operatorname{by}$ Match List I with List II $\underbrace{\text{LIST I}}_{\text{Complex}}$ A. Mg(NH ₄)PO ₄ B. K ₃ [Co(NO ₂) ₆]	paired electron → shows (geo / both.	= 2 (No geometrical isome metrical isomerism) unpa	erism) ired electron = C				
Sol. 74.	$[\operatorname{NiCl_2Br_2}]^{2-} \longrightarrow \operatorname{sp^3} \operatorname{un}$ $[\operatorname{PtCl_2Br_2}]^{2-} \longrightarrow \operatorname{dsp^2} - \operatorname{No} \operatorname{optical} \operatorname{isomerism} \operatorname{by}$ Match List I with List II $\underbrace{\text{LIST I}}_{\text{Complex}}$ A. Mg(NH_4)PO_4 B. K_3[Co(NO_2)_6] C. MnO(OH)_2 D. Fa (Fa(CN)) label{eq:main_started}	paired electron = → shows (geo / both. I. brown II. white III. yellow	= 2 (No geometrical isome metrical isomerism) unpa	erism) ired electron = 0				
Sol. 74.	$[\operatorname{NiCl_2Br_2}]^{2-} \longrightarrow \operatorname{sp^3} \operatorname{un}$ $[\operatorname{PtCl_2Br_2}]^{2-} \longrightarrow \operatorname{dsp^2} - \operatorname{No} \operatorname{optical} \operatorname{isomerism} \operatorname{by}$ Match List I with List II $\underbrace{\text{LIST I}}_{\text{Complex}}$ A. Mg(NH ₄)PO ₄ B. K ₃ [Co(NO ₂) ₆] C. MnO(OH) ₂ D. Fe ₄ [Fe(CN) ₆] ₃	paired electron = → shows (geo / both. I. brown II. white III. yellow IV. blue	= 2 (No geometrical isome metrical isomerism) unpa	erism) ired electron = 0				
Sol. 74.	$[\operatorname{NiCl_2Br_2}]^{2-} \longrightarrow \operatorname{sp^3} \operatorname{un}$ $[\operatorname{PtCl_2Br_2}]^{2-} \longrightarrow \operatorname{dsp^2} - \operatorname{No} \operatorname{optical} \operatorname{isomerism} \operatorname{by}$ Match List I with List II $\underbrace{\text{LIST I}}_{\operatorname{Complex}}$ A. Mg(NH_4)PO_4 B. K_3[Co(NO_2)_6] C. MnO(OH)_2 D. Fe_4[Fe(CN)_6]_3 Choose the correct answ	paired electron = → shows (geo / both. I. brown II. white III. yellow IV. blue wer from the opt	= 2 (No geometrical isome metrical isomerism) unpa	erism) ired electron = 0				
Sol. 74.	$[\operatorname{NiCl_2Br_2}]^{2-} \longrightarrow \operatorname{sp^3} \operatorname{un}$ $[\operatorname{PtCl_2Br_2}]^{2-} \longrightarrow \operatorname{dsp^2} - \operatorname{No} \operatorname{optical} \operatorname{isomerism} \operatorname{by}$ Match List I with List II $\underbrace{\text{LIST I}}_{\operatorname{Complex}}$ A. Mg(NH_4)PO_4 B. K_3[Co(NO_2)_6] C. MnO(OH)_2 D. Fe_4[Fe(CN)_6]_3 Choose the correct answ (1) A-II, B-IV, C-I, D-III	paired electron = → shows (geo / both. I. brown II. white III. yellow IV. blue wer from the opt	= 2 (No geometrical isome metrical isomerism) unpa	erism) ired electron = 0				
Sol. 74.	$[\operatorname{NiCl_2Br_2}]^{2-} \longrightarrow \operatorname{sp^3} \operatorname{un}$ $[\operatorname{PtCl_2Br_2}]^{2-} \longrightarrow \operatorname{dsp^2} - \operatorname{No} \operatorname{optical} \operatorname{isomerism} \operatorname{by}$ Match List I with List II $\begin{array}{c} \mathbf{LIST I} \\ \mathbf{Complex} \\ A. \ \operatorname{Mg(NH_4)PO_4} \\ B. \ \operatorname{K_3[Co(NO_2)_6]} \\ C. \ \operatorname{MnO(OH)_2} \\ D. \ \operatorname{Fe_4[Fe(CN)_6]_3} \end{array}$ Choose the correct answ (1) A-II, B-IV, C-I, D-III (2) A-II, B-III, C-I, D-IV	paired electron = → shows (geo / both. I. brown II. white III. yellow IV. blue wer from the opt	= 2 (No geometrical isome metrical isomerism) unpa	erism) ired electron = 0				
Sol. 74.	$[\operatorname{NiCl_2Br_2}]^{2-} \longrightarrow \operatorname{sp^3} \operatorname{un}$ $[\operatorname{PtCl_2Br_2}]^{2-} \longrightarrow \operatorname{dsp^2} - \operatorname{No} \operatorname{optical} \operatorname{isomerism} \operatorname{by}$ Match List I with List II $\begin{array}{c} \mathbf{LIST I} \\ \mathbf{Complex} \\ A \\ Mg(\operatorname{NH_4})\operatorname{PO_4} \\ B \\ K_3[\operatorname{Co}(\operatorname{NO_2})_6] \\ \hline C \\ MnO(\operatorname{OH})_2 \\ \hline D \\ Fe_4[Fe(\operatorname{CN})_6]_3 \end{array}$ Choose the correct answ (1) A-II, B-IV, C-I, D-III (2) A-II, B-III, C-I, D-IV (3) A-III, B-IV, C-II, D-I	paired electron = → shows (geo / both. I. brown I. white III. yellow IV. blue wer from the opt	= 2 (No geometrical isome metrical isomerism) unpa	erism) ired electron = C				
Sol.	$[\operatorname{NiCl_2Br_2}]^{2-} \longrightarrow \operatorname{sp^3} \operatorname{un}$ $[\operatorname{PtCl_2Br_2}]^{2-} \longrightarrow \operatorname{dsp^2} - \operatorname{No} \operatorname{optical} \operatorname{isomerism} \operatorname{by}$ Match List I with List II $\begin{array}{c} \mathbf{LIST I} \\ \mathbf{Complex} \\ A. \ \operatorname{Mg(NH_4)PO_4} \\ B. \ \operatorname{K_3}[\operatorname{Co(NO_2)6}] \\ C. \ \operatorname{MnO(OH)_2} \\ D. \ \operatorname{Fe_4}[\operatorname{Fe(CN)6}]_3 \\ \end{array}$ Choose the correct answ (1) A-II, B-IV, C-I, D-III (2) A-II, B-III, C-I, D-IV (3) A-III, B-IV, C-II, D-I (4) A-II, B-III, C-IV, D-I \\ \end{array}	paired electron = → shows (geo / both. I. brown II. white III. yellow IV. blue wer from the opt	= 2 (No geometrical isome metrical isomerism) unpa	erism) ired electron = 0				
Sol.	[NiCl ₂ Br ₂] ²⁻ \longrightarrow sp ³ un [PtCl ₂ Br ₂] ²⁻ \longrightarrow dsp ² – No optical isomerism by Match List I with List II LIST I Complex A. Mg(NH ₄)PO ₄ B. K ₃ [Co(NO ₂) ₆] C. MnO(OH) ₂ D. Fe ₄ [Fe(CN) ₆] ₃ Choose the correct answ (1) A-II, B-IV, C-I, D-III (2) A-II, B-III, C-I, D-IV (3) A-III, B-III, C-IV, D-I (4) A-II, B-III, C-IV, D-I	paired electron = → shows (geo / both. I. brown II. white III. yellow IV. blue wer from the opt	= 2 (No geometrical isome metrical isomerism) unpa	erism) ired electron = C				
Sol. 74.	$[\operatorname{NiCl_2Br_2}]^{2-} \longrightarrow \operatorname{sp^3} \operatorname{un}$ $[\operatorname{PtCl_2Br_2}]^{2-} \longrightarrow \operatorname{dsp^2} - \operatorname{No} \operatorname{optical} \operatorname{isomerism} \operatorname{by}$ Match List I with List II $\begin{array}{c} \mathbf{LIST I} \\ \hline \mathbf{Complex} \\ A & \operatorname{Mg(NH_4)PO_4} \\ B & \operatorname{K_3}[\operatorname{Co(NO_2)6]} \\ \hline \mathbf{C} & \operatorname{MnO(OH)_2} \\ \hline \mathbf{D} & \operatorname{Fe_4}[\operatorname{Fe(CN)6]_3} \end{array}$ Choose the correct answ (1) A-II, B-IV, C-I, D-III (2) A-II, B-III, C-I, D-IV (3) A-III, B-IV, C-II, D-I (4) A-II, B-III, C-IV, D-I NTA (2) Factual	paired electron = → shows (geo / both. I. brown II. white III. yellow IV. blue wer from the opt	= 2 (No geometrical isome metrical isomerism) unpa	erism) ired electron = C				

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 555
Tol

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No. :** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🗾 twitter.com/ResonanceEdu

	250Nance [®] JEE(Main) 2023 DATE : 11-04-2023 (SHIFT-2) PAPER-1 CHEMISTRY					
Sol.	$ \boxed{\bigcirc} \xrightarrow{\text{NaNO}_2/\text{HCl}} \bigcirc \boxed{\bigcirc} \xrightarrow{\text{NH}_4\text{SH}} \boxed{\bigcirc} $					
	С ОН С ОН					
80.	Given below are two statements, one is labelled as Assertion A and the other is labelled as Reason F					
	Assertion A: $[CoCl(NH_3)]^{2-}$ absorbs at lover wavelength of light with respect to $[Co(NH_3)_5(H_2O)^{3-}]^{-1}$					
	Reason R: It is because the wavelength of the light absorbed depends on the oxidation state of the met					
	eionnance' Resonance' Resonance' Resonance'					
	in the light of the above statements, choose the correct answer from the options given below:					
	(1) Both A and R are true and R is the correct explanation of A					
	(2) A is true but R is false					
	(3) Both A and R are true but R is NOT the correct explanation of A					
	(4) A is false but R is true					
Ans.	NTA (4)					
Sol.	CI- is weaker than water					
	Δ Cl ⁻ < H ₂ O					
	$\lambda = C\Gamma > H_2O$					
	oxidation state affects value of					
	Λ as well as λ					
81. R	Mg(NO ₃) ₂ . XH ₂ O and Ba(NO ₃) ₂ .YH ₂ O, represent formula of the crystalline forms of nitrate salts. Sum X and Y is					
Ans.	NTA (6)					
Sol.	Factual ng for Letter temorrow					
82.	The total number of intensive properties from the following is					
	Volume. Molar heat capacity, Molarity, E ^θ cell. Gibbs free energy change. Molar mass, Mole					
Ans.	NTA (4)					
Sol.	Intensive properties does not depends of mass or size of the system or substance					
	Molar Gibb's Free energy, Molar mass, Molarity & specific heat capacity are intensive properties					
83.	The maximum number of lone pairs of electron on the central atom from the following species					
	ating for better to:					
	Cl <mark>O₃⁻, XeF₄, SF₄ and I₃⁻ Resonance Resonance Resonance Resonance</mark>					
Ans.	NTA (3)					
Sol.	Molecule/Speci <mark>es</mark> Structure N <mark>o. o</mark> f lone pairs on central atom					
	F V F					
	XeF ₄ 2					
	F OF					
	F SOCI₂ 1					

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 5555

Resonance [®] JEE(Main) 2023 DATE : 11-04-2023 (SHIFT-2) PAPER-1 CHEMISTRY				
	esphance Rephance Resphance Resphance			
	XeF_6 F F 1			
	ating for better tonoo			
84.	The number of correct statements from the following is			
	A. Ecel is an intensive parameter B . A parative Γ^0 means that the redex equals is a stranger reducing agent than the H^- H, equals			
	B. A negative E° means that the redux couple is a stronger reducing agent than the H m ₂ couple.			
	electrode reaction			
	D. The amount of chemical reaction which occurs at any electrode during electrolysis by a current is			
	proportional to the quantity of electricity passed through the electrolyte.			
Ans.	NTA (4) Sonance			
Sol.	E _{cell} is intensive property			
	amount ∞ charge (Faraday's law)			
85.	The number of correct statements about modern adsorption theory of heterogeneous catalysis from the			
	following is			
	A. The catalyst is diffused over the surface of the catalyst			
	C. Occurrence of chemical reaction on the catalysts surface through formation of an intermediate			
	D. It is a combination of intermediate compound formation theory and the old adsorption theory			
	E. It explains the action of the catalyst as well as those of catalytic promoters and poisons.			
Ans.	NTA (3)			
Sol.	Reactants are adsorbed on surface of catalyst intermediate are formed.			
86.	Number of compounds from the following which will not produce orange red precipitate with Benedict solution is			
	Glucose, maltose, sucrose, ribose, 2-deoxyribose, amylose, lactose			
Ans.	NTA ans (3), Reso ans. (2).			
Sol.	Sucrose & amylose are non-reducing carbohydrates			
97	The number of correct statement from the following is			
07.	A For 1s orbital, the probability density is maximum at the nucleus			
	B. For 2s orbital, the probability density is maximum at the nucleus			
	C. Boundary surface diagram of the orbitals encloses a region of 100% probability of finding the electron			
	D. p and d-orbitals have 1 and 2 angular nodes respectively			
	E. probability density of p-orbital is zero at the nucleus			
Ans.	NTA (3)			

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555 S 7340010333 F acebook.com/ResonanceEdu www.youtube.com/resowatch bog.resonance.ac.in

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 **| FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
 7340010333
 f facebook.com/ResonanceEdu
 // builter.com/ResonanceEdu
 // builter.com/ResonanceEdu
 // builter.com/ResonanceEdu
 // builter.com/ResonanceEdu

