

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
 7340010333
 account for the source of the source of

Resonance[®] | JEE(Main) 2023 | DATE : 12-04-2023 (SHIFT-1) | PAPER-1 | OFFICIAL | CHEMISTRY

Sol.	Electron deficient hydride : Hydride which of not sufficient number of electron to form normal covalent bond. e.g. Hydride of group 13 (BH ₃ , (B ₂ H ₆), AlH ₃ (Al ₂ H ₆)) Electron precise hydride : hydride which contain sufficient valence electron to form covalent bond e.g. Hydride of group 14 (CH ₄ , SiH ₄ , GeH ₄ , SnH ₄ , PbH ₄) Electron rich hydride which contains excess of valence electron to form covalent bond. e.g. Hydride of group 15 (NH ₃ , PH ₃), and hydride of group 17 (HF, HCl, Br) Saline hydride : hydrides of Alkaline and alkaline earth metal e.g. (NaH, KH, MgH ₂ , CH ₂)
R	esonance' Resonance' Resonance' Resonance'
64.	Given below are two statements:
	Statement II: The higher oxides of balagens also tend to be more stable than the lower ones
	In the light of the above statements, choose the most appropriate answer from the options given below
	(1) Both Statement Land Statement II are incorrect
	(2) Both statement I and Statement II are correct
	(3) Statement I is incorrect but Statement II is correct
	(4) Statement I is correct but Statement II is incorrect
Ans.	NTA: (2)
Sol.	The halides in higher oxidation state will be more covalent than the one in lower oxidation state.
	Higher stability of higher oxides is due to greater polarisability and multiple bond for mation.
65. _R	The density of alkali metals is in the order
	(1) Na < Rb < K < Cs (2) K <na <="" cs<="" rb="" td=""></na>
-	(3) K <cs (4)="" <="" <na="" cs="" k="" na="" rb="" rb<="" td=""></cs>
Ans.	NIA: (2)
Sol.	Density increase down the group but K is lighter than Na. Order $= Li < K < Na < Bb < Ca$
	Density / g cm ⁻³ : Li = 0.53 : Na = 0.97 : K = 0.86 : Rb = 1.53 : Cs = 1.90
	Due to their large size the atoms of alkali metals are less closely pocked.
	Consequently have low density
	On going down the group, both the atomic size and atomic mass increase but the increase in atomic
	As a result, the density of alkali metals increases from Li to Cs.
	K is however, lighter then Na. It is probably due to an unusual increase in atomic size of potassium.
	Recorance' Recorance' Recorance' Recorance'
66.	Given below are two statement: one is labelled as Assertion A and the other is labelled as Reason R
	Assertion A: 5f electrons can participate in bonding to a far greater extent than 4f electrons
	Reason R: 5f orbitals are not as buried as 4f orbitals
	In the light of the above statements, choose the correct answer from the options given below
	(1) A is true but R is false
	(2) Both A and R are true but R is NOT the correct explanation of A
	(3) Both A and R are true and R is the correct explanation of A
Ans	(4) A is faise but R is frue
Sol.	As number of valence shell is higher, electrons of it's orbitals can participate in bonding in greater extents.
	4f electron is more shielded as compare to 5f electrons. 5f orbitals is not as buried as 4f orbitals.
	Resonance Eduventures I td
	Per Office & Corp. Office : CG Tower A 46 % E2 IDIA Near City Mall Ibelawer Bood Kete (Dei) 224005
	Ph. No.: +91-744-2777777, 2777700 FAX No.: +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 F facebook.com/ResonanceEdu www.youtube.com/resowatch C blog.resonance.ac.in

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 **| FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 5555
Toll Free : 1800 258 5555

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 555
Tol

Resonance[®] | JEE(Main) 2023 | DATE : 12-04-2023 (SHIFT-1) | PAPER-1 | OFFICIAL | CHEMISTRY

Ans. NTA : (4)

Sol. Boron is non-metallic in nature. It is extremely hard and black coloured solid. Due to very strong crystalline lattice, boron has unusually high melting point. Rest of the member are soft metals with low melting point and high electrical conductivity.

Melting point / K (B > Al > 0	Ga < In < TI)	<mark>2</mark> 453	933	<mark>30</mark> 3	430	576
Boiling point / K ($B > AI > G$	Ga > In > TI)	3923	2740	2676	2353	1730
Resonance	KESU	BULE	Kes	unance.	RESL	Indiance

70. The major product 'P' formed in the following sequence of reactions is

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 **| FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 555
Tol

А. В.	List - I		
A. B.		Norrow	List - II
B.	2-chloro-1,3-butadiene	lesor	Biodegrad <mark>able</mark> polymer
C	Nylon 2-nylon 6	11.	Synthetic Rubber
U.	Polyacrylonitrile	norrow III.	Polyester
D.	Dacron	IV.	Addition polymer
Choo (1) A (2) A (3) A	ese the correct answer from th -II, B-IV, C-I, D-III -IV, B-I, C-III, D-II -IV, B-III, C-I, D-II	ne optio	ns given below.
(4) A	-II, B-I, C-IV, D-III		
NTA Nylo Polya 2-Ch Dacr	: (4) n-2-Nylon-6 is Biodegradable acrylonitrile (PAN) is synthetic lorobuta-1,3-diene is a Addition on is polyester of Terphthalic	polyme rubber on polyr acid an	r. ner. d Glycol.
(2) C (3) D (4) D NTA Gas	>C>D>A >C>B>A >C>A> B : (3) which has higher value of crit h list I with List II.	ical tem	perature shows more ads
	list_l		l ist _ ll
son	Complex		CFSE (A ₀)
A.	Complex [Cu(NH ₃) ₆] ²⁺	1.	CFSE (∆₀) 0.6
A. B.	Complex [Cu(NH ₃) ₆] ²⁺ [Ti(H ₂ O) ₆] ³⁻	I. II.	CFSE (∆₀) -0.6 -2.0
A. B. C.	Complex [Cu(NH ₃) ₆] ²⁺ [Ti(H ₂ O) ₆] ³⁻ [Fe(CN) ₆] ³⁻	. I. II.	CFSE (∆₀) -0.6 -2.0 -1.2

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555 S 7340010333 F acebook.com/ResonanceEdu www.youtube.com/resowatch bog.resonance.ac.in

	For octahedra	complex : CF	SE = [- 0.4	+ (n) t _{2g} +	- 0.6 (n′) e _g] ∆₀	+ *nP.		- ²
	Complex	ion cont	figuration	ligand	SFL/WFL	t _{2g} , eg config	uration	CFSE value
	$[Ti(H_2O)_6]^{+3}$	Ti ⁺³		H ₂ O	WFL	t _{2g} ^{1,0,0} eg ^{0,0}		<i>–</i> 0.4 ∆₀
	[Cu(NH ₃) ₆] ⁺²	Cu ⁺²	d ⁹	NH ₃	SFL	t _{2g} ^{2,2,2} eg ^{2,1}		<i>–</i> 0.6 ∆₀
	[Fe(Cl) ₆] ⁻³	Fe ⁺³	d ⁵	CI	WFL	t _{2g} ^{1,1,1} eg ^{1,1}		0 Δ ₀
		Ni ⁺²	d ⁸			t _{2g} ^{2,2,2} eg ^{1,1}		–1.2 ∆₀
4 .	The bond orde	er and magnetic	c property	of <mark>acet</mark> yl	ide ion are sar	ne as that of		
	(1) O ₂							
	(2) O ₂ ⁺							
	(3) N ₂ ⁺							
	(4) NO+							
ns.	NTA : (4)							
Sol.	Species	total	number		bond	unpaired	magne	etic
	5	of el	ectron		order	electron (n)	mome	ntum
							$(n \times (n \times$	n + 2)BM
	Acetylides ion	(C ₂ -2) 14			3	0	0	
	O ₂ -	17			1.5	1	√3	
	O ₂ + No [−]	15 15			2.5	1	√3 √3	
	NO ⁺	13			3	0	0	
E	In the given re	action avala					-	
Be								
		$J_{03} \longrightarrow X + Y$						
	Z							
	X, Y and Z res	pectively are						
	CaO	$NaCl + CO_2$	KCI					
	(1) (1)							
	(1) CaO X	Y	Z					
		Y	Z	1				
	(1) CaO	Y NaCl + CO_2	Z NaC	1				
	(1) CaO X (2) CaO X	Y NaCl + CO ₂ Y	Z NaC Z	1				
	(1) CaO X (2) CaO X (3) CaCO ₃	Y NaCl + CO ₂ Y NaCl	Z NaC Z HCl	1 ir better tomor				
	$(1) CaO X$ $(2) CaO X$ $(3) CaCO_3 X$	Y NaCl + CO ₂ Y NaCl Y	Z NaC Z HCl Z	1 r Dance r better tomor				
	$(1) CaO X$ $(2) CaO X$ $(3) CaCO_3 X$ $(4) CaCO_3$	Y NaCl + CO ₂ Y NaCl Y NaCl	Z NaC Z HC1 Z KC					
	(1) CaO X (2) CaO X (3) CaCO ₃ X (4) CaCO ₃ NTA : (3)	Y NaCl + CO ₂ Y NaCl Y NaCl	Z NaC Z HCl Z KC					
	(1) CaO X (2) CaO X (3) CaCO ₃ X (4) CaCO ₃ NTA : (3) CaCl ₂ + Na ₂ C	Y NaCl + CO ₂ Y NaCl Y NaCl CO ₃ \longrightarrow CaCC	Z NaC Z HC1 Z KC					

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555 S 7340010333 F facebook.com/ResonanceEdu www.youtube.com/resonance.ac.in Cin : U80302RJ2007PLC024029

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555
Toll Free : 1800 258 5555
Toll Free : 1800 258 5555

C Resonance[®] | JEE(Main) 2023 | DATE : 12-04-2023 (SHIFT-1) | PAPER-1 | OFFICIAL | CHEMISTRY

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

Resonance | JEE(Main) 2023 | DATE : 12-04-2023 (SHIFT-1) | PAPER-1 | OFFICIAL | CHEMISTRY

Sol.	number of mo	le <mark>of m</mark> etal chlor	$ide = \frac{100}{22400}$		
	100 ml of met	al chloride gives	= 0.57g of Cl ₂ at STP		
	so 22400 ml =	= 1 mole of meta	I chloride gives = $\frac{0.57}{100}$	$x22400g \text{ of } Cl_2 \text{ at } STP =$	127.68 gm
	Mass of chlori	ine = 55 % by Ma	ass of metal chloride =	<u>55</u> ×127.68 = 70.224	
	Number of mo	ple <mark>s of</mark> chlorine ir	metal chloride = $\frac{70.2}{25}$	$\frac{24}{5} = 1.978 \approx 2$	
	Formula of me	etal chloride : MC	35. Cl ₂	5	
80. R	For lead stora	ge battery pick t	he correct statements		
	A. During cha	rging of battery,	PbSO₄ on anode is cor	nverted into PbO ₂	
	B. During cha	rging of battery,	PbSO₄ on cathode is c	onverted into PbO ₂	
	C. Lead storag	ge battery consis	sts of grid of lead packe	ed with PbO ₂ as anode	
	D. Lead stora	ge battery has 3	8% solution of sulphuri	c acid as an electrolyte	
	Choose the co	orrect answer fro	m the options given be	low:	
	(1) B, C, D on	ly			
	(2) A, B, D on	ly			
	(3<mark>)</mark> B. C only				
	(4) B, D only				
Ans.	NTA : (4)				
Sol.	Le <mark>ad s</mark> torage	batteries used is	automobiles (Cars/bik	es):	
	Anode : Pb(s) Catho	ode : PbO ₂ (s)		
	H ₂ SO ₄ (conc.) Anode:	$Pb(s) \longrightarrow Pb$	lion of H₂SO4 is taken a ²⁺ (aq) + 2e ⁻	is an electrolyte.	
		Pb ²⁺ (aq) + S0	$\mathcal{D}_4^{2-}(aq) \longrightarrow PbSO_4(s)$		
		$Pb(s) + SO_4^{2-}$	$(aq) \longrightarrow PbSO_4 + 2e^-$		
	Most of the Pt	oSO ₄ (s) ppt stick	s to the lead rod.		
	Cathode :	2e ⁻ + 4H⁺ + P	$bO_2(s) \longrightarrow Pb^{2+}(aq) +$	· 2H ₂ O(ℓ)	
		Pb ²⁺ (aq) + S(04 [−] (aq) + 4H⁺ + 2e⁻	→ PbSO ₄ (s) + 2H ₂ O(ℓ)	
	Pb <mark>SO</mark> 4(s) sticl	ks to cathode roo	A Resonance	Resonance [®]	
	sennance"	$Pb(s) + PbO_2$	+ 4H ⁺ + 2 SO_4^{2-} (ag) —	\rightarrow 2PbSO ₄ (s) + 2H ₂ O(ℓ)	
		$E_{cell} = 2.05 V$	tter tomorrow	or better tomorrow Educating for	

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 555
Toll Free : 1800 258 555
Toll Free : 1800 258 555
Toll Free : 1800 258 5555
Toll Free : 1800 258 555
To

Sol. $\Delta S_{Surr} = \frac{-P_{ext} (V_2 - V_1)}{T}$ $\Delta S_{Surr} = \frac{-4(3-2) \times 101.3}{350}$

= –1.157J

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

C Resonance | JEE(Main) 2023 | DATE : 12-04-2023 (SHIFT-1) | PAPER-1 | OFFICIAL | CHEMISTRY

87.	At 600K, the r	oot mean	square ((rms) sp	eed of g	as X (m	olar mass	= 40) is e	equal to t	he most	probable
Ans		at 90K.		111111111111111111111111111111111111111	or the ga	511591			Jei)		
Sol	$(U_{rms})_{Xaas} = (U_{rms})_{Xaas}$	nne)Vaas									
001.		T									
	$\sqrt{\frac{31}{M}} = \sqrt{\frac{21}{M}}$	- Re									
	$\frac{3R600}{3}$ = 2	2R90									
	V 40 V	M _Y									
	$M_{\rm Y} = 4 \text{ g mol}^{-1}$										
88.	Value of work	function (W0) for a	few me	etals are	given be	low				
	Metal Li	Na	K	Mg	Cu	Ag]				
	W ₀ /eV 2.42	2.3	2.25	3.7	4.8	4.3					
	E .						1				
Re	The number o Given: $h = 6.6$ $c=3\times10^8$ m s ⁻¹ $e=1.6 \times 10^{-19}$	f metals w × 10 ^{–34} Js C	hich will	show pł	notoelect	ric effect	when ligh	t of wavel	ength 40	0nm fall:	s on it is
Ans.	NTA:3										
Sol.	Th <mark>e e</mark> nergy p	hoton (E)	= <u>hc</u>								
			λ								
			$\lambda = 400$	nm							
		(E)	$\lambda = 400$ $= \frac{6.6 \times 1}{4}$	nm $0^{-34} \times 3$ 00×10^{-1}	9 9						
		(E) E (in e\	$\lambda = 400$ $= \frac{6.6 \times 1}{4}$ $\prime) = \frac{6.6}{400}$	nm $10^{-34} \times 3$ 00×10^{-10} 6×10^{-34} $\times 10^{-9} \times 10^{-9}$	$\frac{\times 10^8}{9}$ $\frac{\times 3 \times 10^8}{1.6 \times 10^{-10}}$	⁸ - 19 eV					
	The metals Li,	(E) E (in e\ Na, k hav	$\lambda = 400$ $= \frac{6.6 \times 1}{4}$ $I = \frac{6.6}{400}$	nm $10^{-34} \times 3$ 00×10^{-34} 5×10^{-34} $\times 10^{-9} \times 3$ c functio	×10 ⁸ 9 ×3×10 ⁸ 1.6×10 [−] n less th	an the e	nergy of a	photon. S	So in pre	sence of	Incre Incre Incre light with
	The metals Li, wavelength 40	(E) E (in e) Na, k hav 0 nm, the	$\lambda = 400$ $= \frac{6.6 \times 1}{4}$ $I = \frac{6.6}{400}$ $I = \frac{6.6}{400}$ $I = 400$ $I = 400$	nm $10^{-34} \times 3$ 00×10^{-1} 5×10^{-34} $\times 10^{-9} \times$ x function photo e	×10 ⁸ 9 ×3×10 ⁸ 1.6×10 [−] n less th lectric ef	$\frac{3}{19}$ eV an the effect.	nergy of a	photon. S	So in pres	sence of	ince ince ince ince ince ince ince ince
	The metals Li, wavelength 40	(E) E (in e\ Na, k hav 0 nm, the	$\lambda = 400$ $= \frac{6.6 \times 1}{4}$ $I = \frac{6.6}{400}$ $V = \frac{6.6}{400}$ $V = a \text{ work}$ $y \text{ exhibit}$	nm $10^{-34} \times 3$ 00×10^{-34} 5×10^{-34} $\times 10^{-9} \times 3$ $\times 10^{-9} \times 3$ $\times 10^{-9} \times 3$	$\frac{\times 10^8}{9}$ $\frac{\times 3 \times 10^8}{1.6 \times 10^{-10}}$ n less th lectric ef	an the effect.	nergy of a	photon. S	So in pres	sence of	ince [®]
89. Ref.	The metals Li, wavelength 40 An analyst wa do this dilution	(E) E (in e) Na, k hav 0 nm, the nts to con is	$\lambda = 400$ $= \frac{6.6 \times 1}{4}$ $I = \frac{6.6}{400}$ $V = \frac{6.6}{400}$ $V = a \text{ work}$ $V = x \text{ work}$	nm $10^{-34} \times 3$ 00×10^{-34} $3 \times 10^{-9} \times 10^$	$\frac{\times 10^8}{9}$ $\frac{\times 3 \times 10^6}{1.6 \times 10^{-10}}$ n less th lectric ef	$\frac{3}{19}$ eV an the e fect.	nergy of a of HCl of p	photon. S H 2. The v	So in pres	sence of	light with
89. Ans.	The metals Li, wavelength 40 An analyst wa do this dilution NTA : 9000	(E) E (in e) Na, k hav 0 nm, the nts to con is	$\lambda = 400$ $= \frac{6.6 \times 1}{4}$ $I = \frac{6.6}{400}$ $I = \frac{6.6}{400}$ $I = 400$	nm $10^{-34} \times 3$ 00×10^{-34} 6×10^{-34} $\times 10^{-9} \times 3$ ∞ function photo e ICI of pH (Neare	$\frac{\times 10^8}{9}$ $\frac{\times 3 \times 10^6}{1.6 \times 10^-}$ n less th lectric ef	$\frac{3}{19}$ eV an the effect. solution (nergy of a of HCl of p	photon. S H 2. The v	So in pres	sence of	light with needed to
89. Ans. Sol.	The metals Li, wavelength 40 An analyst wa do this dilution NTA : 9000 At pH = 1 Concentration At pH = 2	(E) E (in e) Na, k hav 0 nm, the nts to con is of [H ⁺] = 1	$\lambda = 400$ $= \frac{6.6 \times 1}{4}$ $I = \frac{6.6}{400}$	nm $10^{-34} \times 3$ 300×10^{-34} 300×10^{-34} $300 \times 10^{-9} \times 10$	$\frac{\times 10^8}{9}$ $\frac{\times 3 \times 10^6}{1.6 \times 10^-}$ n less th lectric ef d=1 to a set intege	$\frac{3}{19}$ eV an the e fect. solution (er)	nergy of a of HCl of p	photon. S H 2. The v	So in pres	sence of	light with needed to
89. Ans. Sol.	The metals Li, wavelength 40 An analyst wa do this dilution NTA : 9000 At pH = 1 Concentration At pH = 2 Concentration Now for dilutio $M_1V_1 = M_2V_2$	(E) E (in e) Na, k hav 0 nm, the nts to con is of [H ⁺] = 1 n	$\lambda = 400$ $= \frac{6.6 \times 1}{4}$ $I = \frac{6.6}{400}$	nm $10^{-34} \times 3$ 300×10^{-1} 3×10^{-34} $\times 10^{-9} \times 3$ $\times 10^{-9} \times 3$	$\frac{\times 10^8}{9}$ $\frac{\times 3 \times 10^8}{1.6 \times 10^-}$ n less th lectric effective effe	an the effect. solution (er)	nergy of a of HCI of p	photon. S H 2. The v	So in pres	sence of	
89. Ans. Sol.	The metals Li, wavelength 40 An analyst wa do this dilution NTA : 9000 At pH = 1 Concentration At pH = 2 Concentration Now for dilutio $M_1V_1 = M_2V_2$ $0.1 \times 1 = 0.01$ $V_2 = 10$ L	(E) E (in e) Na, k hav 0 nm, the nts to con is of [H+] = 1 n × V ₂	$\lambda = 400$ $= \frac{6.6 \times 1}{4}$ $I = \frac{6.6}{400}$	nm $10^{-34} \times 3$ 300×10^{-34} $300 \times 10^{-9} \times $	$\frac{\times 10^8}{9}$ $\frac{\times 3 \times 10^6}{1.6 \times 10^-}$ n less th lectric effective destinates integers i	$\frac{3}{19} eV$ an the e fect. solution of er)	nergy of a of HCl of p	photon. S	So in pres	sence of	light with needed to
89. Ans. Sol.	The metals Li, wavelength 40 An analyst wa do this dilution NTA : 9000 At pH = 1 Concentration At pH = 2 Concentration Now for dilutio $M_1V_1 = M_2V_2$ $0.1 \times 1 = 0.01$ $V_2 = 10$ L Final Volume i	(E) E (in eV Na, k hav 0 nm, the nts to con is of $[H^+] = 1$ n x V ₂ s = 10 - 1	$\lambda = 400$ $= \frac{6.6 \times 1}{4}$ $I) = \frac{6.6}{400}$ $Ve a work$ $Ve t 1L H$ $Vert 1L H$ $10^{-1} = 0.7$ $10^{-2} = 0.0$ $= 9 L = 10^{-2}$	nm $10^{-34} \times 3^{-34}$ 30×10^{-34} $3 \times 10^{-9} \times 3^{-34}$ $3 \times 10^{-9} \times 3^{-9}$ $3 \times 10^{-9} \times 3^{-9} \times 3^{-9}$ $3 \times 10^{-9} \times 3^{-9} \times 3^{-9}$ $3 \times 10^{-9} \times 3^{-9} \times 3^{-9} \times 3^{-9}$	$\frac{\times 10^8}{9}$ $\frac{\times 3 \times 10^6}{1.6 \times 10^{-1}}$ n less th lectric effective e	$\frac{3}{19}$ eV an the e fect. solution (er)	nergy of a of HCl of p	photon. S	So in pres	sence of	light with needed to

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 555
Toll Free : 1800 258 555
Toll Free : 1800 258 555
Toll Free : 1800 258 5555
Toll Free : 1800 258 555
To

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No. :** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 5555
Toll Free : 1800 258 5555

