

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No. :** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555
Toll Free : 1800 258 5555
Toll Free : 1800 258 5555

Ph. No.: +91-744-2777777, 2777700 | **FAX No. :** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 🔊 7340010333 👫 facebook.com/ResonanceEdu 💟 twitter.com/ResonanceEdu

	250030Ce [®] JEE(Main) 2023 DATE : 13-04-2023 (SHIFT-1) PAPER-1 OFFICIAL	CHEMISTRY					
68. R	2-Methyl propyl bromide reacts with $C_2H_5O^-$ and gives 'A' whereas on reaction with C_2H_5OH it gives 'B'. The mechanism followed in these reactions and the products 'A' and 'B' respectively are: (1) S_N1 , A = tert-butyl ethyl ether; S_N2 , B = iso-butyl ethyl ether (2) S_N2 , A = 2-butyl ethyl ether; S_N2 , B = iso-butyl ethyl ether						
	(3) $S_N 2$, A = iso-butyl ethyl ether; $S_N 1$ B = tert-butyl ethyl ether (4) $S_N 1$ A = tert-butyl ethyl ether; $S_N 1$ B = 2-butyl ethyl ether						
Ans.	NTA (3)						
Sol.							
R							
	EtOH						
	S _N 1 → ⊕						
	PSOD PC2H5						
69. R	What happens when a lyophilic sol is added to a lyophobic sol? (1) Film of lyophobic sol is formed over lyophilic sol.						
	(2) Lyophobic sol is coagulated						
	(4) Lyophilic sol is dispersed in lyophobic sol.						
Ans.	NTA (3)						
Sol.	Lyophilic colloids have a unique property of protecting lyophobic colloids. When to the lyophobic sol, the lyophilic particles form a layer around lyophobic particl latter from electrolytes.	a lyophilic sol is added es and thus protect the					
70.	The radical which mainly causes ozone depletion in the presence of CV radiation	ns is :					
	(2) CH [•]						
	(3) NO*						
	(4) CI [•]						
Ans.	NTA (4)						
Sol.	$CF_{\alpha} CI_{\alpha} \xrightarrow{UV} CI(\alpha) + CIF_{\alpha}CI_{\alpha}(\alpha)$						
	The chlorine radicals are continuously Regenerated and cause of breakdown of	ozone layer.					
71	$D - (+) - Glyceraldebyde \xrightarrow{(i)HCN}$						
	The products formed in the above reaction are						
	(1) One optically active and one meso product succing to be be been been and be been been been been been been been						
	(3) One optically inactive and one meso product.						
Ans.	(4) Two optically active products						

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555 S 7340010333 F acebook.com/ResonanceEdu www.youtube.com/resowatch bog.resonance.ac.in

NCERT Class XI Topic periodic table Page no. 88) option (C) is correct. That portion put in Red colour

Resonance Eduventures Ltd.

box.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

Resonance[®] | JEE(Main) 2023 | DATE : 13-04-2023 (SHIFT-1) | PAPER-1 | OFFICIAL | CHEMISTRY

widely used is the Pauling scale. Linus Pauling, an American scientist, in 1922 assigned arbitrarily a value of 4.0 to fluorine, the element considered to have the greatest ability to attract electrons. Approximate values for the electronegativity of a few elements are given in Table 3.8(a)

The electronegativity of any given element is not constant; it varies depending on the element to which it is bound. Though it is not a measurable quantity, it does provide a means

of predicting the nature of force that holds a pair of atoms together – a relationship that you will explore later.

Electronegativity generally increases across a period from left to right (say from lithium to fluorine) and decrease down a group (say from fluorine to astatine) in the periodic table. How can these trends be explained? Can the electronegativity be related to atomic radii, which tend to decrease across each period from left to right, but increase down each group ? The attraction between the outer (or valence) electrons and the nucleus increases as the atomic radius decreases in a period. The electronegativity also increases. On the same account electronegativity values decrease with the increase in atomic radii down a group. The trend is similar to that of ionization enthalpy.

Knowing the relationship between electronegativity and atomic radius, can you now visualise the relationship between electronegativity and non-metallic properties?

Fig. 3.7 The periodic trends of elements in the periodic table

Option (D) Al₂O₃ is Amphoteric but NO is neutral oxide so option 'D' is incorrect.

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No. :** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 (2) 7340010333 f facebook.com/ResonanceEdu builter.com/ResonanceEdu builter.com/ResonanceE

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No. :** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 🔊 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

	STRY
77. $\xrightarrow{H^+} \xrightarrow{H^+} $ major product	
In the above reaction, left hand side and right hand side rings are named as 'A' and 'B re undergo ring expansion. The correct statement for this process is: (1) Only A will become 6 membered. (2) Finally both rings will become five membered each. (3) Ring expansion can go upto seven membered rings	spectively. They
Ans. NTA (4)	
OH Ring expansion	
Sol. A A B Rearrangement \checkmark	
78. The mismatched combinations are	
A. Chlorophyll - Co	
C. Photography - [Ag(CN) ₂] ⁻	
D. Wilkinson catalyst - [(Ph ₃ P) ₃ RhCl]	
E. Chelating ligand - D-Penicillamine Choose the correct answer from the options given below	
(1) D and E Only	
(2) A, C, and E Only	
(4) A and E Only	
Ans. NTA (3)	
Sol. Chlorophyll is complex of Mg	
79. Which one of the following is most likely a mismatch?	
(1) Titanium - van Arkel Method (2) Zing - Liguation	
(2) Zind - Elquation (3) Copper - Electrolysis	
(4) Nickel - Mond process	
Ans. NIA (2) Reso (drop)	
Sol. All four option are correctly match	
Zinc – Van Arkel Method.	
Copper – Electrolysis	
Educating for better tomorrow Educating for better tomorrew Educat	
"Purification or Refining of metals :	
Physical methods : These methods include the following processes :	ung för better tomorrow
(I) Liquation process : I his process is used for the purification of the metal, which fusible, but the impurities present in it are not if a the impurities are infusible. In	other words, wo
can say that the melting point of the metal to be purified should be lower than the	at of each of the

impurities associated with the metal. This process is used for the purification of Sn and Zn.

Example: Purification of crude zinc : The crude zinc or the spelter is melted on the slopping hearth of a reverberatory furnace. Molten zinc flows down while the non-fusible impurities are left on the hearth.

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No. :** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 555
Tol

	(ii) Fr an by	actional distillation e vola <mark>tile</mark> and the impl this process.	p rocess : This urities in th <mark>em</mark>	s process is use are nonvolatile	ed to purify and vi <mark>ce-v</mark> e	those metals w ersa. Zn, Cd an	vhich themselve d Hg are purifie			
	Result zinc can be refine using Liquation process, Fractional distillation process									
	So questi	on must be "Drop"								
	In <mark>whi</mark> ch o diamagnet	f the following pro <mark>ces</mark> ic one?	ses. the bonc	l order i <mark>ncre</mark> ase	es and para	magne <mark>tic c</mark> hara	acter changes			
Ans. Sol.	(1) O ₂ → 0 NTA (4)	D ₂ ⁺ (2) N ₂ -	$\rightarrow N_2^+$	$(3) O_2 \rightarrow O_2$	2– 2	(4) NO \rightarrow NO				
	Molecule /lon	Electronic configu	ration		Во	nd order	Magnetic behaviour			
	N ₂	$(\sigma 1s)^2 (\sigma^* 1s)^2 (\sigma 2s)$	² (σ*2s) ² (π2p	$r_{x}^{2} = \pi 2 p_{y}^{2}$ ($\sigma 2 r_{y}^{2}$	$(27)^2$ 1/2	2(10-4) = 3	Diamagnetic			
	N2 ⁺	$(\sigma 1s)^2 (\sigma^* 1s)^2 (\sigma 2s)$	$^{2} (\sigma^{*}2s)^{2} (\pi 2p)^{2}$	$r_{x}^{2} = \pi 2 p^{2} y$) ($\sigma 2 p^{2}$	$(z_z)^1$ 1/2	2(9-4) = 2.5	Paramagneti			
	O ₂	$(\sigma 1 s)^2 (\sigma^* 1 s)^2 (\sigma 2 s)^2 (\pi^* 2 p_x^1 = \pi^* 2 p_y^1)$	c)² (σ*2s)² (σ	$(\pi 2p_z)^2 (\pi 2p_x^2)^2 =$	π2p ² y) 1/2	2(10 – 6) = 2	Paramagneti			
	O ₂ ⁺	$(\sigma 1 s)^2 (\sigma^* 1 s)^2 (\sigma 2 s)^2 (\sigma^* 2 s$	s)² (σ*2s)² (σ	$(\pi 2p_z)^2 (\pi 2p_x^2)^2 =$	π2p ² y) 1/2	2(10 – 5) = 2.5	Paramagneti			
	02 ²⁻	$(\sigma 1 s)^2 (\sigma^* 1 s)^2 (\sigma 2 s)^2 (\sigma^* 2 s)^2 (\sigma^* 2 s)^2$	c)² (σ*2s)² (σ	$(\pi 2p_z)^2 (\pi 2p_x^2)^2 =$	π2p ² y) 1/2	2(10-8) = 1.0	Diamagnetic			
	NO	$(\sigma 1 s)^2 (\sigma^* 1 s)^2 (\sigma^2 s)^2 (\sigma$	σ ² (σ*2s) ² (σ	$(\pi 2p_z)^2 (\pi 2p_x^2)^2 =$	π2p ² y) 1/2	2(10-5) = 2.5	Paramagneti			
	NO ⁺	$(\sigma^2 p_1)^2 (\sigma^2 p_2)^2 (\sigma^2 s_2)^2 (\sigma^2$	² (σ*2s) ² (π2p	$x^{2} = \pi 2 p^{2} y$) ($\sigma 2 p^{2}$	o _z) ² 1/2	2(10 – 4) = 3	Diamagnetic			
R s.	A metal su 2A was pa is(F=96500 C NTA (16) Mass of Ni = [100 × 10	rface of 100cm ² area ssed through a soluti Nearest integer) (ρ_N mol^{-1}) deposited = [A × thic D^{-4}] × 10	has to be co on of Ni(NO ₃) i (density of kness] density	ated with nickel 12 for 'x' second Nickel) is 10 g	l layer of thi ls to coat th mL ^{_1} Mola	ickness 0.001 r le desired layer r mass of Nick	mm. A current r. The value of el is 60 g mol			
	= 0.1 gram									
	vv = 2 n.									
	$w = 2 \text{ it.}$ $0.1 = \left(\frac{\text{E}}{96!}\right)$	$\left(\frac{1}{500}\right) \times \mathbf{i} \times \mathbf{t}$								
	$w = 2 \text{ it.}$ $0.1 = \left(\frac{\text{E}}{96!}\right)$ $0.1 = \left(\frac{1}{2 \times 10^{-10}}\right)$	$\frac{1}{500} \times \mathbf{i} \times \mathbf{t}$ $\frac{60}{96500} \times 2 \times \mathbf{t}$								

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 555
Toll Free : 1800 258 555
Toll Free : 1800 258 555
Toll Free : 1800 258 5555
Toll Free : 1800 258 555
To

Educa	IJEE(Main) 2023 DATE : 13-04-2023 (SHIFT-1) PAPER-1 OFFICIAL CHEMISTRY						
82.	KMnO4 is titrated with ferrous ammonium sulphate hexahydrate in presence of dilute H2SO4 Number of						
	water molecules produced for 2 molecules of KMnO4 is						
Ans.	NTA (68)						
Sol.	KMnO ₄ + FeSO4.(NH ₄) ₂ SO ₄ . 6H ₂ O						
	$MnO4^{-} + 8H^{+} + 5e^{-} \longrightarrow Mn^{2+} + 4H_2O$						
	Fe ²⁺ → Fe ³⁺ + e ⁻ Resonance Resonance Resonance Resonance						
	$MnO_{4^{-}} + 5Fe^{2+} + 8H^{+} \longrightarrow Mn^{2+} + 2Fe^{3+} + 4H_2O$						
	2 mole 10 mole 8 mole						
	Total water molecule produced (i) From 10 molecule of used (F_0SO4 (NH), SO_1 (H-O) = 10 m 6 = 60						
	(i) From redox reaction = 8						
	Total produced water molecule = 68.						
83.	An organic compound gives 0.220 g of CO2 and 0.126 g of H2O on complete combustion. If the % of						
Ane	carbon is 24 then the % of hydrogen is $_____ \times 10^{-1}$ (Nearest integer)						
AII5.							
Sol.	$nCO_2 \Rightarrow \frac{0.220}{44} = 0.005 \longrightarrow nC = 0.005$						
	$H_2O \Rightarrow$						
	mC = 0.06 mC = 24						
	$\frac{1}{mH} = \frac{1}{0.014} = \frac{1}{x\%}$						
	$x\% = 5.6\% = 56 \times 10^{-1}$						
84	to the time required for the reaction to undergo 87.5% completion and too is the time required for the						
R	reaction to undergo 50% completion. The relation between $t_{87.5}$ and t_{50} foi' a first order reaction is.						
	$t_{87.5} = x \times t_{50}$. The value of x is . (Nearest integer)						
Ans.	NTA (3)						
Sol.	$T_{87.5\%} = 3 \times T_{50\%}$						
Educ	ating for better to						
85.	$A_2 + B_2 \rightarrow 2AB$. $\Delta H_f^{-} = -200 \text{ kJ mol}^{-1}$						
	AB, A ₂ and B ₂ are diatomic molecules. If the bond enthalpies of A ₂ , B ₂ and AB are in the ratio $1: 0.5: 1$ then the bond enthalpiv of A ₂ is						
Ans.	NTA (400)						
Sol.	$A_2 + B_2 \longrightarrow 2AB$ Resonance Resonance Resonance						
	x x/2 -2x esonance Resonance Resonance						
	2A 2B esonance Resonance Resonance Resonance						
	ennance' Geschance' Geschance' Geschance'						
	ating for batter tomorrow Educating for better tomorrow Educating for better tomorrow Educating for better tomorrow						
	$\Delta H = x + x/2 - 2x = -200$ Resonance Resonance Resonance Resonance						
	x = 400 J						

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 **| FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555 S 7340010333 F acebook.com/ResonanceEdu www.youtube.com/resowatch bog.resonance.ac.in

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 5555

