

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 5555
Toll Free : 1800 258 5555

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 5555
Toll Free : 1800 258 5555

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🗾 twitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555 () 7340010333 f acebook.com/ResonanceEdu vitter.com/ResonanceEdu blog.resonance.ac.in

Resonance[®] | JEE(Main) 2023 | DATE : 13-04-2023 (SHIFT-2) | PAPER-1 | MATHEMATICS 12. Let for a triangle ABC, $\overrightarrow{AB} = -2\hat{i} + \hat{j} + 3\hat{k}$ $\overrightarrow{CB} = \alpha \hat{i} + \beta \hat{j} + \gamma \hat{k}$ $\vec{CA} = 4\hat{i} + 3\hat{j} + \delta\hat{k}$ if $\delta > 0$ and the area of the triangle ABC is $5\sqrt{6}$, then $\overrightarrow{CB.CA}$ is equal to (2) 54 (3) 60 (4) 108(1) 120 NTA Ans. (3) Reso Ans. (3)Ar of $\triangle ABC = \frac{1}{2} \left| \overrightarrow{CB} \times \overrightarrow{CA} \right| = 5\sqrt{6}$ Sol. $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{O}$ $-2i + j + 3k - \alpha i - \beta j - \gamma k + 4i + 3j + \delta k = \vec{O}$ \Rightarrow $-2 - \alpha + 4 = 0 \Rightarrow \alpha = 2$ \rightarrow $1 - \beta + 3 = 0 \Longrightarrow \beta = 4$ $3 - \gamma + \delta = 0 \implies \gamma = 3 + \delta$ li j k $\overrightarrow{CB} \times \overrightarrow{CA} = \begin{vmatrix} 2 & 4 & 3 + \delta \end{vmatrix}$ Now 4 3 δ = (δ − 9)i + (2δ + 12) j − 10k $(\delta - 9)^2 + (2\delta + 12)^2 + 100 = 600$ $5\delta^2 + 30\delta - 275 = 0$ $\delta^2 + 6\delta - 55 = 0$ $(\delta + 11) (\delta - 5) = 0$ $\delta = 5$ Now $CB \times CA = (2i + 4j + 8k) \cdot (4i + 3j + 5k)$ = 8 + 12 + 40 = 60Ans. 13. If the system of equations 2x + y - z = 5 $2x - 5y + \lambda z = \mu$ x + 2y - 5z = 7has infinitely many solutions, then $(\lambda + \mu)^2 + (\lambda - \mu)^2$ is equal to (1) 912 (3) 904(4) 920(2) 916NTA Ans. (2) Reso Ans. (2) 2x + y - z = 5Sol. $2x - 5y + \lambda z = \mu$ x + 2y - 5z = 7for infinite solution $D = D_1 = D_2 = D_3 = 0$ -1 D = 2 - 5λ = 01 2 -5 $2(25 - 2\lambda) - (-10 - \lambda) - 1 (4 + 5) = 0$

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 5555
Toll Free : 1800 258 5555

		E(Main) 2023 DATE : 13-0	4-2023 (SHIFT-2) PAP	ER-1 MATHEMATICS	
	50 – 4λ + 10 +	$\lambda - 9 = 0$	$\Rightarrow \lambda = 17$		
	$D_1 = \mu - 5$	-1 17 = 0 -5			
	5(25 - 34) - μ - 45 + Now ($\lambda + \mu$)	(-5 + 2) + 7 (17 - 5) = 0 $3\mu + 84 = 0 \Rightarrow \mu = -13$ $^{2} + (\lambda - \mu)^{2} = (17 - 13)^{2} + (15 - 13)^{2} + 0$	(17 + 13) ²		
		= 16 + 900 = 916			
14.	let S = { $z \in C$:	$\overline{z} = i(z^2 + Re(\overline{z}))$. Then $\sum_{z \in S} z ^2$	$ z ^2$ is equal to		
	(1) 4	(2) $\frac{7}{2}$	(3) $\frac{5}{2}$	(4) 3	
NTA A Reso Sol.	Ans. (1) Ans. (1) Let $Z = x + iy$ $x - iy = i(x^2 - y)$ $= (-2xy) + i(x^2 - y)$ x = -2xy	$x^{2} + (2xy)i + x)$ + x- y ²) (1) $x^{2} + x - y^{2}(2)$			
	If $x = 0$,	$y^2 - y = x^2 + x \Rightarrow y = 0, T$	1		
	If $y = -\frac{1}{2}$,	$\frac{1}{4} + \frac{1}{2} = x^2 \times x \Longrightarrow x^2 \times x - x^2 \times x = \frac{1}{2}, -\frac{3}{2}$	$-\frac{3}{4} = 0$		
	Possik	ble Z = 0 + i 0, 0 + i $\frac{1}{2} - \frac{i}{2}$,	$-\frac{3}{2}-\frac{1}{2}$		
	$ z ^2 = 0$	$1, \frac{1}{2}, \frac{10}{4}$			
	Sum o	f values of $ z ^2 = 1 + \frac{1}{2} + \frac{10}{4}$	= 1 + 3 = 4		
15	The coefficient	of u5 in the evenencies of ($\begin{pmatrix} 0 & 3 & 1 \end{pmatrix}^5$		
15.			$\left(2x^2 - \frac{3x^2}{3x^2}\right)$ is		
	(1) $\frac{26}{3}$	(2) $\frac{80}{9}$	(3) 8	(4)	9
NTA A Reso	Ans. (2) Ans. (2)				
Sol.	$T_{r+1} = {}^{5}C_{r}(2x^{3})$	$)^{5-r}(\frac{-1}{3x^2})^{r}$			
0.	Power of $x = 1$ coefficient = ⁵	$5 - 3r - 2r = 5$ $\Rightarrow r = 2$ $c_2(2^3)(\frac{1}{9}) = \frac{80}{9}$		ponence"	ieșonance" '

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 🔊 7340010333 🚹 facebook.com/ResonanceEdu 🔽 twitter.com/ResonanceEdu 🔠 www.youtube.com/resowatch 🕒 blog.resonance.ac.in

Resonance | JEE(Main) 2023 | DATE : 13-04-2023 (SHIFT-2) | PAPER-1 | MATHEMATICS

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

19. Let α , β be the roots of the equation $x^2 - \sqrt{2}x + 2 = 0$. Then $\alpha^{14} + \beta^{14}$ is equal to (1) - 64 (2) - 128 (3) - 128 $\sqrt{2}$ (4) - 64 $\sqrt{2}$ NTA Ans. (2) Reso Ans. (2) Sol. $\therefore \alpha + \beta = \sqrt{2}$ $\alpha\beta = 2$ $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2(\alpha\beta)^2 = 4 - 8 = -4$ $\alpha^3 + \beta^3 = (\alpha^2 + \beta^2)^2 - 2(\alpha\beta)^2 = 4 - 8 = -4$ $\alpha^3 + \beta^3 = (\alpha^2 + \beta^2)^2 - 2(\alpha\beta)^2 = 4 - 8 = -4$ $\alpha^3 + \beta^3 = (\alpha^2 + \beta^3)^2 - 2(\alpha\beta)^3 = 16 - 2 = -16$ $\alpha^4 + \beta^4 = (\alpha^3 + \beta^3) (\alpha^4 + \beta^3) - (\alpha\beta)^2 (\alpha^2 + \beta^2) = -2(-4-4) = 16$ $\alpha^{14} + \beta^{14} = (\alpha^3 + \beta^3) (\alpha^4 + \beta^3) - (\alpha\beta)^3 (\alpha^2 + \beta^2) = -2(-4-4) = 16$ $\alpha^{14} + \beta^{14} = (\alpha^3 + \beta^3) (\alpha^4 + \beta^3) - (\alpha\beta)^3 (\alpha^2 + \beta^2) = -2(-4-4) = 16$ $\alpha^{14} + \beta^{14} = (\alpha^3 + \beta^3) (\alpha^3 + \beta^3) - (\alpha\beta)^3 (\alpha^2 + \beta^2) = -2(-4-4) = 16$ $\alpha^{14} + \beta^{14} = (\alpha^3 + \beta^3) (\alpha^3 + \beta^3) - (\alpha\beta)^3 (\alpha^2 + \beta^2) = -2(-4-4) = 16$ $\alpha^{14} + \beta^{14} = (\alpha^3 + \beta^3) (\alpha^3 + \beta^3) - (\alpha\beta)^3 (\alpha^2 + \beta^2) = -2(-4-4) = 16$ $\alpha^{14} + \beta^{14} = (\alpha^3 + \beta^3) (\alpha^3 + \beta^3) - (\alpha\beta)^3 (\alpha^2 + \beta^2) = -2(-4-4) = 16$ $\alpha^{14} + \beta^{14} = (\alpha^3 + \beta^3) (\alpha^3 + \beta^3) - (\alpha\beta)^3 (\alpha^2 + \beta^3) = -2(-4-4) = 16$ $\alpha^{14} + \beta^{14} = (\alpha^3 + \beta^3) (\alpha^3 + \beta^3) - (\alpha\beta)^3 (\alpha^2 + \beta^3) = -2(-4-4) = 16$ $\alpha^{14} + \beta^{14} = (\alpha^3 + \beta^3) (\alpha^3 + \beta^3) - (\alpha\beta)^3 (\alpha^2 + \beta^3) = -2(-4-4) = 16$ $\alpha^{14} + \beta^{14} = (\alpha^3 + \beta^3) (\alpha^3 + \beta^3) - (\alpha\beta)^3 (\alpha^2 + \beta^3) = -2(-4-4) = 16$ $\alpha^{14} + \beta^{14} = (\alpha^3 + \beta^3) (\alpha^3 + \beta^3) - (\alpha\beta)^3 (\alpha^2 + \beta^3) = -2(-4-4) = 16$ $\alpha^{14} + \beta^{14} = (\alpha^3 + \beta^3) (\alpha^3 + \beta^3) - (\alpha\beta)^3 (\alpha^2 + \beta^3) = -2(-4-4) = 16$ $\alpha^{14} + \beta^{14} = (\alpha^3 + \beta^3) - (\alpha\beta)^3 (\alpha^2 + \beta^3) = -2(-4-4) = 16$ $\alpha^{14} + \beta^{14} = (\alpha^3 + \beta^3) (\alpha^3 + \beta^3) = -2(-4-4) = 16$ $\alpha^{14} + \beta^{14} = (\alpha^3 + \beta^3) - (\alpha\beta)^3 (\alpha^3 + \beta^3) = -2(-4-4) = 16$ $\alpha^{14} + \beta^{14} + (\alpha^3 + \beta^3) = (\alpha^3 + \beta^3) = -2(-4-4) = 16$ $\alpha^{14} + \alpha^{14} $			E(Main) 2023 DATE : 13-	04-2023 (SHIFT-2) PAPER-1	I MATHEMATIC	S			
(1) -64 (2) -128 (3) $-128\sqrt{2}$ (4) $-64\sqrt{2}$ NTA Ans. (2) Reso Ans. (2) Sol. $\therefore \alpha + \beta = \sqrt{2}$ $\alpha\beta = 2$ $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2 \alpha\beta = -2$ $\alpha^4 + \beta^4 = (\alpha^2 + \beta^2) - 2 (\alpha\beta)^2 = 4 - 8 = -4$ $\alpha^6 + \beta^6 = (\alpha^2 + \beta^2) (\alpha^2 + \beta^2) = -2 [-4 - 4] = 16$ $\alpha^6 + \beta^6 = (\alpha^2 + \beta^3) (\alpha^4 + \beta^3) - (\alpha\beta)^6 (\alpha^2 + \beta^2) = -2 [-4 - 4] = 16$ $\alpha^{14} + \beta^{14} = (\alpha^6 + \beta^6) - (\alpha\beta)^6 (\alpha^2 + \beta^2) = -2 [-4 - 4] = 16$ $\alpha^{14} + \beta^{14} = (\alpha^6 + \beta^6) - (\alpha\beta)^6 (\alpha^2 + \beta^2) = -2 [-4 - 4] = 16$ $\alpha^{14} + \beta^{14} = (\alpha^6 + \beta^6) - (\alpha\beta)^6 (\alpha^2 + \beta^2) = -2 [-56 + 8.16] = -2 = -256 + 8.16$ $= 8 \times 16 = -128$ 20. All words, with or without meaning, are made using all the letters of the word "MONDAY". These words are written as in a dictionary with serial numbers. The serial number of the word "MONDAY" is (1) 324 (2) 326 (3) 327 (4) 328 NTA Ans. (3) Reso Ans. (3) Sol. given : MONDAY A - 51 = 120 D 5 i = 120 MA 4! = 24 MOA 3! = 6 MONA 2! = 2 MONDA? = 1 $\frac{327}{21}$ 21. The remainder, when 7^{103} is divided by 17, is NTA Ans. (12) Reso Ans. (12) Sol. $7^{10} = 7.(49)^{15} = 7.(51-2)^{51}$ $= 7(51x - 2^5) = 17x - 7.5^{51}$ = 17x - 56(17x - 1) = 17x - 56(17x + 1) = 17x -	19.	Let α , β be the roots of the equation $x^2 - \sqrt{2}x + 2 = 0$. Then $\alpha^{14} + \beta^{14}$ is equal to							
NTA Ans. (2) Reso Ans. (2) Sol. $\alpha + \beta = \sqrt{2}$ $\alpha\beta = 2$ $\alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2 (\alpha\beta)^{2} = 4 - 8 = -4$ $\alpha^{6} + \beta^{6} = (\alpha^{2} + \beta^{2}) - 2 (\alpha\beta)^{4} = 16 - 2 = -16$ $\alpha^{6} + \beta^{6} = (\alpha^{2} + \beta^{2}) (\alpha^{2} + \beta^{2}) - (\alpha\beta)^{2} (\alpha^{2} + \beta^{2}) = -2 (-4 - 4) = 16$ $\alpha^{14} + \beta^{14} = (\alpha^{2} + \beta^{2}) (\alpha^{4} + \beta^{6}) - (\alpha\beta)^{6} (\alpha^{2} + \beta^{2})$ $= (-16) (16) - 2^{6} \cdot (-2)$ = -256 + 8.16 $= 8 \times 16 = -128$ 20. All words, with or without meaning, are made using all the letters of the word "MONDAY". These words are written as in a dictionary with serial numbers. The serial number of the word "MONDAY" is (1) 324 (2) 326 (3) 327 (4) 328 NTA Ans. (3) Reso Ans. (3) Reso Ans. (3) Sol. given : MONDAY A, D, M, N, O, Y A - 51 = 120 D 5 51 = -120 MA 41 = 24 MOA 31 = 6 MONDAY = 1 $\frac{327}{227}$ 21. The remainder, when 7^{103} is divided by 17, is NTA Ans. (12) Reso Ans. (12) Sol. $7^{10} = 7.(49)^{45} = 7.(51-2)^{51}$ $= 7(51A - 2^{51}) = 71K - 7.5^{51}$ = 17K - 56(17A + 1) = 17m - 51 - 71 - 72		(1) – 64	(2) – 128	$(3) - 128\sqrt{2}$	(4) – 64 √	$\overline{2}$			
Reso Ans. (2) Sol. $\therefore a + \beta = \sqrt{2}$ $a\beta = 2$ $a^{2} + \beta^{2} = (a + \beta)^{2} - 2 a\beta = -2$ $a^{4} + \beta^{4} = (a^{2} + \beta^{2})^{2} - 2(a\beta)^{4} = 16 - 2 = -16$ $a^{6} + \beta^{6} = (a^{4} + \beta^{2})^{2} - 2(a\beta)^{4} = 16 - 2 = -16$ $a^{6} + \beta^{6} = (a^{4} + \beta^{3}) (a^{6} + \beta^{6}) - (a\beta)^{6} (a^{2} + \beta^{2}) = -2(-4 - 4) = 16$ $a^{14} + \beta^{14} = (a^{3} + \beta^{6}) (a^{6} + \beta^{6}) - (a\beta)^{6} (a^{2} + \beta^{2}) = -2(-4 - 4) = 16$ $a^{14} + \beta^{14} = (a^{3} + \beta^{6}) (a^{6} + \beta^{6}) - (a\beta)^{6} (a^{2} + \beta^{2}) = -2(-4 - 4) = 16$ $a^{14} + \beta^{14} = (a^{3} + \beta^{6}) (a^{6} + \beta^{6}) - (a\beta)^{6} (a^{2} + \beta^{2}) = -2(-4 - 4) = 16$ $a^{14} + \beta^{14} = (a^{3} + \beta^{6}) (a^{6} + \beta^{6}) - (a\beta)^{6} (a^{2} + \beta^{2}) = -2(-4 - 4) = 16$ $a^{14} + \beta^{14} = (a^{3} + \beta^{6}) (a^{6} + \beta^{6}) - (a\beta)^{6} (a^{2} + \beta^{2}) = -2(-4 - 4) = 16$ $a^{14} + \beta^{14} = (a^{3} + \beta^{6}) (a^{6} + \beta^{6}) - (a\beta)^{6} (a^{2} + \beta^{2}) = -2(-4 - 4) = 16$ $a^{15} + \beta^{12} - (a^{15} + \beta^{12}) = -2(-4)^{16} (a^{2} + \beta^{2}) = -2(-4 - 4) = 16$ $a^{16} + \beta^{16} = -128$ 20. All words, with or without meaning, are made using all the letters of the word "MONDAY". These words are written as in a dictionary with serial numbers. The serial number of the word "MONDAY" is (1) 324 (2) 326 (3) 327 (4) 328 NTA Ans. (3) Sol. given : MONDAY A, D, M, N, O, Y A, -51 = 120 D 51 = 120 MA 41 = 24 MOA 31 = 6 MOD 31 = 6 MODA 31 = 6 MODA 31 = 6 MODA 31 = 6 MODA 42 = 2 MONDAY = 1 $3\overline{327}$ 21. The remainder, when 7^{103} is divided by 17, is NTA Ans. (12) Peso Ans. (12) Sol. $7^{108} = 7, (51-2)^{51}$ $= 7(51, 2-2^{51}) = 77k - 7, 5^{51}$ $= 17k - 56(17, -1)^{12}$ $= 77k - 56(17, -1)^{12}$ $= 78k - 56(17, -1)^{12}$ $= 7k - 56(17, -1)^{2}$ $= 7k - 56(17, -1)^{2}$	NTA A	ns. (2)							
Sol. :: $a + \beta = \sqrt{2}$ $a\beta = 2$ $a^{2} + \beta^{2} = (a + \beta)^{2} = 2 \alpha\beta = -2$ $a^{4} + \beta^{4} = (a^{2} + \beta^{2}) = 2 (\alpha\beta)^{2} = 4 - 8 = -4$ $a^{6} + \beta^{8} = (a^{2} + \beta^{2}) = 2 (\alpha\beta)^{4} = 16 - 2 = -16$ $a^{6} + \beta^{8} = (a^{2} + \beta^{2}) (a^{4} + \beta^{4}) - (\alpha\beta)^{2} (a^{2} + \beta^{2}) = -2 (-4 - 4) = 16$ $a^{14} + \beta^{14} = (a^{8} + \beta^{8}) (a^{6} + \beta^{8}) - (\alpha\beta)^{6} (a^{2} + \beta^{2}) = -2 (-4 - 4) = 16$ $a^{14} + \beta^{14} = (a^{2} + \beta^{8}) (a^{6} + \beta^{8}) - (\alpha\beta)^{6} (a^{2} + \beta^{2}) = -2 (-4 - 4) = 16$ $a^{14} + \beta^{14} = (a^{2} + \beta^{8}) (a^{6} + \beta^{8}) - (\alpha\beta)^{6} (a^{2} + \beta^{2}) = -2 (-4 - 4) = 16$ $a^{14} + \beta^{14} = (a^{2} + \beta^{8}) (a^{6} + \beta^{8}) - (\alpha\beta)^{6} (a^{2} + \beta^{2}) = -2 (-4 - 4) = 16$ $a^{14} + \beta^{14} = (a^{2} + \beta^{8}) (a^{6} + \beta^{8}) - (\alpha\beta)^{6} (a^{2} + \beta^{2}) = -2 (-4 - 4) = 16$ $a^{14} + \beta^{14} = (a^{2} + \beta^{8}) (a^{6} + \beta^{8}) - (\alpha\beta)^{6} (a^{2} + \beta^{2}) = -2 (-4 - 4) = 16$ $a^{14} + \beta^{14} = (a^{2} + \beta^{8}) (a^{6} + \beta^{8}) - (\alpha\beta)^{6} (a^{2} + \beta^{2}) = -2 (-4 - 4) = 16$ $a^{14} + \beta^{14} = (a^{2} + \beta^{8}) (a^{6} + \beta^{8}) - (\alpha\beta)^{6} (a^{2} + \beta^{2}) = -2 (-4 - 4) = 16$ $a^{16} + \alpha^{16} - \alpha^{16} + \alpha$	Reso	Ans. (2)							
$a^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2 \alpha\beta = -2$ $a^{4} + \beta^{4} = (\alpha^{2} + \beta^{2})^{2} - 2(\alpha\beta)^{4} = 16 - 2 = -4$ $a^{3} + \beta^{3} = (\alpha^{4} + \beta^{4})^{2} - 2(\alpha\beta)^{4} = 16 - 2 = -16$ $a^{0} + \beta^{0} = (\alpha^{2} + \beta^{2}) (\alpha^{4} + \beta^{4}) - (\alpha\beta)^{6} (\alpha^{2} + \beta^{2}) = -2 (-4 - 4) = 16$ $a^{14} + \beta^{14} = (\alpha^{3} + \beta^{3}) (\alpha^{5} + \beta^{6}) - (\alpha\beta)^{6} (\alpha^{2} + \beta^{2})$ $= (-16) (16) - 2^{5} . (-2)$ $= -256 + 8.16$ $= 8 \times 16 = -128$ 20. All words, with or without meaning, are made using all the letters of the word "MONDAY". These words are written as in a dictionary with serial numbers. The serial number of the word "MONDAY" is (1) 324 (2) 326 (3) 327 (4) 328 NTA Ans. (3) Reso Ans. (3) Sol. given : MONDAY A, D, M, N, O, Y A - 51 = 120 D 5 1 = 120 D 6 5 1 = 120 D 7 5 1 =	Sol.	$\therefore \alpha + \beta = \sqrt{2}$	$\alpha\beta = 2$						
$a^{4} + \beta^{4} = (a^{2} + \beta^{2})^{2} - 2(\alpha\beta)^{2} = 4 - 8 = -4$ $a^{0} + \beta^{2} = (a^{4} + \beta^{3})^{2} - 2(\alpha\beta)^{3} = 16 - 2 = -16$ $a^{6} + \beta^{8} = (a^{2} + \beta^{3})(a^{6} + \beta^{6}) - (\alpha\beta)^{2}(a^{2} + \beta^{2}) = -2(-4 - 4) = 16$ $a^{14} + \beta^{14} = (a^{6} + \beta^{8})(a^{6} + \beta^{8}) - (\alpha\beta)^{6}(a^{2} + \beta^{2})$ $= (-16)(16) - 2^{6} \cdot (-2)$ $= -256 + 8 \cdot 16$ $= 8 \times 16 = -128$ 20. All words, with or without meaning, are made using all the letters of the word "MONDAY". These words are written as in a dictionary with serial numbers. The serial number of the word "MONDAY" is (1) 324 (2) 326 (3) 327 (4) 328 NTA Ans. (3) Reso Ans. (3) Sol. given : MONDAY A, D, M, N, O, Y A - 51 = 120 D 51 = 120 MA 41 = 24 MD 41 = 24 MD 41 = 24 MONDA 21 = 2 MONDAY = 1 337 21. The remainder, when 7 ¹⁰³ is divided by 17, is NTA Ans. (12) Reso Ans. (12) Sol. 7 ¹⁰⁰ = 7.(49) ⁵¹ = 7. (51-2) ⁵¹ = 7(51)2 ⁵¹) = 17k - 7. 5 ⁵³ = 17k - 56(17 - 1) ¹² = 17k - 56(17 - 1) ¹² = 17k - 56(17 + 1) = 17m - 51 - 17 + 12 So Remainder 12		$\alpha^2 + \beta^2 = (\alpha + \beta)$	$\beta^{2}-2 \alpha\beta=-2$						
$a^{a} + \beta^{a} = (a^{a} + \beta^{a})^{2} - 2 (a\beta)^{4} = 16 - 2 = -16$ $a^{6} + \beta^{6} = (a^{2} + \beta^{3}) (a^{4} + \beta^{4}) - (a\beta)^{2} (a^{2} + \beta^{2}) = -2 (-4 - 4) = 16$ $a^{14} + \beta^{14} = (a^{a} + \beta^{a}) (a^{6} + \beta^{6}) - (a\beta)^{6} (a^{2} + \beta^{2})$ $= (-16) (16) - 2^{6} \cdot (-2)$ $= -256 + 8.16$ $= 8 \times 16 = -128$ 20. All words, with or without meaning, are made using all the letters of the word "MONDAY". These words are written as in a dictionary with serial numbers. The serial number of the word "MONDAY" is (1) 324 (2) 326 (3) 327 (4) 328 NTA Ans. (3) Reso Ans. (3) Sol. given : MONDAY A, D, M, N, O, Y A - 51 = 120 D 51 = 120 MA 41 = 24 MD 41 = 24 MD 41 = 24 MD 41 = 24 MOA 31 = 6 MOD 3! = 6 MOD 3! = 6 MONA 2! = 2 MONDAY = 1 327 21. The remainder, when 7 ¹⁰³ is divided by 17, is NTA Ans. (12) Reso Ans. (12) Sol. 7 ¹⁰⁰ = 7.(49)^{51} = 7.(51-2)^{51} $= 7(51\lambda - 2^{51}) = 17k - 7.5^{51}$ $= 17k - 56(17 - 1)^{12}$ $= 17k - 56(17 - 1)^{12}$		$\alpha^4 + \beta^4 = (\alpha^2 + \beta^4)$	$(\beta^2)^2 - 2(\alpha\beta)^2 = 4 - 8 = -4$	4					
$a^{6} + \beta^{6} = (c^{2} + \beta^{2}) (a^{4} + \beta^{4}) - (a\beta)^{2} (a^{2} + \beta^{2}) = -2(-4 - 4) = 16$ $a^{14} + \beta^{14} = (a^{8} + \beta^{8}) (a^{6} + \beta^{8}) - (a\beta)^{6} (a^{2} + \beta^{2})$ $= (-16) (16) - 2^{6} (-2)$ $= -256 + 8.16$ $= 8 \times 16 = -128$ 20. All words, with or without meaning, are made using all the letters of the word "MONDAY". These words are written as in a dictionary with serial numbers. The serial number of the word "MONDAY" is (1) 324 (2) 326 (3) 327 (4) 328 NTA Ans. (3) Reso Ans. (3) Sol. given :- MONDAY A, D, M, N, O, Y A - 5! = 120 D 5! = 120 MA 4! = 24 MD 4! = 24 MD 4! = 24 MD 4! = 24 MD 4! = 24 MOA 3! = 6 MONDA 2! = 2 MONDAY = 1 327 21. The remainder, when 7 ¹⁰³ is divided by 17, is NTA Ans. (12) Reso Ans. (12) Sol. 7 ¹⁰⁰ = 7.(49)^{5!} = 7.(51-2)^{5!} = 7(51, -2^{5!}) = 17k - 7.5^{5!} = 17k - 56(17, -1)^{12}		$\alpha^8 + \beta^8 = (\alpha^4 +$	$\beta^{4})^{2} - 2 (\alpha\beta)^{4} = 16 - 2 = -2$	- 16					
$a^{14} + \beta^{14} = (a^{24} + \beta^{5}) (a^{2} + \beta^{5}) - (a\beta)^{6} (a^{2} + \beta^{2}) = (-16) (16) - 2^{6} . (-2) = -256 + 8.16 = 8 \times 16 = -128$ 20. All words, with or without meaning, are made using all the letters of the word "MONDAY". These words are written as in a dictionary with serial numbers. The serial number of the word "MONDAY" is (1) 324 (2) 326 (3) 327 (4) 328 NTA Ans. (3) Sol. given :- MONDAY A, D, M, N, O, Y A, -5! = 120 D 5! = 120 MA 4! = 24 MDA 4! = 24 MDA 4! = 24 MDA 3! = 6 MONA 2! = 2 MONDAY = 1 327 21. The remainder, when 7 ¹⁰³ is divided by 17, is NTA Ans. (12) Reso Ans. (12) Sol. 7 ¹⁰³ = 7.(49) ⁵¹ = 7.(51-2) ⁵¹ = 7(51, -2^{51}) = 17k - 7.5^{51} = 17k - 56(17, -1)^{12} = 17k - 56(17, +1) = 17m -51 - 17+12 So Remainder 12		$\alpha^6 + \beta^6 = (\alpha^2 + \beta^6)$	β^2) $(\alpha^4 + \beta^4) - (\alpha\beta)^2 (\alpha^2 + \beta^4)$	$\beta^2) = -2(-4-4) = 16$					
20. All words, with or without meaning, are made using all the letters of the word "MONDAY". These words are written as in a dictionary with serial numbers. The serial number of the word "MONDAY" is (1) 324 (2) 326 (3) 327 (4) 328 NT A Ans. (3) Reso Ans. (3) Sol. given :: MONDAY A, D, M, N, O, Y A - 51 = 120 D 51 = 120 MA 4! = 24 MOA 3! = 6 MONDA 2! = 2 MONDAY = 1 $\frac{327}{27}$ 21. The remainder, when 7 ¹⁰³ is divided by 17, is NT A Ans. (12) Reso Ans. (12) Sol. $7^{103} = 7.(49)^{51} = 7.(51-2)^{51}$ $= 7.(51, - 2^{51}) = 17k - 7.5^{51}$ $= 17k - 56(17k - 1)^{12}$ = 17k - 56(17k - 1) So Remainder 12		$\alpha^{14} + \beta^{14} = (\alpha^8)$	+ β^{8}) (α^{6} + β^{6}) - ($\alpha\beta$) ⁶ (α^{2}	$(2 + \beta^2)$					
20. All words, with or without meaning, are made using all the letters of the word "MONDAY". These words are written as in a dictionary with serial numbers. The serial number of the word "MONDAY" is (1) 324 (2) 326 (3) 327 (4) 328 NTA Ans. (3) Reso Ans. (3) Sol. given :- MONDAY A, D, M, N, O, Y A - 51 = 120 D 5! = 120 MA 4! = 24 MD 4! = 24 MD 4! = 24 MONDA? = 6 MONDA? = 1 327 21. The remainder, when 7 ¹⁰³ is divided by 17, is NTA Ans. (12) Reso Ans. (12) Sol. 7 ¹⁰³ = 7.(49) ⁵¹ = 7. (51-2) ⁵¹ = 7.(51λ - 2 ⁵¹) = 17k - 7. 5 ⁵¹ = 17k - 56(17λ - 1) ¹² = 17k - 56(17λ - 1) ¹² So Remainder 12		= (-16)(16) - $= -256 \pm 8.16$, ∠° . (− ∠)						
20. All words, with or without meaning, are made using all the letters of the word "MONDAY". These words are written as in a dictionary with serial numbers. The serial number of the word "MONDAY" is (1) 324 (2) 326 (3) 327 (4) 328 NTA Ans. (3) Reso Ans. (3) Sol. given : MONDAY A, D, M, N, O, Y A - 51 = 120 D 51 = 120 MA 4! = 24 MD 4! = 24 MON 2! = 2 MONDAY = 1 327 21. The remainder, when 7 ¹⁰³ is divided by 17, is NTA Ans. (12) Reso Ans. (12) Sol. $7^{103} = 7.(4)^{51} = 7.(51-2)^{51}$ $= 7(51\lambda - 2^{51}) = 17k - 7.5^{51}$ $= 17k - 56(17\lambda + 1)$ = 17m - 51 - 17 + 12 So Remainder 12		$= 8 \times 16 = -12$	28						
20. All words, with or without meaning, are made using all the letters of the word "MONDAY". These words are written as in a dictionary with serial numbers. The serial number of the word "MONDAY" is (1) 324 (2) 326 (3) 327 (4) 328 NTA Ans. (3) Reso Ans. (3) Sol. given : MONDAY A, D, M, N, O, Y A - 5! = 120 D 5! = 120 MA 4! = 24 MOA 3! = 6 MONA 2! = 2 MONDAY = 1 327 21. The remainder, when 7^{103} is divided by 17, is NTA Ans. (12) Reso Ans. (12) Sol. $7^{103} = 7.(49)^{51} = 7.(51-2)^{51}$ $= 7(51\lambda - 2^{51}) = 17k - 7.5^{51}$ $= 17k - 56(17\lambda + 1)$ $= 7(51\lambda - 2^{51}) = 12$		reconer							
are written as in a dictionary with serial numbers. The serial number of the word "MONDAY" is (1) 324 (2) 326 (3) 327 (4) 328 NTA Ans. (3) Reso Ans. (3) Sol. given :- MONDAY A, D, M, N, O, Y A - 5! = 120 D 5! = 120 MA 4! = 24 MD 4! = 24 MOA 3! = 6 MOD 3! = 6 MONA 2! = 2 MONDAY = 1 327 21. The remainder, when 7^{103} is divided by 17, is NTA Ans. (12) Reso Ans. (12) Reso Ans. (12) Sol. $7^{103} = 7.(49)^{51} = 7.(51-2)^{51}$ $= 7(51\lambda - 2^{51}) = 17k - 7.5^{51}$ $= 17k - 56(17\lambda + 1)$ = 17m - 51-17+12 So Remainder 12	20.	All words, with	or without meaning, are	made using all the letters of	the word "MON	DAY" . These words			
(1) 324 (2) 326 (3) 327 (4) 328 NTA Ans. (3) Reso Ans. (3) Sol. given :- MONDAY A, D, M, N, O, Y A - 51 = 120 D 5! = 120 MA 4! = 24 MD 4! = 24 MOA 3! = 6 MOD 3! = 6 MOD 3! = 6 MONA 2! = 2 MONDAY = 1 <u>327</u> 21. The remainder, when 7^{103} is divided by 17, is NTA Ans. (12) Reso Ans. (13) Reso Ans. (14) Reso Ans. (15) Reso Ans. (16) Reso Ans. (17) Reso Ans. (17) Res		ar <mark>e wr</mark> itten as i	in a dictionary with serial	numbers. The serial numbe	r of the word "M	ONDAY" is			
NIA Ans. (3) Reso Ans. (3) Sol. given :- MONDAY A, D, M, N, O, Y A - 5! = 120 D 5! = 120 MA 4! = 24 MD 4! = 24 MOA 3! = 6 MOD 3! = 6 MOD 3! = 6 MONA 2! = 2 MONDAY = 1 327 21. The remainder, when 7^{103} is divided by 17, is NTA Ans. (12) Reso Ans. (12) Reso Ans. (12) Sol. $7^{109} = 7.(49)^{51} = 7.(51-2)^{51}$ $= 7(51\lambda - 2^{51}) = 17k - 7.5^{51}$ $= 17k - 56(17 - 1)^{12}$ $= 17k - 56(17 - 1)^{12}$ $= 17k - 56(17\lambda + 1)$ = 17m - 51 - 17 + 12 So Remainder 12		(1) 324	(2) 326	(3) 327	(4) 328				
Sol. given : MONDAY A, D, M, N, O, Y A - 5! = 120 D 5! = 120 MA 4! = 24 MD 4! = 24 MOA 3! = 6 MOD 3! = 6 MOD 3! = 6 MONA 2! = 2 MONDAY = 1 327 21. The remainder, when 7 ¹⁰³ is divided by 17, is NTA Ans. (12) Reso Ans. (12) Sol. $7^{103} = 7.(49)^{51} = 7.(51-2)^{51}$ $= 7(51\lambda - 2^{51}) = 17k - 7.5^{51}$ $= 17k - 56(17\lambda + 1)$ = 17m - 51 - 17 + 12 So Remainder 12	NIA A	Ans. (3)							
A, D, M, N, O, Y A - 5! = 120 D 5! = 120 MA 4! = 24 MD 4! = 24 MOA 3! = 6 MOD 3! = 6 MONA 2! = 2 MONDAY = 1 $\frac{327}{27}$ 21. The remainder, when 7 ¹⁰³ is divided by 17, is NTA Ans. (12) Reso Ans. (12) Sol. 7 ¹⁰³ = 7.(49) ⁵¹ = 7. (51-2) ⁵¹ = 7(51 λ - 2 ⁵¹) = 17k - 7. 5 ⁵¹ = 17k - 56(17 - 1) ¹² = 17k - 56(17 λ + 1) = 17m - 51-17+12 So Remainder 12	Sol.	aiven - MONE	DAY						
A - 51 = 120 D 51 = 120 MA 41 = 24 MD 41 = 24 MOA 31 = 6 MOD 31 = 6 MONA 21 = 2 MONDAY = 1 $\frac{327}{327}$ 21. The remainder, when 7 ¹⁰³ is divided by 17, is NTA Ans. (12) Reso Ans. (12) Sol. $7^{103} = 7.(49)^{51} = 7.(51-2)^{51}$ $= 7(51\lambda - 2^{51}) = 17k - 7.5^{51}$ $= 17k - 56(17\lambda + 1)$ = 17m - 51 - 17 + 12 So Remainder 12	B	A, D, M, N, O,	Y						
D 5! = 120 MA 4! = 24 MD 4! = 24 MN 4! = 24 MOA 3! = 6 MOD 3! = 6 MONA 2! = 2 MONDAY = 1 327 21. The remainder, when 7^{103} is divided by 17, is NTA Ans. (12) Reso Ans. (12) Sol. $7^{103} = 7.(49)^{51} = 7.(51-2)^{51}$ $= 7(51\lambda - 2^{51}) = 17k - 7.5^{51}$ $= 17k - 56(17\lambda + 1)$ = 17m - 51 - 17 + 12 So Remainder 12		A – 5! – – – –	- = 120						
MA 4! = 24 MD 4! = 24 MN 4! = 24 MOA 3! = 6 MOD 3! = 6 MONA 2! = 2 MONDAY = 1 327 21. The remainder, when 7 ¹⁰³ is divided by 17, is NTA Ans. (12) Reso Ans. (12) Sol. 7 ¹⁰³ = 7. (49) ⁵¹ = 7. (51-2) ⁵¹ = 7(51\lambda - 2 ⁵¹) = 17k - 7. 5 ⁵¹ = 17k - 56(17 - 1) ¹² = 17k - 56(17\lambda + 1) = 17m -51-17+12 So Remainder 12		D <u>5</u> !	= 120						
MD 4! = 24 MN 4! = 24 MOA 3! = 6 MOD 3! = 6 MONA 2! = 2 MONDAY = 1 $\frac{327}{27}$ 21. The remainder, when 7 ¹⁰³ is divided by 17, is NTA Ans. (12) Reso Ans. (12) Sol. 7 ¹⁰³ = 7.(49) ⁵¹ = 7.(51-2) ⁵¹ = 7(51\lambda - 2 ⁵¹) = 17k - 7.5 ⁵¹ = 17k - 56(17 - 1) ¹² = 17k - 56(17\lambda + 1) = 17m - 51 - 17 + 12 So Remainder 12		MA 4!	= 24						
MiN 4! = 24 MOA 3! = 6 MOD 3! = 6 MONA 2! = 2 MONDAY = 1 327 21. The remainder, when 7 ¹⁰³ is divided by 17, is NTA Ans. (12) Reso Ans. (12) Sol. 7 ¹⁰³ = 7.(49) ⁵¹ = 7. (51-2) ⁵¹ = 7(51 λ - 2 ⁵¹) = 17k - 7. 5 ⁵¹ = 17k - 56(17 - 1) ¹² = 17k - 56(17 λ + 1) = 17m - 51-17+12 So Remainder 12		MD 4!	= 24						
MOR 0: $= 0$ MOD 3! $= 6$ MONA 2! $= 2$ MONDAY $= 1$ 327 21. The remainder, when 7^{103} is divided by 17, is NTA Ans. (12) Reso Ans. (12) Sol. $7^{103} = 7.(49)^{51} = 7.(51-2)^{51}$ $= 7(51\lambda - 2^{51}) = 17k - 7.5^{51}$ $= 17k - 56(17\lambda + 1)$ = 17m - 51 - 17 + 12 So Remainder 12			= 24						
MONA 2! = 2 MONDAY = 1 $\frac{327}{327}$ 21. The remainder, when 7 ¹⁰³ is divided by 17, is NTA Ans. (12) Reso Ans. (12) Sol. $7^{103} = 7.(49)^{51} = 7.(51-2)^{51}$ $= 7(51\lambda - 2^{51}) = 17k - 7.5^{51}$ $= 17k - 56(17\lambda + 1)$ = 17m - 51 - 17 + 12 So Remainder 12		MOD 3!	= 6						
MONDAY = 1 327 21. The remainder, when 7 ¹⁰³ is divided by 17, is NTA Ans. (12) Reso Ans. (12) Sol. $7^{103} = 7.(49)^{51} = 7.(51-2)^{51}$ $= 7(51\lambda - 2^{51}) = 17k - 7.5^{51}$ $= 17k - 56(17\lambda + 1)$ = 17m - 51 - 17 + 12 So Remainder 12		MONA 2!	= 2						
21. The remainder, when 7^{103} is divided by 17, is NTA Ans. (12) Reso Ans. (12) Sol. $7^{103} = 7.(49)^{51} = 7.(51-2)^{51}$ $= 7(51\lambda - 2^{51}) = 17k - 7.5^{51}$ $= 17k - 56(17 - 1)^{12}$ $= 17k - 56(17\lambda + 1)$ = 17m - 51 - 17 + 12 So Remainder 12		M <mark>OND</mark> AY	= 1						
21. The remainder, when 7^{103} is divided by 17, is NTA Ans. (12) Reso Ans. (12) Sol. $7^{103} = 7.(49)^{51} = 7.(51-2)^{51}$ $= 7(51\lambda - 2^{51}) = 17k - 7.5^{51}$ $= 17k - 56(17 - 1)^{12}$ $= 17k - 56(17\lambda + 1)$ = 17m - 51 - 17 + 12 So Remainder 12			327						
21. The remainder, when 7^{103} is divided by 17, is NTA Ans. (12) Reso Ans. (12) Sol. $7^{103} = 7.(49)^{51} = 7.(51-2)^{51}$ $= 7(51\lambda - 2^{51}) = 17k - 7.5^{51}$ $= 17k - 56(17\lambda + 1)$ = 17m - 51 - 17 + 12 So Remainder 12									
NTA Ans. (12) Reso Ans. (12) Sol. $7^{103} = 7.(49)^{51} = 7.(51-2)^{51}$ $= 7(51\lambda - 2^{51}) = 17k - 7.5^{51}$ $= 17k - 56(17 - 1)^{12}$ $= 17k - 56(17\lambda + 1)$ = 17m - 51 - 17 + 12 So Remainder 12	21.	Th <mark>e re</mark> mainder	r, when 7 ¹⁰³ is divided by	17, is					
Reso Ans. (12) Sol. $7^{103} = 7.(49)^{51} = 7.(51-2)^{51}$ $= 7(51\lambda - 2^{51}) = 17k - 7.5^{51}$ $= 17k - 56(17 - 1)^{12}$ $= 17k - 56(17\lambda + 1)$ = 17m - 51 - 17 + 12 So Remainder 12		ns. (12)							
Sol. $7^{103} = 7.(49)^{51} = 7.(51-2)^{51}$ = $7(51\lambda - 2^{51}) = 17k - 7.5^{51}$ = $17k - 56(17 - 1)^{12}$ = $17k - 56(17\lambda + 1)$ = $17m - 51 - 17 + 12$ So Remainder 12	Reso	Ans. (12)	7 (54 0)51						
$= 7(51\lambda - 2^{-3}) = 17k - 7.5^{-3}$ = $17k - 56(17 - 1)^{12}$ = $17k - 56(17\lambda + 1)$ = $17m - 51 - 17 + 12$ So Remainder 12	Sol.	$7^{103} = 7.(49)^{31}$	$= 7.(51-2)^{51}$						
$= 17k - 56(17\lambda + 1)$ = 17m -51-17+12 So Remainder 12		= 7(31 - 23) = 17k - 56(17)	$= 1/K - 7.5^{\circ}$						
= 17m - 51 - 17 + 12 So Remainder 12		= 17k - 56(17) = 17k - 56(17)	→ + 1)						
So Remainder 12		= 17m - 51 - 17	+12						
		So Remainder	12						

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 bwitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

	asting for better formorrow JEE(Main) 2023 DATE : 13-04-2023 (SHIFT-2) PAPER-1 MATHEMATICS	
24.	If y = y(x) is the solution of the differential equation $\frac{dy}{dx} + \frac{4x}{(x^2 - 1)}y = \frac{x + 2}{(x^2 - 1)^{5/2}}$, x > 1 suc	ch that
	$y(2) = \frac{2}{9}\log_{e}(2+\sqrt{3})$ and $y(\sqrt{2}) = \alpha \log_{e}(\sqrt{\alpha}+\beta)+\beta - \sqrt{\gamma}, \alpha, \beta, \gamma \in \mathbb{N}$, then $\alpha\beta\gamma$ is equal	to
NTA A Reso	Ans. (6) Ans. (6)	
Sol.	$\frac{dy}{dx} + \frac{4x}{(x^2 - 1)}y = \frac{x + 2}{(x^2 - 1)^{\frac{5}{2}}}, x > 1 \text{ which is linear in y}$	
	I.f. $e^{\int \frac{4x}{x^2-1} dx} = e^{2\ln(x^2-1)} = (x^2-1)^2$	
	Solution is $y.(x^2 - 1)^2 = \int \frac{x + 2}{(x^2 - 1)^{\frac{5}{2}}} (x^2 - 1)^2 dx + c$	
	$\Rightarrow y(x^2-1)^2 = \int \frac{x+2}{\sqrt{x^2-1}} dx + c$	
	$\Rightarrow \qquad y(x^2-1)^2 = \sqrt{x^2-1} + 2 \ln\left(x + \sqrt{x^2-1}\right) + c$	
	$\therefore \qquad y(2) = \frac{2}{9} \ln \left(2 + \sqrt{3}\right)$	
	$\therefore \frac{2}{9} \ln(2 + \sqrt{3}) \cdot 9 = \sqrt{3} + 2 \ln(2 + \sqrt{3}) + c$	
	c = $-\sqrt{3}$ ∴ $y(x^2 - 1)^2 = \sqrt{x^2 - 1} + 2 \ln(x + \sqrt{x^2 - 1}) - \sqrt{3}$	
	Put $x = \sqrt{2}$ $\therefore y(\sqrt{2}) \cdot 1 = 1 + 2 \ln(\sqrt{2} + 1) - \sqrt{3}$ $y(\sqrt{2}) = 2 \ln(\sqrt{2} + 1) + 1 - \sqrt{3}$	
	$= \alpha \ln(\sqrt{\alpha} + \beta) + \beta - \sqrt{\gamma}$	
	$\alpha = 2, \beta = 1, \gamma = 3$ \therefore $\alpha.\beta.\gamma = 6$ Ans,	
<mark>25.</mark>	Let $f_n = \int_{0}^{\frac{\pi}{2}} \left(\sum_{k=1}^{n} \sin^{k-1} x \right) \left(\sum_{k=1}^{n} (2k-1) \sin^{k-1} x \right) \cos x dx, n \in \mathbb{N}.$ Then $f_{21} - f_{20}$ is equal to	
NTA A Reso	Ans. (41) Ans. (41)	
Sol.	$f_{n} = \int_{0}^{\frac{n}{2}} \left(\sum_{k=1}^{n} \sin^{k-1} x \right) \left(\sum_{k=1}^{n} (2k-1) \sin^{k-1} x \right) \cos x dx$	
	Let $\sin x = t$: cosxdx = dt	
	$f_{n} = \int_{0}^{1} \left(\sum_{k=1}^{n} t^{k-1} \right) \left(\sum_{k=1}^{n} (2k-1) t^{k-1} \right) dt$	

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 F facebook.com/ResonanceEdu www.youtube.com/resowatch bog.resonance.ac.in

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 (7340010333 f facebook.com/ResonanceEdu) twitter.com/ResonanceEdu) www.youtube.com/resowatch) blog.resonance.ac.in

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555 () 7340010333 f acebook.com/ResonanceEdu vitter.com/ResonanceEdu blog.resonance.ac.in

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 5555
Toll Free : 1800 258 5555

