

		Resonan			
31.	To <mark>rad</mark> iate EM sigr	nal of wav <mark>elen</mark> gth λ with	high efficien <mark>cy,</mark> the anten	nas should h <mark>ave</mark>	minimum size equa
	(1) $\frac{\lambda}{4}$ Resolution	$\frac{1}{2} = \frac{\lambda}{2}$	$\frac{(3) \lambda}{2}$	Respond (4) 2λ	
NTA A	Ans. (1)				
Reso	Ans. (1)				
32. Re	In an electromage negative z-axis as electromagnetic w (1) positive z-axis	netic wave, at an insta nd magnetic field is ald vave is :	ont and at a particular po ong the positive x-axis. T (2) positive y-axis	sition, the electr Then the directio	ic field is along th n of propagation (
	(3) negative y-axis	3	(4) at 45° angle fro	om positive y-axis	sonance"
NTA A	Ans. (1)				
Reso	Ans. (1)				
Sal					
Sol.	Direction of propa	gation of EM wave will b	be in the direction of $\vec{E} \times \vec{B}$		
33.	Direction of propaging $The distance trave at t = 5 s will be :$	gation of EM wave will b elled by an object in time	be in the direction of $\vec{E} \times \vec{B}$ e t is given by s = (2.5)t ² . T	he instantaneous	s speed of the obje
33. NTA A Reso Sol.	Direction of propage The distance trave at t = 5 s will be : (1) 12.5 ms ⁻¹ Ans. (4) Ans. (4) V = 5t = 25 m/s	gation of EM wave will b elled by an object in time (2) 5 ms ⁻¹	be in the direction of $\vec{E} \times \vec{B}$ e t is given by s = (2.5)t ² . T (3) 62.5 ms ⁻¹	he instantaneous (4) 25 ms⁻	s speed of the object
33. NTA A Reso Sol. 34.	Direction of propage The distance trave at t = 5 s will be : (1) 12.5 ms ⁻¹ Ans. (4) Ans. (4) V = 5t = 25 m/s A particle execute becomes equal to	gation of EM wave will b elled by an object in time (2) 5 ms ⁻¹ is SHM of amplitude A. its potential energy is	be in the direction of $\vec{E} \times \vec{B}$ e t is given by s = (2.5)t ² . T (3) 62.5 ms ⁻¹ The distance from the me	he instantaneous (4) 25 ms⁻ ean position wher	s speed of the object
33. NTA A Reso Sol. 34.	Direction of propaging The distance trave at t = 5 s will be : (1) 12.5 ms ⁻¹ Ans. (4) Ans. (4) V = 5t = 25 m/s A particle execute becomes equal to (1) $\sqrt{2A}$	gation of EM wave will be elled by an object in time (2) 5 ms ⁻¹ (2) 5 ms ⁻¹ (2) 5 ms ⁻¹ (2) $\frac{1}{\sqrt{2}}$ A	be in the direction of $\vec{E} \times \vec{B}$ e t is given by s = (2.5)t ² . T (3) 62.5 ms ⁻¹ The distance from the me (3) $\frac{1}{2}$ A	he instantaneous (4) 25 ms⁻ ean position wher (4) 2A	s speed of the object
33. NTA A Reso Sol. 34. NTA A Reso	Direction of propage The distance trave at t = 5 s will be : (1) 12.5 ms ⁻¹ Ans. (4) Ans. (4) V = 5t = 25 m/s A particle execute becomes equal to (1) $\sqrt{2A}$ Ans. (2) Ans. (2)	gation of EM wave will be elled by an object in time (2) 5 ms ⁻¹ (2) 5 ms ⁻¹ (2) 5 ms ⁻¹ (2) $\frac{1}{\sqrt{2}}$ A	be in the direction of $\vec{E} \times \vec{B}$ e t is given by s = (2.5)t ² . T (3) 62.5 ms ⁻¹ The distance from the me (3) $\frac{1}{2}$ A	he instantaneous (4) 25 ms⁻ ean position when (4) 2A	s speed of the object
33. NTA A Reso Sol. 34. NTA A Reso Sol.	Direction of propage The distance trave at t = 5 s will be : (1) 12.5 ms ⁻¹ Ans. (4) Ans. (4) V = 5t = 25 m/s A particle execute becomes equal to (1) $\sqrt{2A}$ Ans. (2) Ans. (2) K.E. = P.E.	gation of EM wave will be elled by an object in time (2) 5 ms ⁻¹ (2) 5 ms ⁻¹ (2) 5 ms ⁻¹ (2) $\frac{1}{\sqrt{2}}$ A	be in the direction of $\vec{E} \times \vec{B}$ e t is given by s = (2.5)t ² . T (3) 62.5 ms ⁻¹ The distance from the me (3) $\frac{1}{2}$ A	he instantaneous (4) 25 ms⁻ ean position when (4) 2A	s speed of the object
33. NTA A Reso Sol. 34. NTA A Reso Sol.	Direction of propage The distance trave at t = 5 s will be : (1) 12.5 ms ⁻¹ Ans. (4) Ans. (4) V = 5t = 25 m/s A particle execute becomes equal to (1) $\sqrt{2A}$ Ans. (2) Ans. (2) K.E. = P.E. $\frac{1}{2}m\omega^2(A^2 - x^2) =$	gation of EM wave will be elled by an object in time (2) 5 ms ⁻¹ (2) $5 ms^{-1}$ (2) $5 ms^{-1}$ (3) $\frac{1}{\sqrt{2}} A$ (2) $\frac{1}{\sqrt{2}} A$ (3) $\frac{1}{\sqrt{2}} A$	be in the direction of $\vec{E} \times \vec{B}$ e t is given by s = (2.5)t ² . T (3) 62.5 ms ⁻¹ The distance from the me (3) $\frac{1}{2}$ A	he instantaneous (4) 25 ms− ean position when (4) 2A	a speed of the object
33. NTA A Reso Sol. 34. NTA A Reso Sol. 35.	Direction of propage The distance trave at t = 5 s will be : (1) 12.5 ms ⁻¹ Ans. (4) Ans. (4) V = 5t = 25 m/s A particle execute becomes equal to (1) $\sqrt{2A}$ Ans. (2) Ans. (2) K.E. = P.E. $\frac{1}{2}m\omega^2(A^2 - x^2) =$ In the equation	gation of EM wave will be elled by an object in time (2) 5 ms ⁻¹ (2) $5 ms^{-1}$ (2) $\frac{1}{\sqrt{2}} A$ (2) $\frac{1}{\sqrt{2}} A$ (2) $\frac{1}{\sqrt{2}} A$ (3) $\frac{1}{\sqrt{2}} A$ (4) $\frac{1}{\sqrt{2}} m\omega^2 x^2 \Rightarrow x = \pm \frac{A}{\sqrt{2}}$ (4) $\frac{A}{\sqrt{2}}$ (4) $\frac{A}{\sqrt{2}}$ (7) $\frac{A}{\sqrt{2}}$	be in the direction of $\vec{E} \times \vec{B}$ e t is given by s = (2.5)t ² . T (3) 62.5 ms ⁻¹ The distance from the me (3) $\frac{1}{2}$ A	he instantaneous (4) 25 ms⁻ ean position when (4) 2A R is universal ga	s speed of the object
33. NTA A Reso Sol. 34. NTA A Reso Sol. 35.	Direction of propage The distance trave at t = 5 s will be : (1) 12.5 ms ⁻¹ Ans. (4) Ans. (4) V = 5t = 25 m/s A particle execute becomes equal to (1) $\sqrt{2A}$ Ans. (2) Ans. (2) K.E. = P.E. $\frac{1}{2}m\omega^2(A^2 - x^2) =$ In the equation $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ temperature. The	gation of EM wave will be elled by an object in time (2) 5 ms ⁻¹ (2) 5 ms ⁻¹ (2) $\frac{1}{\sqrt{2}}$ A (2) $\frac{1}{\sqrt{2}}$ A (2) $\frac{1}{\sqrt{2}}$ A (2) $\frac{1}{\sqrt{2}}$ A (3) $\frac{1}{\sqrt{2}}$ A (4) $\frac{1}{\sqrt{2}}$ A (4) $\frac{1}{\sqrt{2}}$ (2) $\frac{1}{\sqrt{2}}$ A (3) $\frac{1}{\sqrt{2}}$ (2) $\frac{1}{\sqrt{2}}$ A (4) $\frac{1}{\sqrt{2}}$ (2) $\frac{1}{\sqrt{2}}$ (3) $\frac{1}{\sqrt{2}}$ (4) $\frac{1}{\sqrt{2}}$ (4) $\frac{1}{\sqrt{2}}$ (5) $\frac{1}{\sqrt{2}}$ (5) $\frac{1}{\sqrt{2}}$ (7) $\frac{1}{$	be in the direction of $\vec{E} \times \vec{B}$ e t is given by s = (2.5)t ² . T (3) 62.5 ms ⁻¹ The distance from the me (3) $\frac{1}{2}$ A is pressure, Y is volume, alent to the ratio $\frac{a}{b}$ is :	he instantaneous (4) 25 ms⁻ ean position when (4) 2A R is universal ga	s speed of the object 1 n its's kinetic energy as constant and T is

Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 f acebook.com/ResonanceEdu vww.youtube.com/resowatch com/resowatch building b

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No. :** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555
Toll Free : 1800 258 5555
Toll Free : 1800 258 5555

	Truth table for NAND gate is								
	A	or ow	В	$Y = \overline{A \cdot B}$	ance [®]				
	0	esc	0	ce° 1	Reson				
	0	and lines for an	1	1	Educating for bet				
	for better tom	orow	0	Educatin					
				CE 0					
Res	On the ba	asis d	of <mark>give</mark>	n input A an	nd B the tru	th table is			
	A	B	Y						
	1	1	0						
	0	0	1						
	0	1	1						
	1	0	1						
	1	1	0						
	0	0	1						
	0	1	1						
	its non-ze In the ligi	ero p	ower f above	actor. statements	, choose th	ne correct ans	wer from the	e options giv	en below :
	its non-ze In the ligh (1) Both 3 (2) Both 3 (3) States (4) States	ero p nt of a State State ment ment	ower f above ment ment l is tru l is fa	actor. statements I and Statem I and Statem Je but State Ise but state	, choose th nent II are nent II are ment II is fa ement II is t	ne correct ans false true alse true	wer from the	e options giv	en below :
TA An eso Ar ol.	its non-ze In the ligh (1) Both 3 (2) Both 3 (3) States (4) States (4) States (4) States (1) ns. (1) At resona must be p consume	ero p nt of a State State ment ment ance prese	ower f above ment i is tru l is fa power ent. Als avera	actor. statements, l and Statem l and Statem ue but Statem lse but state so power fac age power.	, choose th nent II are ment II are ment II is fa ement II is t 0, therefore ctor is zero	ne correct ans false true alse true e net reactanc for pure induc	wer from the e should be stor or pure	e options giv e zero, theref capacitor he	en below : fore inductor & capa nce both the compo
TA An eso Ar ol.	its non-ze In the ligh (1) Both 3 (2) Both 3 (3) State (4) State (4) State (4) State (4) State (1) At resona must be p consume	ance properties	ower f above ment l is tru l is fa powel ent. Als o avera	actor. statements I and Statem I and Statem ue but Statem lse but statem factor is = 0 so power factor age power.	, choose th nent II are ment II are ment II is fa ement II is t 0, therefore ctor is zero	e correct ans false true alse true e net reactanc for pure induc	e should be tor or pure	e options giv	en below : fore inductor & capa nce both the compo
TA An eso Ar ol.	its non-ze In the ligh (1) Both 3 (2) Both 3 (3) States (4) States (4) States (4) States (1) At resona must be p consume A 10μC c	ero po nt of a State State ment ment ance prese zero	ower f above ment i is tru l is fa power ent. Als avera e is di	actor. statements, I and Statem I and Statem ue but Statem lse but statem so power factor is = 0 so power factor age power. vided into two	, choose th nent II are ment II are ment II is fa ement II is t 0, therefore ctor is zero	ne correct ans false true alse true e net reactanc for pure induc	wer from the e should be stor or pure	e options giv e zero, theref capacitor he e so that the	en below : fore inductor & capa nce both the compo repulsive force betw
Reso ITA An ieso Ar iol.	its non-ze In the ligh (1) Both 3 (2) Both 3 (3) State (4) State (4) State (4) State (4) State (1) ns. (1) At resona must be p consume A 10μC c them is n	ero por nt of a State State ment ment ance orese zero charg naxim	ower f above ment l is tru l is fa power ent. Als o avera e is di num. 1	actor. statements. I and Statem I and Statem ue but Statem lse but state so power fac age power. vided into tw The charges	, choose th nent II are ment II are ment II is fa ement II is t 0, therefore ctor is zero vo parts an of the two	true alse true e net reactance for pure induce d placed at 1 parts are :	e should be tor or pure	e options giv	en below : fore inductor & capa nce both the compo repulsive force betw
TA An eso Ar ol.	its non-ze In the ligh (1) Both 3 (2) Both 3 (3) States (4) States (4) States (4) States (4) States (1) ns. (1) At resona must be p consume A 10μC c them is n (1) 5μC,	ero po nt of a State State ment ment ance zero charg naxim 5µC	ower f above ment l is tru l is fa power o avera e is di num. T	actor. statements. I and Statem I and Statem I and Statem I but State Ise but State Ise but state r factor is = (so power fac age power. vided into two The charges (2) $9\mu C$, choose the nent II are some ment II are some ment II is fate ment II is to the series and the series and of the two b, 1μC	true false true alse true e net reactance for pure induce of placed at 1 parts are : (3) 8µC	wer from the e should be tor or pure cm distance	e options giv e zero, theref capacitor he e so that the (4) 7µ	en below : fore inductor & capa nce both the compo repulsive force betw C, 3μC
ITA An eso Ar ol. 9.	its non-ze In the ligh (1) Both 3 (2) Both 3 (3) State (4) State (4) State (4) State (1) s. (1) At resona must be p consume A 10μC c them is n (1) 5μC, s. (1) ns. (1)	ero po nt of a State State ment ment ance orese zero charg naxim 5µC	ower f above ment l is tru l is fa power o avera e is di num. 1	actor. statements. I and Statem I and Statem ue but State Ise but state so power fac age power. vided into tw The charges (2) 9μ C	, choose th nent II are ment II are ment II is fa ement II is t 0, therefore ctor is zero vo parts an of the two c, 1μC	e correct ans false true alse true e net reactanc for pure induc d placed at 1 parts are : (3) 8μC	wer from the e should be tor or pure cm distance	e options giv e zero, theref capacitor he e so that the (4) 7μ	en below : fore inductor & capa nce both the compo repulsive force betw C, 3μC
ITA An leso Ar jol. 9. ITA An leso Ar iol.	its non-ze In the light (1) Both 3 (2) Both 3 (3) State (4) State (4) State (4) State (1) St	ero por nt of a State State ment ment ance prese zero charg naxim 5μ C Q - q)	ower f above ment l is tru l is fa power ent. Als o avera e is di num. 1	actor. statements. I and Statem I and Statem ue but Statem lse but state factor is = (so power factor age power. vided into tw The charges (2) 9μ C	, choose the nent II are to ment II are to ment II is farmed the ement II is to to the the two C_{r} , $1\mu C$	e correct ans false true alse true e net reactance for pure induce d placed at 1 parts are : (3) 8μC	wer from the e should be tor or pure cm distance	e options giv e zero, theref capacitor he e so that the (4) 7µ	en below : fore inductor & capa nce both the compo repulsive force betw C, 3μC
TA An eso Ar ol. 9.	its non-ze In the light (1) Both 3 (2) Both 3 (3) Statent (4) Statent (4) Statent (5) Statent (1) Statent (2) Statent (1) Statent (2) Statent (3) Statent (3) Statent (4) Statent (3) Statent (4) Statent (3) Statent (4) Statent (5) Statent (1) St	ero per nt of a State ment ment ance prese prese carco charg naxim 5μ C $2-q)^2$ at q =	ower f above ment i is tru l is fa power ent. Als o avera e is di num. 1	actor. statements, l and Statem l and Statem le but Statem lse but state factor is = (so power factor age power. vided into two The charges (2) 9μ C	, choose the nent II are to ment II are to ment II are to ment II is farmed to the the two c, 1μ C	e correct ans false true alse true e net reactance for pure induce d placed at 1 parts are : (3) 8μC	wer from the e should be ctor or pure cm distance	e options giv e zero, theref capacitor he e so that the (4) 7µ	en below : fore inductor & capa nce both the compo repulsive force betw C, 3μC

Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 💿 7340010333 🛉 facebook.com/ResonanceEdu 😰 twitter.com/ResonanceEdu 🔡 twitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

	esonance [®] JEE (Main) 2023 DATE : 13-04-2023 (SHIFT-2) PAPER-1 PHYSICS							
45.	The initial pressure and volume of an ideal gas are P_0 and V_0 . The final pressure of the gas when the the pressure of the gas when the gas wh							
	gas is suddenly compressed to volume $\frac{V_0}{4}$ will be :							
	(Given) γ = ratio of specific heats at constant pressure and at constant volume							
	(1) $P_0(4) P_0(4)^{\gamma}$ (2) $P_0(4)^{\gamma}$ (3) $4P_0$ (4) P_0							
NTA Reso Sol.	Ans. (2) Ans. (2) When gas is suddenly compressed, then processes is adiabatic. Equation of gas for adiabatic process is PV ^y = constant.							
	$\Rightarrow P_1 V_1^{\gamma} = P_2 V_2^{\gamma} \Rightarrow P_0 V_0^{\gamma} = P_2 \left(\frac{V_0}{4}\right)^{\gamma} \Rightarrow P_2 = P_0 (4)^{\gamma}$ Option (2) is correct							
46.	Given below are two statement:							
	Statement I : Out of microwaves, infrared rays and ultraviolet rays, ultraviolet rays are the most effective for the emission of electrons from a metallic surface. Statement : II Above the threshold frequency, the maximum kinetic energy of photoelectrons is inversed proportional to the frequency of the incident light. In the light of above statements, choose the correct answer from the options given below (1) Statement I is true but statement II is false							
	(2) Both statement I and statement II are true							
	(3) statement I is false but statement II is true							
	(4) Both Statement I and Statement II are false							
ΝΤΑ	Ans. (1)							
Reso Sol.	Ans. (1) Frequency of UV rays is greater than frequencies of microwave & infrared rays therefore it is more ffective for emission of electrons from a metallic surface. $(K)_{max.} = hv - \phi$							
47.	A passenger sitting in a train A moving at 90 km/h observes another train B moving in the opposition							
	direction for 8 s. If the velocity of the train B is 54 km/h then length of train B is.							
	(1) 200 m (2) 120 m (3) 320 m (4) 80 m							
NTA	Ans. (3) nce' Resonance' Resonance' Resonance'							
Reso	Ans. (3) Resonance* Resonance* Resonance* Resonance* Resonance*							
Sol.	$(90 + 54)$ $\frac{18}{18} \times 8 = \ell$ $\ell = 320 \text{ m}$							
	Resonance [®] Resonance [®] Resonance [®] Resonance [®] Resonance [®]							

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 5555
Toll Free : 1800 258 5555

	La the petwork charge	lain) 2023 DATE :	13-04-2023 (SHIF	F-2) PAPER-1 PHY	SICS
48.	In the network showi	n below, the charge acc	cumulated in the capac	citor in steady state will b	е
		Resonance 3v	4Ω		
		Resonance 4	<u>6Ω</u>		
		6	Ω		
	Educating for better tom	(2) 10.2C	(2) 1 9C	better tomorrow	
R	(1) 7.2µC	(2) 10.3 μΟ	(3) 1.ο μΟ	(4)12 μΟ	
	Ans. (1)				
Reso	Ans. (1) 3				
Sol.	$i = \frac{0}{10}$				
	$a = \frac{4}{5} 6 \times \frac{3}{5} = \frac{36}{5}$	- = 7 2 µC			
	4 - 1 ^ 0 ^ 10 5	- 7.2 μο			
Educ	ating for better to				la contraction of
49.	A venicle of mass 20	U Kg is moving along a	lievelled curved road	of radius 70 m with angu	liar velocity of
	0.2 rad/s. The centri	betal force acting on the	e vehicle is :	(4) 500 N	
Educ	(1) 2240 N	(2) 2800 N	(3) 174 N	(4) 560 N	
Reso Sol.	Ans. (4) Ans. (4) Centripetal force F =	$m\omega^2 r = 200 \times (0.2)^2 \times 10^{10}$	70 = 560N		
50.	In a Young's double	slits experiment. the ra	tio of amplitude of light	coming from slits is 2 :	1. The ratio of
R	the maximum to min	imum intensity in the in	terference pattern is :	2	
	(1) 9 : 4	(2) 9 : 1	(3) 2 : 1	(4) 25 : 9	
	Ans. (2)	(=) • · · ·	(0) = 1 1		
Reso	Ans (2)				
Sel	Civen that A ₁				
501.	Given that $\frac{1}{A_2} = 2$				
	$\frac{I_{\text{max}}}{I_{\text{max}}} = \left \frac{A_1 + A_2}{A_1 - A_2} \right =$	= 9			
	min. (11 12)				
51.	An insulated copper area 24 cm ² . The tw 12Ω . If an extremely direction to 1.5 T in	wire of 100 terms is wra o ends of the wire are applied uniform magne the opposite direction,	pped around a wooder connected to a resisto etic field in the core alo the charge flowing th	n cylindrical core of the core. The total resistance in ong its axis changes from rough a point in the circ	ross-sectional n the circuit is n 1.5 T in one uit during the
	Ans. 60				
Reso	Ans. 60	re" . Resona			
Sol.	Charge flows q = $\left(\frac{\Phi}{\Phi}\right)$	$\left(\frac{1-\phi_2}{B}\right) = \frac{2NBA}{B} = 60$ n			

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 5555
Toll Free : 1800 258 5555

55. A bi convex lens of focal length 10 cm is cut in two identical parts along a plane perpendicular to the principal axis. The power of each lens after cut is —— D.

Sol. $P = \frac{1}{f} = (\mu - 1) \left(\frac{2}{R}\right)$ $P' = \frac{1}{f} = (\mu - 1) \left(\frac{1}{R}\right)$ $\frac{P'}{P} = \frac{1}{2} = P' = \frac{1}{2} \times \frac{1}{0.1} = 5D$

56. A car accelerates from rest to u m/s. The energy spent in this process is E J. The energy required to accelerate the car from um m/s to 2u m/s is nE J. The value of n is

NTA Ans. 3 Reso Ans. 3

- Sol. $E_1 = \frac{1}{2}mu^2 0 = \frac{1}{2}mu^2 = E$ $E_2 = \frac{1}{2}m(2u)^2 - \frac{1}{2}mu^2 = \frac{3}{2}mu^2 = 3E$
- **57.** In an experiment with tonometer when a mass of 180 g is attached to the string, it vibrates with fundamental frequency of 30 Hz. When a mass m is attached, the string vibrates with fundamental frequency of 50 Hz. The value of m is ______g.

NTA Ans. 500 Reso Ans. 500

Sol. Fundamental frequency $f = \frac{1}{2\ell} \sqrt{\frac{T}{\mu}}$ $\frac{f_2}{f_1} = \sqrt{\frac{T_2}{T_1}}$ $\left(\frac{50}{30}\right)^2 = \frac{mg}{180g} \Rightarrow m = 500 \text{ g}$

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555
Toll Free : 1800 258 5555
Toll Free : 1800 258 5555

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 **| FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 5555
Toll Free : 1800 258 5555

