

Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555
Toll Free : 1800 258 5555
Toll Free : 1800 258 5555

Resonance[®] | JEE(Main) 2023 | DATE : 15-04-2023 (SHIFT-1) | PAPER-1 | OFFICIAL| CHEMISTRY

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 💿 7340010333 👔 facebook.com/ResonanceEdu 💟 twitter.com/ResonanceEdu 🔛 www.youtube.com/resowatch 🕒 blog.resonance.ac.in

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 **| FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 (7340010333 f facebook.com/ResonanceEdu) twitter.com/ResonanceEdu) www.youtube.com/resowatch) blog.resonance.ac.in

Resonance® | JEE(Main) 2023 | DATE : 15-04-2023 (SHIFT-1) | PAPER-1 | OFFICIAL| CHEMISTRY 69. Consider the following statements: (A) NFS molecule has a trigonal planar structure. (B) Bond length of N2 is shorter than O2. (C) Isoelectronic molecules or ions have identical bond order. (D) Dipole moment of H2S is higher than that of water molecule. Choose the correct answer from the options given below: (2) (B) and (C) are correct (1) (C) and (D) are correct (4) (A) and (D) are correct (3) (A) and (B) are correct NTA : (2) Ans. Reso : (2) Sol. (A) NF₃ has triangular pyramidal structure (B) Molecule : N₂ O₂ B.O. 3 2 B. L $N_2 < O_2$ (C) Isoelectronic molecules or ions have identical bond order. (D) Dipole moment $H_2S < H_2O$ due to less EN difference b/w H and S as compare to H and O. 70. Given below are two statements: One is labelled as Assertion A and the other is labelled as Reason R: Assertion (A) : BeCl₂ and MgCl₂ produce characteristic flame Reason (R): The excitation energy is high in BeCl₂ and MgCl₂ In the light of the above statements, choose the correct answer from the options given below: (1) (A) is false but (R) is true (2) Both (A) and (R) are true but (R) is NOT the correct explanation of (A) (3) (A) is true but (R) is false (4) Both (A) and (R) are true and (R) is the correct explanation of (A) Ans. NTA: (1) **Reso : (1)** Due small size and high EN of Be and Mg. Sol. Consider the following sequence of reactions: 71. NaNO₂ .A, N, N-Dimethylaniline .B 0-5°C NH. The product 'B' is (2) H₂NH СН CH₂ CH₃ CH (3)Ans. NTA: (3) Reso : (3) CH₃ -CH₃ NH₂ N₂Cl^Θ HNO N.N-Dimethylaniline Sol.

Resonance Eduventures Ltd.

0-5

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555
Toll Free : 1800 258 5555
Toll Free : 1800 258 5555

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 (7340010333 f facebook.com/ResonanceEdu) twitter.com/ResonanceEdu) www.youtube.com/resowatch) blog.resonance.ac.in

Resonance[®] | JEE(Main) 2023 | DATE : 15-04-2023 (SHIFT-1) | PAPER-1 | OFFICIAL| CHEMISTRY

Sol.	(A) H ₂ O ➡ H ⁺ + OH ⁻ CERPICE RESOL	
	10 ⁻⁸ + x x :e" Resonance"	
	$K_w = [H^+] [OH]$ $10^{-14} = x(x \times 10^{-8})$ ⇒ $x^2 + x \times 10^{-8} - 10^{-14} = 0$	
	$x = \frac{-10^{-6} \pm \sqrt{10^{-16} + 4 \times 10^{-14}}}{2}$	
	$=\frac{-10^{-8}+10^{-7}\sqrt{4+\frac{1}{100}}}{2}$	
	$=\frac{(\sqrt{401}-1)10^{-8}}{2}=0.95 \text{ x } 10^{-7}$	
	$[pH] = 10.5 \times 10^{-8} = 1.05 \times 10^{-7}$	
	$[pH] = 7 - \log 1.05 \approx 6.98$	
	(B) The conjugate base of H ₂ , PO_4^- is $HPO_4^{}$.	line ciption of wate
	(C) K_w increases with increase in temperature. As the temperature increases, the c increases.(D) At half neutralisation point, half of the acid is present in the form of salt. So it solution.	t forms acidic buffe
	$pH = p^{ka} + log \frac{[salt]}{k}$	
	esonal [acid]	
	$pH = p^{ka} + \log \frac{1}{1}$	
	$pH = p^{ka}$.	
74.	During water-gas shift reaction (1) carbon is oxidized to carbon monoxide. (3) carbon dioxide is reduced to carbon monoxide. (4) carbon monoxide is oxidized	nce of catalyst. to carbon dioxide.
Re Re	Reso : (4)	
Sol.	The production of dihydrogen can be increased by reacting CO of Syn gas mixtur presence of iron chromate as catalyst. In this reaction carbon monoxide is oxidized	re with steam in the to carbon dioxide.
	$CO(g) + H_2O(g) \xrightarrow{O73K} CO_2(g) + H_2(g)$	
	Water gas shift Reaction.	
75.	Which is not true for arginine?	
	(1) It is a crystalline solid. (2) It has a fairly high melting point	
	(3) It is associated with more than one pKa values.	
Ans.	(40 It has high solubility in benzene. NTA : (4)	
	Reso : (4)	
Sal		

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No. :** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 F facebook.com/ResonanceEdu www.youtube.com/resowatch C blog.resonance.ac.in

	Ing for better tomorrow JEE(Main) 2023 DATE : 15-04-2023 (SHIFT-1) PAPER-1 OFFICIAL CHEMISTRY
76. Ans.	 Given below are two statements: Statement I : According to Bohr's model of hydrogen atom, the angular momentum of an electron in a given stationary state is quantised. Statement II : The concept of electron in Bohr's orbit, violates the Heisenberg uncertainty principle. In the light of the above statements, choose the most appropriate answer from the options given below: (1) Statement I is incorrect but Statement II is correct (2) Both Statement I and Statement II are incorrect (3) Statement I and Statement II are correct (4) Both Statement I and Statement II are correct
Sol.	Reso : (4) According to Bohr's modal orbit angular momentum of stationary orbit is guantaized it is equal to
Re	$\frac{nh}{2\pi}$ (on = No. of orbit) Heisenberg's uncertainty principle explain orbital concept, which is depends on finding probability of electron.
77. Rs	Decreasing order of reactivity towards electrophilic substitution for the following compounds is: $\begin{array}{c} CH_3 \\ \hline O \\ \hline O \\ \hline CF_3 \end{array} \xrightarrow[]{OCH_3} \\ \hline O \\ \hline \hline$
Ans.	(a) (b) (c) (d) (e) (1) d > a > e > c > b (2) c > b > a > d > e (3) a > d > e > b > c (4) e > d > a > b > c NTA : (4) Reso : (4)
Sol.	Rate of electrophilic substitution reaction ∞ Electron density in benzene ring.
78 .	Which of the following expressions is correct in case of a CsCl unit cell (edge length 'a')? (1) r_{cs} + + $r_{Cl} = \frac{a}{\sqrt{2}}$ (2) r_{cs} + + r_{Cl} = $\frac{\sqrt{3}}{2}a$ (3) r_{cs} + + r_{Cl} = $\frac{a}{2}$
Ans	(4) rcs ⁺ + rci [−] = a Besonance Resonance Resonance Resonance
Sol.	Reso : (2) CsCl has body centred unit cell (BCC) So body diagonal $\sqrt{3}a = 2(r^+ + r^-)$

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555 S 7340010333 F facebook.com/ResonanceEdu www.youtube.com/resonance.ac.in Cin : U80302RJ2007PLC024029

Resonance" | JEE(Main) 2023 | DATE : 15-04-2023 (SHIFT-1) | PAPER-1 | OFFICIAL| CHEMISTRY

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No. :** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 555
Tol

Ans.	0 ²⁻ , F ⁻ , Al, M NTA : (5)	g²⁺ <mark>, Na</mark>	I⁺, O⁺, I	Mg, Al	≁,⊢						
Sol.	Reso : (5)										
Re	Species :	0 ^{2–}	F	AI	Mg ²⁺	<mark>Na⁺</mark>	O+	Mg	Al ³⁺	F	Resonance [®]
	No. of e⁻ :	10	10	13	10	10	7	12	10	9	e" Resonance"
33.	The total change in the oxidation state of manganese involved in the reaction of KMnO4 and potassium										
Ans.	NTA : (5)		neulun	115			<u></u>				
Sol	Reso : (5)	0 - 8	H-SO/		2Mn S0	+ 8H/	0 ± 51	° ∓ 6K	SO4		
Re	(+7))	12004		(+2)	4 + 0112	20 + 31	2 + 013	2004		
	change on Ox	kidatio	n numb	er of N	/ln = ((+	7) – (+:	2)) = 5				
34.	Th <mark>e vo</mark> lume (in mL)	of 0.1	M AgN	O₃ requ	ired for	comp	lete pre	ecipitat	ion of	chloride ions present in 20 n
<mark>An</mark> s.	NTA (4)			20 <i>)</i> 5, C	njoi2, at	Silver	chiona	C 13			
Sol.	Reso (4)	$Cl_2 + 2$	20ND3	→ [Cr(H ₂ O)	5 CII(N	$()_{3})_{2} +$	2AaCl	Ļ		
	0.01 M × 20 r	nl 0.	1 M ×)	V = 0	.2 mili n	nole		L, igor			
	0.2 milimole [$0.1 \times \text{V} = 0.4$	Cr(H ₂ C	D)5 CIJC	l2 requ	ures 0.4	milimo	ble Agr	103			
	$V = \frac{0.4}{2} = 4$	ml									
	0.1										
35 .	In Chromyl ch	nloride,	the ox	idatior	n state c	of chron	nium is	; (+)			
ans.	Reso : (6)										
Sol.	Chromyl chlo	ride : C	CrO_2Cl_2	6							
	CrO ₂ Cl ₂	iibei u									
	x + 2(-2) + 2(-) x = +6	-1) = 0									
R	The homolen	tic and	octabe	adral c	omolev	of Co ²⁺	+ and H	l₀O ha	2		unpaired electron(s) in the
	t _{2g} set of orbit	als.	ootan	Jului U	ompiex	01 00	unun	120 110	J		
Ans.	NTA : (1) Reso : (1)										
Sol.	[Co(H ₂ O) ₆] ²⁺ ;	Co ²⁺ =	d ⁷ cor	figura	tion						
	$t_{2g}^{22} eg^{11}$										
Re	No. of unpair	ed elec	tron =	1 in t _{2g}	nce"	E	Reso	nanc	e"	F	Resonance*
87.	20 mL of 0.5 l of NaCl is	M NaC	l is req	uired to	o coagu	late 20	0 mL o	f As ₂ ,S	₃ soluti	on in	2 hours. The coagulating value
Ans.	NTA : (50)	ar battie to	Marror /								
Sol.	The minimum	n c <mark>onc</mark>	entratio	on of e	electroly	rt <mark>e in</mark> n	nillimol	es req	uired t	o cau	use coagulation of one litre
	colloidal solut	tion is o	called o	coagula	ation va	lue. It is	s expre	ess in t	erms o	f millir	moles/litre.
	Coagulation v	/alue =		ioles o ime of	sol in lit	re					
	Coagulating	value =	20×0	0.5 	000 = 50)					

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 T 340010333 f acebook.com/ResonanceEdu vww.youtube.com/resowatch c blog.resonance.ac.in

Resonance[®] | JEE(Main) 2023 | DATE : 15-04-2023 (SHIFT-1) | PAPER-1 | OFFICIAL| CHEMISTRY

88.	30.4 kJ of heat is required to melt one mole of sodium chloride and the entropy char point is 28.4 J K ⁻¹ mol ⁻¹ at 1 atm. The melting point of sodium chloride is	nge at the melting (Nearest Integer)
Ans.	NTA : (1070) Reso : (1070)	esonance'
Sol.	$\Delta S = \frac{\Delta H_{fus}}{T_{mp}}$	
	$28.4 = \frac{30.4 \times 1000}{T_{mp}}$	
	T _{mp} = 1070.422 K	
89. Re	The vapour pressure of 30% (w/v) aqueous solution of glucose is mm H [Given: The density of 30% (w/v), aqueous solution of glucose is 1.2 g cm ⁻³ and vapou water is 24 mm Hg.]	Hg at 25°C. r pressure of pure
Ans.	Notar mass of glucose is 180 g mol ⁻¹ .) NTA : (23) Reso : (23)	
Sol.	$\frac{P^{\circ} - Ps}{Ps} = \frac{n}{N}$	
	density of solution = $\frac{Mass}{volume}$	
	density of solution = 100 ml Mass = 120g	
	weight of glucose = $120x \frac{30}{100} = 36g$	
	weight of $H_2O = 120 - 36 = 84g$ mole of glucose = $36/180 = 0.2$ mole	
	mole of $H_2O = \frac{84}{18} = 4.6$ mole	
	$\frac{24 - Ps}{P} = \frac{0.2}{1 + 2}$	
	Ps 4.67 24 – Ps = 0.0428 Ps	
	$Ps = \frac{24}{1.0428} = 23.015 \text{ mm of Hg} = 23 \text{ mm of Hg}$	
90.	For a reversible reaction $A \longrightarrow B$, the $\Delta H_{\text{forward reaction}} = 20 \text{ kJ mol}^{-1}$. The activation uncatalysed forward reaction is 300 kJ mol}^{-1}. When the reaction is catalysed keep	on energy of the

uncatalysed forward reaction at 327°C. The activation energy of the catalysed backward reaction is kJ mol^w.

Ans.	Reso : (130)		
Sol.	E _a = 300 kJ/mol		
	$\left(\frac{E_{a}}{T}\right) = \left(\frac{E_{a}^{1}}{T^{1}}\right)_{Cat}$		
	$300 (E_a^1)_f$		
	$600^{-} 300$ (E _a ¹) _f = 150 $\Delta H = (E_a^1)_f - (E_a^1)_b$		
	$20 = 150 - (E_a^1)_b$	$(E_a^1)_b = 130 \text{ kJ/mol}$	

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 555
Tol

