

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

 $m = 1, n = 0, now (m + n)^2 + 2 = 1 + 2 = 3$

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

	Dance JEE(Main) 2023 DATE : 15-04-2023 (SHIFT-1) PAPER-1 MATHEMATICS
	$=\frac{1}{1}+\frac{1}{1}+\frac{1}{1}+\frac{6}{1}+\frac{1}{1}+\frac{4}{1}$
	10
	$=\frac{1}{1}+\frac{1}{1}+\frac{1}{1}+\frac{1}{1}+\frac{1}{1}+\frac{1}{1}$
	10 18 36 84 252 90×14
	$= \frac{1}{10} + \frac{1}{12} + \frac{1}{84} + \frac{1}{252} + \frac{1}{1260} = \frac{127}{1260} + \frac{8}{84} + \frac{1}{252}$
	$=\frac{127}{1220}+\frac{2}{21}+\frac{1}{210}=\frac{254+240+10}{2120}=\frac{504}{2120}=\frac{1}{120}$
	1260 21 252 2520 2520 5
7. If	the domain of the function $f(x) = \log_e(4x^2 + 11x + 6) + \sin^{-1}(4x + 3) + \cos^{-1}\left(\frac{10x+6}{3}\right)$ is $(\alpha, \beta]$, then
36	$\beta \alpha + \beta $ is equal to
(1 ΝΤΔ Δης	(4) 72 (2) 54 (3) 63 (4) 72
Reso Ans	s. (1)
Sol. 4>	$x^{2} + 11x + 6 > 0$ and $-1 \le 4x + 3 \le 1$ and $-1 \le \frac{10x + 6}{3} \le 1$
(4	$(x + 3) (x + 2) > 0$ $-4 \le 4x \le -2$ $-3 \le 10x + 6 \le 3$
v	$=(-\infty, -2) \cup (-\frac{3}{2}, \infty)$ (i) $-1 \le x \le -\frac{1}{2}$ (ii) $-\frac{9}{2} \le x \le -\frac{3}{2}$ (iii)
^	$e(-3, -2) \circ (-4, -2) = 10^{-1} = 2^{-1} = 10$
S	o Domain of f(x) is $x \in \left(-\frac{3}{4}, -\frac{1}{2}\right]$
36	$6 \alpha + \beta = 36 \left -\frac{3}{4} - \frac{1}{2} \right = 45$
8. Le	et ABCD be a quadrilateral. If E and F are the mid points of the diagonals AC and BD respectively $(\overrightarrow{AB} - \overrightarrow{BC}) + (\overrightarrow{AD} - \overrightarrow{DC}) = k\overrightarrow{FE}$, then k is equal to
(1	(2) - 4 $(3) - 2$ $(4) 2$
NTA Ans. Reso Ans	(2) 5. (2)
Sol. Le	et P.V. & A, B, C, D are ā,b,c and d resp. mid-point of AC is E
	> P.V. of E are $\left(\frac{\vec{a} + \vec{c}}{2}\right)$ $D(\vec{d})$ $c(\vec{c})$
М	lid point of BD is F
	P.V of F are $\left(\frac{\vec{b} + \vec{d}}{2}\right)$
	$\overrightarrow{AB} - \overrightarrow{BC} + (\overrightarrow{AD} - \overrightarrow{DC}) = (\overrightarrow{b} - \overrightarrow{a}) - (\overrightarrow{c} - \overrightarrow{b}) + (\overrightarrow{d} - \overrightarrow{a}) - (\overrightarrow{c} - \overrightarrow{d})$
=	$2\vec{b} - 2\vec{a} - 2\vec{c} + 2\vec{d}$
=	$2(\vec{b} + \vec{d}) - 2(\vec{a} + \vec{c})$
Dear	$4\left[\left(\frac{\vec{b}+\vec{d}}{2}\right)-\left(\frac{\vec{a}+\vec{c}}{2}\right)\right]=4 \ \vec{E}\vec{F}=-4\vec{F}\vec{E}$

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 555
Tol

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

Resonance[®] | JEE(Main) 2023 | DATE : 15-04-2023 (SHIFT-1) | PAPER-1 | | MATHEMATICS 11. Let the system of linear equations -x + 2y - 9z = 7-x + 3y + 7z = 9-2x + y + 5z = 8 $-3x + y + 13z = \lambda$ has a unique solutions $x = \alpha$, $y = \beta$, $z = \gamma$. Then the distance of the point (α, β, γ) from the plane] $2x - 2y + z = \lambda$ is (3) 13(4) 7(1) 9 (2) 11NTA Ans. (4) (4) Reso Ans. Sol. -x + 2y - 9z = 7(i) -x + 3y + 7z = 9(ii) -2x + y + 5z = 8(iii) Solve (i), (ii) & (iii) for x, y, z x = -3, y = 2, z = 0 $\Rightarrow \alpha = -3, \beta = 2, z = 0$ $\Rightarrow \lambda = 11$ Now, Distance of point (-3, 2, 0) from plane: $=\frac{\left|-6-4-11\right|}{\sqrt{4+4+1}}=\frac{21}{3}=7$ 12. The mean and standard deviation of 10 observation are 20 and 8 respectively. Later on, it was observed that one observation was recorded as 50 instead of 40. Then the correct variance is (1) 12 (2) 13(3) 11(4) 14NTA Ans. (2) Reso Ans. (2) $\frac{\sum_{i=1}^{10} x_i}{10} = 20 \Rightarrow \sum x_i = 200$ Sol. Correct $\sum x_i = 200 - 50 + 40 = 190$ $\sigma^2 = \frac{\sum_{i=1}^{10} x_i^2}{10} - (20)^2 = 64$ $\sum x_i^2 = 4640$ Correct $\sum x_i^2 = 4640 - 2500 + 1600 = 3740$ Correct $\sigma^2 = \frac{3740}{10} - \left(\frac{190}{10}\right)^2$ = 374 - 361 = 13.

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🗾 twitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🗾 twitter.com/ResonanceEdu

19. The n	umber of rea	al roots of the e	equation x x -	- 5 x + 2 + 6	δ = 0, is		
(1) 4		(2) 3		(3) 6		(4) 5	
NTA Ans.	(2)						
Reso Ans. Sol. $x x -$	(2) 5 x +2 + 6	δ = 0.					
Case-I	x ≤ –2, – x² –5x – 1	x ² +5(x +2) + 6 6 = 0	= 0				
	x² – 5x +	$\frac{25}{4} = 16 + \frac{25}{4}$					
	$(x-5/2)^2$	$=\frac{89}{4}$					
	$x = \frac{5}{2} \pm \frac{\sqrt{2}}{2}$	89 2					
	$x = \frac{5 - \sqrt{2}}{2}$	89	$x\neq \frac{5+\sqrt{89}}{2}$				
Case-II	-2 < x < 0						
	$-x^2 - 5x - x^2 + 5x + 5$	10 + 6 = 0	1 4				
	$x^{-} + 5x + 1$	$4 = 0 \implies x = x \neq -4$	1,—4				
Case-III	x = -1 $x \ge 0$	∧ <i>+</i> − 1					
	x ² – 5x –1	0 + 6 = 0					
	$x^2 - 5x - 6$	4 = 0					
	$5\pm$	41					
	x = <u>2</u>						
	$5 + \sqrt{5}$	41	$5 - \sqrt{41}$				
	x = <u>2</u>	—,	x ≠ <u>2</u>				
	Number o	f solution $= 3$.					
20. Let the 17m +	e determina - 4n = 93 . If	nt of a square det (n adj(adj(matrix A of or mA))) = 3 ^a 5 ^b 6	der m be m °, then a + b	– n , where n o + c is equal to	n and n satis o	sfy 4m + n = 22 and
(1) 84		(2) 96		(3) 109		(4) 101	
NTA Ans.	(2)						
Reso Ans.	(2)	(i)					
4m +	n = 22	(ii)					
from (i) & (ii) m =	5, n = 2					
A = r	m – n = 3						
Now	n adj(adj (M	A))					
= n ^m N	/A ^{(m-1)²}						
= n ^m N	1 ^{m(m-1)² A ^{(m}}	<mark>-1)²</mark>					
= 2 ⁵ .5 = 3 ¹¹ 5	⁸⁰ .3 ¹⁶ ⁸⁰ 6 ⁵						
a = 11	, b = 80, c =	5					
⇒a+	b + c = 96						

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 F facebook.com/ResonanceEdu www.youtube.com/resowatch bog.resonance.ac.in

🔼 Resonance® | JEE(Main) 2023 | DATE : 15-04-2023 (SHIFT-1) | PAPER-1 | | MATHEMATICS

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

Resonance[®] | JEE(Main) 2023 | DATE : 15-04-2023 (SHIFT-1) | PAPER-1 | | MATHEMATICS

23. Let an ellipse with centre (1, 0) and latus rectum of length $\frac{1}{2}$ have its major axis along x-axis. If its minor axis subtends an angle 60° at the foci, then the square of the sum of the length of its minor and major

axes is equal to

Now, $(2a + 2b)^2 = (2 + 1)^2 = 9$

24. A person forgets his 4 digit ATM pin code. But he remembers that in the code all the digits are different, the greatest digit is 7 and the sum of the first two digits is equal to the sum of the last two digit. Then the maximum number of trials necessary to obtain the correct code is

NTA Ans. (72) Reso Ans. (72)

Reso Ans. (72) **Sol.** Let the correct ATM PIN is abcd. $(a,b,c,d \in digits)$ such that a + b = c + dLet maximum $\{a, b\} = 7 \Rightarrow a + b$ can take 7, 8, 9, 10, 11 $(0, 7) a + b = 7 \Rightarrow c + d = 7$ case (1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1) $(1, 7) a + b = 8 \Rightarrow c + d = 8$ case (2, 6), (3, 5), (5, 3), (6, 2) $(2, 7) a + b = 9 \Rightarrow c + d = 9$ case (3, 6), (4, 5), (5, 4), (6, 3) $(3, 7) a + b = 10 \Rightarrow c + d = 10$ case (4, 6), (6, 4) $(4, 7) a + b = 12 \Rightarrow c + d = 11$ case (5, 6), (6, 5) Hence total Number of allow = (18) Now a, b can be in charged by 2 method and in place of a, b we can be take c, a also. So total number of attempt = $18 \times 2 \times 2 = 72$

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

	SONANCe [®] JEE(Main) 2023 DATE : 15-04-2023 (SHIFT-1) PAPER-1 MATHEMATICS
	$f(x) = -\frac{1}{5\sqrt{3}} \tan^{-1} \frac{\sqrt{3}\sqrt{4-3x^2}}{5x} + \frac{\pi}{2(5\sqrt{3})}$
	$f(1) = -\frac{1}{5\sqrt{3}} \tan^{-1}\frac{\sqrt{3}}{5} + \frac{\pi}{2(5\sqrt{3})}$
	$= \frac{1}{5\sqrt{3}} \left(\frac{\pi}{2} - \tan^{-1} \frac{\sqrt{3}}{5} \right)$
	$=\frac{1}{5\sqrt{3}}\cot^{-1}\frac{\sqrt{3}}{5}$
	$=\frac{1}{5\sqrt{3}}\tan^{-1}\frac{5}{\sqrt{3}}$
	Now, $\alpha = 5$, $\beta = \sqrt{3}$
	$\alpha^2 + \beta^2 = 25 + 3 = 28$
26.	If the line $x = y = z$ intersects the line $x \sin A + y \sin B + z \sin C - 18 = 0 = x \sin 2A + y \sin 2B + z \sin 2C - 9$,
	where A, B, C are the angles of a triangle ABC, then $80\left(\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}\right)$ is equal to
NTA A Reso /	uns. (5) Ans. (5)
Sol.	$\therefore x = y = z$
	$x = \frac{18}{\sin A + \sin B + \sin C} \text{ and } x = \frac{9}{\sin 2A + \sin 2B + \sin 2C}$
	$\frac{18}{4\cos\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2}} = \frac{9}{4[\sin A \sin B \sin C]}$
	$\frac{2}{\cos\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2}} = \frac{1}{8 \cdot \sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2} \cdot \cos\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2}}$
	$\Rightarrow \sin\frac{A}{2} \cdot \sin\frac{B}{2} \cdot \sin\frac{C}{2} = \frac{1}{16}$
	$80\left(\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}\right) = 5$
27.	If the sum of the series $\left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{2^2} - \frac{1}{2 \cdot 3} + \frac{1}{3^2}\right) + \left(\frac{1}{2^2} - \frac{1}{2^2 \cdot 3} + \frac{1}{2 \cdot 3^2} - \frac{1}{3^3}\right) + \frac{1}{2 \cdot 3^2} + \frac{1}{2 \cdot 3^2} + \frac{1}{2 \cdot 3^2} + \frac{1}{3^3} + \frac{1}{3^3}$
	$\left(\frac{1}{2^4}-\frac{1}{2^3\cdot 3}+\frac{1}{2^2\cdot 3^2}-\frac{1}{2\cdot 3^3}+\frac{1}{3^4}\right)+\dots$ is $\frac{\alpha}{\beta}$, where α and β are co-prime, then α + 3 β is equal to
	ns. (7)
Reso /	Ans. (7)

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 555
Tol

	2SON3NCe	JEE(Main) 2023	DATE : 15-04-20	023 (SHIFT-1)	PAPER-1		TICS
Sol.	Let $x = \frac{1}{2}$,	$y = \frac{4}{3}$	mence"	Resona	nce"	Resp	nance'
	Now expre	ession:					
	(x <mark>– y)</mark> + (>	$(x^2 - xy + y^2) + (x^3 - xy + y^2)$	$-x^2y + xy^2 - y^3$	+			
	$=\frac{1}{x+y}[($	$x^2 - y^2$) + ($x^3 + y^3$)	$+(x^4-y^4)+(x^5)$	<mark>+</mark> y ⁵) +	nce'		
	$=\frac{1}{x+y}[(x)$	(² + X ³ + X ⁴ + X ⁵ +) - $(y^2 - y^3 + y^3)$	y ⁴ – y ⁵ +)	loce!		
	хт у	0 0 ⁻					
	=	$\frac{x^2}{1}$ $\frac{y^2}{1}$					
	x + y [1	$\begin{bmatrix} -x & 1+y \end{bmatrix}$					
	Now put x	$=\frac{1}{-}$ y $=\frac{1}{-}$					
	non parx	2, 3					
	$\frac{\alpha}{2} = \frac{1}{2}$						
	β 2						
	⇒α = 1, β	8 = 2					
	$\alpha + 3\beta = 7$,					
28.	Let A = {1	, 2, 3, 4} and R be	a relation on the	e set A × A de	efined by		
	R = {((a, b), (c, d)) : 2a + 3b	= 4c + 5d}. Ther	n the number	of element i	n R is	_
NTA	Ans. (6)					
Reso	Ans. (6)					
Sol.	A <mark>= {1</mark> , 2, 3	3, 4}					
	R = {((a, b)(c, d)) : 2a + 3b =	₌ 4c + 5d}				
	2a ∈ {2, 4	$, 6, 8$, 3b \in {3, 6,	9, 12} , 4c \in {4,	8, 12, 16} 5d	∈ {5, 10, 15	, 20}	
		5,8,11,14					
	2a + 3b =	7,10,13,20					
		9,12,15,18					
		[11,14,17,20					
		9,14,19,24					
	4c + 5d =	13,18,23,28					
		17,22,27,32					
	New O						
	Now, $2a + $	3D = 4C + 5C					
	tor 9, 13,	14, 14, 17, 18					
	total pairs	= b					

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 F facebook.com/ResonanceEdu www.youtube.com/resowatch bog.resonance.ac.in

29.	The number of el	lement in the set $\{n \in N : 10 \le i\}$	$n \le 100 \text{ and } 3^n - 3$	is a multiple of 7	} is
NTA A	Ans. (15)				
Reso	Ans. (15)				
Sol.	3 ⁿ <mark>– 3</mark> div by 7.	$\Rightarrow 3^{n} = 7\lambda + 3$			
		\Rightarrow 3 ⁿ = 3 (mod7) form			
	abbaucs.	Now $\Rightarrow 3^1 \equiv 3 \pmod{7}$			
		$\Rightarrow 3^2 \equiv 2 \pmod{7}$			
		\Rightarrow $3^3 \equiv 6 \pmod{7}$			
		\Rightarrow 3 ⁴ = 4 (mod7)			
		\Rightarrow 3 ⁵ = 5 (mod7)			
		\Rightarrow 3 ⁶ = L (mod7)			
		\Rightarrow 3 ⁷ = 3 (mod7)			
	So we can say th	$at 3^n - 3$ is divisible by 7 iff n =	1, 7, 13, 19, 25,		
	as $10 \le n \le$	100			
	\Rightarrow n = 13, 19, 25,	, 31,, 97 f element in est A is 15			
	Hence number of	relement in set A is 15			
30.	L <mark>et the</mark> plane P	contain the line $2x + y - z -$	3 = 0 = 5x - 3y	+ 4z + 9 and b	e parallel to the line
	x + 2 3 - y z	2-7			
	$\frac{1}{2} = \frac{1}{-4} = -\frac{1}{-4}$	$-\frac{1}{5}$. Then the distance of the	ooint A (8, –1, – 1	9) from the plane	P measured parallel
	to the line $\frac{x}{-3} = \frac{1}{2}$	$\frac{y-5}{4} = \frac{2-z}{-12}$ is equal to			
NTA A	Ans. (26)				
Reso	Ans. (26)				
Sol.	Let equation of p	lane:			
	(2x + y - z - 3) +	$\lambda(5x - 3y + 4z + 9) = 0$			
	or $x(2 + 5\lambda) + y(1)$	$(-3\lambda) + z(-1 + 4\lambda) - 3 + 9\lambda = 0$		(A/Q 1	10)
	It is parallel to $\frac{x}{-}$	$\frac{+2}{2} = \frac{y-3}{4} = \frac{z-7}{5}$	Given line	A(0, -1,	, –19)
	\Rightarrow (2 + 5 λ)2 + (1	$(-3\lambda)4 + (-1 + 4\lambda)5 = 0$	/		
		. 1	/		
	\Rightarrow 18 λ + 3 = 0 \Rightarrow	$\lambda = -\frac{1}{6}$	/ -		SCORE STORE
	Plane is 7x + 9y -	– 10z = 27(i)	· ·	ďΒ	
	5209	Ċ,	L		
	Equation of line A	4B			
	x <mark>- 8 _ y + 1</mark> _	<u>z+19</u>			
	-3 4	= μ			
	B(–3μ + 8, 4μ – 1	Ι, 12μ – 19)			
	B <mark>lies o</mark> n plane (ij) nce Respons			
	$7(-3\mu + 8) + 9(4\mu$	$(\mu - 1) - 10(12\mu - 19) = 27$			
	$-105\mu + 210 = 0$				
	μ = 2				
	B(<mark>2, 7,</mark> 5)				
	Now, AB = $\sqrt{36}$	$+64+576 = \sqrt{676} = 26$			

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 F facebook.com/ResonanceEdu www.youtube.com/resowatch bog.resonance.ac.in

