

| JEE(Main) 2023 | DATE : 25-01-2023 (SHIFT-2) | PAPER-1 | OFFICIAL PAPER | CHEMISTRY

1.	Given below are two statements:								
	Statement I: In froth floatation method a rotating paddle agitates the mixture to drive air out of it								
	Stat	ement II: Iron pyrites are get	herally	v avoided for extraction of iron due to environ	mental reasons				
	In th	e light of the above statemer	nts ch	poose the correct answer from the options give	en below:				
	(1) F	Both Statement Land stateme	ent II a	are false					
	(2) E	Both Statement I and stateme	ent II a						
	(3) 5	Statement I is false but stater	nent I	l is true Resonance Resona					
	(4) 5	Statement I is true but statem	ent II	is false.					
ΓА.	(3)								
ESO.	(3)								
ol.	The	ory Based							
2.	Mate	ch List I with List II							
	ing for be	List I (Amines)		List I (pK _b)					
	A.	Aniline	١.	3.25					
	В.	Ethanamine	II.	3.00					
	C.	N-Ethylethanamine	III.	9.38					
	D.	N, N-Diethylethanamine	IV.	3.29					
	Cho	ose the correct answer from	the op	ptions given below:					
	(1) A-III, B-IV, C-II, D-I (2) A-III, B-II, C-IV, D-I								
	(1)			(2) A-III, D-II, C-IV, D-I					
Re	(3) A	λ-1, Β-ΙV, C-ΙΙ, D-ΙΙΙ		(4) A-III, B-II, C-I, D-IV					
Re FA.	(3) A (1)	4-1, Β-ΙV, C-ΙΙ, D-ΙΙΙ		(4) A-III, B-II, C-I, D-IV					
ΓΑ. ESO.	(3) A (1) (1)	A-I, B-IV, C-II, D-III		(2) A-III, B-II, C-I, D-IV (4) A-III, B-II, C-I, D-IV					
TA. ESO. ol.	(1) / (3) / (1) (1) Grea	A-I, B-IV, C-II, D-III ater the basic strength, small	er the	(2) A-III, B-II, C-IV, D-I (4) A-III, B-II, C-I, D-IV					
TA. ESO. DI.	(1) / (3) / (1) (1) Grea	A-I, B-IV, C-II, D-III ater the basic strength, small	er the	(2) A-III, D-II, C-IV, D-I (4) A-III, B-II, C-I, D-IV e pK _b value.					
ΓΑ. ESO. pl.	(1) (3) A (1) (1) Great	A-I, B-IV, C-II, D-III ater the basic strength, small mmonium salts produce haze	er the e in at	 (2) Anii, Criv, Dri (4) A-III, B-II, C-I, D-IV a pK_b value. tmosphere. 					
TA. ESO. pl. 3.	(1) (3) A (1) (1) Great A. A B. O C. P	A-I, B-IV, C-II, D-III ater the basic strength, small mmonium salts produce haze zone gets produced when at	er the e in at mosp as cle	 (2) Anii, C-IV, D-I (4) A-III, B-II, C-I, D-IV a pK_b value. tmosphere. oheric oxygen reacts with chlorine radicals. capsing solvents 					
TA. ESO. DI.	(1) (3) A (1) (1) Grea A. A B. O C. P D. 'F	A-I, B-IV, C-II, D-III ater the basic strength, small mmonium salts produce haze zone gets produced when at olychlorinated biphenyls act slue baby' syndrome occurs of	er the e in at mosp as cle due to	 (2) Ani, Bn, Criv, Drive (4) A-III, B-II, C-I, D-IV a pK_b value. tmosphere. bheric oxygen reacts with chlorine radicals. beansing solvents. b the presence of excess of sulphate ions in w 					
TA. ESO. DI. B.	(1) (1) (1) (1) Grea A. A B. O C. P D. 'E Cho	A-I, B-IV, C-II, D-III ater the basic strength, small mmonium salts produce haze zone gets produced when at olychlorinated biphenyls act lue baby' syndrome occurs o ose the correct answer from	er the e in at mosp as cle due to the op	 (2) Ani, Dn, Criv, Dn (4) A-III, B-II, C-I, D-IV e pK_b value. tmosphere. oheric oxygen reacts with chlorine radicals. eansing solvents. o the presence of excess of sulphate ions in workions given bellows : 	vater.				
ΓΑ. ΞSΟ. οΙ.	(1) <i>F</i> (3) <i>A</i> (1) (1) Great B. O C. P D. 'E Choo (1) E	A-I, B-IV, C-II, D-III mmonium salts produce haze zone gets produced when at olychlorinated biphenyls act lue baby' syndrome occurs of ose the correct answer from 3 and C only (2) A and	er the e in at mosp as cle due to the op d C or	(2) Anii, Dn, Chy, Dn (4) A-III, B-II, C-I, D-IV (4) A-III, B-II, C-I, D-IV tmosphere. wheric oxygen reacts with chlorine radicals. eansing solvents. the presence of excess of sulphate ions in w ptions given bellows : nly (3) A and D only (4) A, B ar	vater.				
ΓΑ. ΞSO. οΙ.	(1) / (3) / (1) (1) Great A. A B. O C. P D. 'E Choo (1) E (2)	A-I, B-IV, C-II, D-III mmonium salts produce haze zone gets produced when at olychlorinated biphenyls act Blue baby' syndrome occurs of ose the correct answer from and C only (2) A and	er the e in at mosp as cle due to the op d C or	(2) Ani, Dn, Chy, Dn (4) A-III, B-II, C-I, D-IV e pK _b value. tmosphere. wheric oxygen reacts with chlorine radicals. eansing solvents. the presence of excess of sulphate ions in w ptions given bellows : nly (3) A and D only (4) A, B ar	vater.				
ΓΑ. ΞSΟ. οΙ.	(1) / (3) / (1) (1) Great A. A B. O C. P D. 'E Choo (1) E (2) (2)	A-I, B-IV, C-II, D-III mmonium salts produce haze zone gets produced when at olychlorinated biphenyls act lue baby' syndrome occurs o ose the correct answer from 3 and C only (2) A and	er the e in at mosp as cle due to the op d C or	(2) Anii, Chy, Dh (4) A-III, B-II, C-I, D-IV (4) A-III, B-II, C-I, D-IV tmosphere. wheric oxygen reacts with chlorine radicals. eansing solvents. the presence of excess of sulphate ions in w ptions given bellows : nly (3) A and D only (4) A, B ar	vater.				
ΓΑ. ΞSΟ. οΙ. Ξ.	(1) / (3) A (1) (1) Great A. A B. O C. P D. 'E Choo (1) E (2) It is	A-I, B-IV, C-II, D-III mmonium salts produce haze zone gets produced when at olychlorinated biphenyls act Blue baby' syndrome occurs of ose the correct answer from 3 and C only (2) A and fact.	er the mosp as cle due to the op d C or	(2) Anii, Dn, Chy, Dn (4) A-III, B-II, C-I, D-IV (4) A-III, B-II, C-I, D-IV tmosphere. wheric oxygen reacts with chlorine radicals. eansing solvents. the presence of excess of sulphate ions in w ptions given bellows : nly (3) A and D only (4) A, B ar	vater.				
TA. ESO. DI. 3. TA. ESO. DI.	(1) / (1) (1) Great A. A B. O C. P D. 'E Choo (1) E (2) It is 1	A-I, B-IV, C-II, D-III mmonium salts produce haze zone gets produced when at olychlorinated biphenyls act 3lue baby' syndrome occurs o ose the correct answer from 3 and C only (2) A and fact.	er the e in at mosp as cle due to the op d C or	(2) Anii, Dni, Criv, Dn (4) A-III, B-II, C-I, D-IV e pK _b value. tmosphere. wheric oxygen reacts with chlorine radicals. eansing solvents. the presence of excess of sulphate ions in w ptions given bellows : nly (3) A and D only (4) A, B ar	vater.				
TA. ESO. DI. S. TA. ESO. DI.	(1) / (3) A (1) (1) Great A. A B. O C. P D. 'E Choo (1) E (2) It is Mate	A-I, B-IV, C-II, D-III mmonium salts produce haze zone gets produced when at olychlorinated biphenyls act lue baby' syndrome occurs of ose the correct answer from 3 and C only (2) A and fact.	er the mosp as cle due to the op d C or	(2) Arin, Dri, Criv, Dri (4) A-III, B-II, C-I, D-IV e pK _b value. tmosphere. oheric oxygen reacts with chlorine radicals. eansing solvents. the presence of excess of sulphate ions in w ptions given bellows : nly (3) A and D only (4) A, B ar	vater.				
TA. ESO. DI. S.	(1) / (3) A (1) (1) Great A. A B. O C. P D. 'E Choo (1) E (2) It is Mate	A-I, B-IV, C-II, D-III mmonium salts produce haze zone gets produced when at olychlorinated biphenyls act lue baby' syndrome occurs of ose the correct answer from 3 and C only (2) A and fact.	er the e in at mosp as cle due to the op d C or	(2) Anii, Criv, Dri (4) A-III, B-II, C-I, D-IV e pK _b value. tmosphere. oheric oxygen reacts with chlorine radicals. eansing solvents. the presence of excess of sulphate ions in w ptions given bellows : nly (3) A and D only (4) A, B ar List I (use)	vater. Bonance No Conly Response				
TA. =SO. ol. - - - - -	(1) / (1) (1) Great A. A B. O C. P D. 'E Choo (1) E (2) It is Mate	A-I, B-IV, C-II, D-III mmonium salts produce haze zone gets produced when at olychlorinated biphenyls act Blue baby' syndrome occurs of ose the correct answer from and C only (2) A and fact.	er the mosp as cle due to the op d C or	(2) Arin, Dri, Criv, Dri (4) A-III, B-II, C-I, D-IV e pK _b value. tmosphere. oheric oxygen reacts with chlorine radicals. eansing solvents. o the presence of excess of sulphate ions in w ptions given bellows : nly (3) A and D only (4) A, B ar List I (use) Flexible pipes	vater.				
ΓΑ. ΞSΟ. οΙ. Ξ.	(1) / (1) (1) Great A. A B. O C. P D. 'E Choo (1) E (2) It is Mato	A-I, B-IV, C-II, D-III mmonium salts produce haze zone gets produced when at olychlorinated biphenyls act Blue baby' syndrome occurs of ose the correct answer from 3 and C only (2) A and fact.	er the mosp as cle due to the op d C or	 (2) Arin, Dri, Criv, Dri (4) A-III, B-II, C-I, D-IV a pK_b value. tmosphere. oheric oxygen reacts with chlorine radicals. a ansing solvents. b the presence of excess of sulphate ions in w ptions given bellows : nly (3) A and D only (4) A, B ar List I (use) Flexible pipes Synthetic wool 	vater.				
TA. ESO. DI. 3. TA. ESO. DI.	(1) / (1) (3) A (1) (1) Great A. A B. O C. P D. 'E Choo (1) E (2) It is Mato A. B. C.	A-I, B-IV, C-II, D-III mmonium salts produce haze zone gets produced when at olychlorinated biphenyls act Blue baby' syndrome occurs of ose the correct answer from 3 and C only (2) A and fact. ch List I with List II List I (Name of polymer) Glyptal Neoprene Acrilan	er the e in at mosp as cle due to the op d C or I. I. II.	(2) A-III, B-II, C-I, D-IV (4) A-III, B-II, C-I, D-IV e pK _b value. tmosphere. oheric oxygen reacts with chlorine radicals. eansing solvents. the presence of excess of sulphate ions in w ptions given bellows : nly (3) A and D only (4) A, B ar (4) A, B ar (5) A and D only (4) A, B ar (5) A and D only (5) A and C only (5) A and	vater.				
TA. ESO. ol. 3. TA. ESO. ol. 4.	(1) / (3) A (1) (1) Great A. A B. O C. P D. 'E Choo (1) E (2) It is Mate A. B. C. D.	A-I, B-IV, C-II, D-III mmonium salts produce haze zone gets produced when at olychlorinated biphenyls act Blue baby' syndrome occurs of ose the correct answer from 3 and C only (2) A and fact. ch List I with List II List I (Name of polymer) Glyptal Neoprene Acrilan LDP	er the mosp as cle due to the op d C or I. I. II. II.	 (2) Arin, Dri, Criv, Dri (4) A-III, B-II, C-I, D-IV a pK_b value. tmosphere. oheric oxygen reacts with chlorine radicals. eansing solvents. o the presence of excess of sulphate ions in w ptions given bellows : nly (3) A and D only (4) A, B ar List I (use) Flexible pipes Synthetic wool Paints and Lacquers Gaskets 	vater.				
TA. ESO. ol. 3. TA. ESO. ol. 4.	(1) (3) A (1) (1) Great A. A B. O C. P D. 'E Choo (1) E (2) It is Mato A. B. C. D. (1) (1)	A-I, B-IV, C-II, D-III ater the basic strength, small mmonium salts produce haze izone gets produced when at olychlorinated biphenyls act Blue baby' syndrome occurs of ose the correct answer from 3 and C only (2) A and fact. ch List I with List II List I (Name of polymer) Glyptal Neoprene Acrilan LDP A-III, B-I, C-IV, D-II	er the mosp as cle due to the op d C or I. II. III. III.	(2) A-III, B-II, C-I, D-IV (4) A-III, B-II, C-I, D-IV e pK _b value. tmosphere. oheric oxygen reacts with chlorine radicals. eansing solvents. o the presence of excess of sulphate ions in w ptions given bellows : nly (3) A and D only (4) A, B ar List I (use) Flexible pipes Synthetic wool Paints and Lacquers Gaskets (2) A-III, B-IV. C-II. D-I	vater. Bonance No Conly Responses Responses Responses				
TA. ESO. ol. 3. TA. ESO. ol. 4.	(1) / (3) / (1) (1) Great A. A B. O C. P D. 'E Choo (1) E (2) It is Mato A. B. C. D. (1) / (3) /	A-I, B-IV, C-II, D-III ater the basic strength, small mmonium salts produce haze zone gets produced when at olychlorinated biphenyls act Blue baby' syndrome occurs of ose the correct answer from 3 and C only (2) A and fact. ch List I with List II List I (Name of polymer) Glyptal Neoprene Acrilan LDP A-III, B-I, C-IV, D-II A-III, B-I, C-IV, D-II A-III, B-II, C-IV, D-II	er the mosp as cle due to the op d C or I. II. III. III.	(2) A-III, B-II, C-I, D-IV (4) A-III, B-II, C-I, D-IV e pK _b value. tmosphere. oheric oxygen reacts with chlorine radicals. eansing solvents. o the presence of excess of sulphate ions in w ptions given bellows : nly (3) A and D only (4) A, B ar (4) A, B ar (4) A, B ar (5) Flexible pipes Synthetic wool Paints and Lacquers Gaskets (2) A-III, B-IV, C-II, D-I (4) A-III, B-IV, C-I, D-I	rater.				

Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 F facebook.com/ResonanceEdu www.youtube.com/resowatch C blog.resonance.ac.in

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 555
Tol

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 **| FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 5555
Toll Free : 1800 258 5555

39. 89	Given b Assert	oelow are two stateme ion A: Carbon forms t	nts, on wo imp	e is labelled ortant <mark>oxi</mark> de	as Assertion A and s –CO and CO ₂ . CC	d other is labelle <mark>) is</mark> neutral wher	d as Reason R reas CO ₂ is acidic i
	Reaso	n R: CO ₂ can combine	with w	ater in a limi	ted w <mark>ay t</mark> o form carl	bonic acid. <mark>whil</mark> e	CO is sparingly
	soluble	in water.		ing for behat loworn	Containing in the	Contention due to a	
	In the li	ight of th <mark>e ab</mark> ove state	ments,	choos <mark>e th</mark> e	most appropriate an	<mark>iswe</mark> r from the o	ptons given below
	(1 <mark>) A i</mark> s	not correct but R is co	orrect				
	(2 <mark>) Bot</mark> l	h A and R are correct I	out R is	NOT the co	rrect explanation of	A	
	(3) Bot	h A and R are correct a	and R i	s the correct	explanation of A		
	(4) A is	correct but R is not co	orrect				
NTA.	(3)						
RESU.	(3)	is acidio as it form car	honic a	cid			
301.	$(1) CO_2$			ciu.			
	(ii) CO	$1 + \Pi_2 O \longrightarrow \Pi_2 O O_3$	vater				
			vator.				
40.	Match	List I with List II					
-		List I			List II		
		Coordination entity	,	Wavelengt	h of light absorbe	d in	
	ting for better i				nm		
	Α.	[CoCl(NH ₃) ₅] ²⁺	I. /	310			
	В.	[Co(NH ₃) ₆] ³⁺	II.	475			
	C.	[Co(CN) ₆] ³⁻	ЛI.	535			
	D.	[Cu(H ₂ O) ₄] ²⁺	IV.	600			
	Choose	e the correct answer from	om the	options give	n below:		
	(1) A-II	I, B-II, C-I, D-IV			(2) A-II, B-III, C-IV,	D-I	
ΝΤΔ	(3) A-I	7, D-1, C-111, D-11			(4) A-III, D-I, C-II, D	/-10	
RESO	(1)						
Educa	ting for better t						
Sol.	Δ _o T λ ↓	$\left\{ \Delta_{\mathbf{O}} = \frac{\lambda \mathbf{O}}{\lambda} \right\}$					
		()					
41.	What is	the mass ratio of ethy	/lene al	vcol (C2HaO	2 molar mass=62 g	/mol) required fo	or making 500 g of
	0. <mark>25 m</mark>	olal aqueous solution a	and 250) mL of 0.25	molal aqueous solu	ution?	Resonance'
	(1) 1:2	(2) 1	Educat		(3) 3:1	(4) 2:1	
NTA.	(4)	nce Resor			esonance [®]	Resona Educating for better	
RESO.	(4)						
Sol	Milim	oleof lst case _ 500×	0.25	2			
Re	Milimo	oleofIInd <mark>case</mark> 250×	0.25	1 8			
	2:1						
	2:1						

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 555
Toll Free : 1800 258 555
Toll Free : 1800 258 555
Toll Free : 1800 258 5555
Toll Free : 1800 258 555
To

		ain) 2023 DATE	: 25-01-2023	(SHIF	T-2) PAPER-1 OFI	ICIAL PAPE	R CHEMISTRY
42.	Which one among	the following me	tals is the we	eakest	reducing agent?		
	(1) Rb (2)	Naesonand	(<mark>3) Li</mark> –		mance (4 <mark>) K</mark>		
NTA.	(2)						
RESO.	(2) Resonat						
Sol.	According to electro	ochemical series	3				
	Li ⁺ / Li \longrightarrow – 3.05	Educating for batter tomo					
	$Cs^+/Cs \longrightarrow -2.9$	2V 👘					
	$Na^+ / Na \longrightarrow - 2.7$	1V					
	$K^+/K \longrightarrow -2.93V$						
43.	Potassium dichrom	nate acts as a	strong oxidiz	zing a	gent in acidic solu	ution. Durinc	this process, the
	oxidation state cha	nges from	J				
	(1) + 6 to + 3 (2)	+6 to +2	(3) +3 t	o +1	(4) +2 t	o +1	
NTA.	(1)		(-,		(-)		
RESO.	(1)						
Re	C+ O =2 H⁺	O -++3					
501.							
44.	Match List I with List	st II					
	ting for better to	List I			List II		
	1	Isometric pairs			Type of isomers	i -	
	A. Propanamin	e and N-/methyl	ethanamine	١.	Metamers		
	B. Hexan-2-on	e and Hexan-3-o	one	II.	Positional isomers	;	
	C. Ethanamide	and Hydeoxyet	hanimine	III.	Functional isomer	s	
	D. o-nitropheno	ol and p-nitrophe	enol	IV.	Tautomers		
	Choose the correct	answer from the	e options give	en bel	ow:		
	(1) A-II, B-III, C-I, D)-IV		(2) A	-III, B-I, C-IV, D-II		
	(3) A-III. B-IV. C-I. I	D-11		(4) A	-IV. B-III. C-I. D-II		
NTA.	(2)			()	, , - ,		
RESO.	(2)						
Sol.	Based on definition	of positional, fu	nctional. Met	amer	s and Tautomers fo	rm of isome	rism.
			· · · · , · · · · ,				50Nance
45.	The isomeric deute	rated bromide w	vith molecula	r form	ula C₄H₀DBr havino	two chiral o	arbon atoms is
	(1) 2 – Bromo –1 –	deuterobutane					
	(2) 2 - Bromo - 2 -	deuterobutane					
	(3) 2 – Bromo –3 –	deuterobutane					
	(4) 2 – Bromo –1 –	deuteron – 2 – 1	methylpropar	ne			
NTA.	(3)						
RESO.	(3)						
De	Br						
Sol.	(2) $2 \frac{1}{2}$						
	1 *						
	Educat D for better t						
	2-Bromo-3-duterob	utane					

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 555
Toll Free : 1800 258 555
Toll Free : 1800 258 555
Toll Free : 1800 258 5555
Toll Free : 1800 258 555
To

46.	When the hydrogen ion conc	ntration [H ⁺] changes by a factor of 1000, the value of pH of the solutio
	sonance [®] Reso	
	(1) decreases by 3 units	(2) decreases by 2 units
	(3) increases by 3 units	(4) in <mark>cre</mark> ases by 1000 units
NTA.	(3)	
RESO.		
Sol.	$(pH)_1 = -\log C$ $(pH)_2 = -\log 10^3 C = -[\log 10^3 C]$	+ log C]
	$= -3 - \log C$	
	$(pH)_2 - (pH_1) = -3$	
	⇒ <mark>Dec</mark> reased by 3	
47. Re	Statement I: Dipole moment tail on the negative centre and	s a vector quantity and by convention it is depicted by a small arrow with head pointing towards the positive centre.
	Statement II: The crossed ar in the molecules.	ow of the dipole moment symbolizes the direction of the shift of charges
	In the light of the above state	nents, choose the most appropriate answer from the options given below
	(1) Both Statement I and Stat	ement II are correct.
	(2) Statement I is correct but	tatement II is incorrect.
	(3) Statement I is incorrect bu	t statement II is correct.
	(4) Both Statement I and Stat	ement II are incorrect.
NTA.	(2)	
RESO.	(4)	
Sol.	Theory Based	
	E	bg for better temorrow
48. Re	A chloride salt solution acidifi	d with dil HNO ₃ gives a curdy white precipitate, [A] on addition of $($
	AgNO ₃ .[A] on treatment with	IH₄OH gives a clear solution B. A and B are respectively.
	(1) H[AgCl ₃] & (NH ₄)[Ag(OH) ₂	(2) H[AgCl ₃] & [Ag(NH ₃) ₂]Cl
	(3) AgCl & [Ag(NH ₃) ₂]Cl	(4) AgCl & (NH ₄)[Ag(OH) ₂]
NTA.	(3)	
RESO.	(3)	
Sol.	$\frac{\text{MCl} + \text{AgNO3} \longrightarrow \text{AgCl} \downarrow + (A)}{(A)}$	
	NH₄O	H
	[Ag(NH ₃)2] ⁺ (B)	CI Resonance" Resonance" Resonance
49.	Which of the following representation (1) Be < Si < Mg < K (2) K	nts the correct oder of metallic character of the given elements? <mark>< Mg < Be < Si (3) Be < Si < K < Mg (4) Si < Be < Mg < K</mark>
NTA.	(4)	
RESO.	(4) better tomorrow	
Sol.	According to electropositive c	naracter

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 bwitter.com/ResonanceEdu

	SONANCe [®] JEE(Main) 2023 DATE : 25-01-2023 (SHIFT-2) PAPER-1 OFFICIAL PAPER	R CHEMISTRY
50. NTA. RESO.	Given below are two statements, one is labelled as Assertion A and other is labelled Assertion A : Butylated hydroxy anisole when added to butter increases its shelf life. Reason R : Butylated hydroxy anisole is more reactive towards oxygen than food. In the light of the above statements, choose the most appropriate answer from the oper (1) A is correct but R is not correct (2) Both A and R are correct but R is NOT the correct explanation of A (3) A is not correct but R is correct (4) Both A and R are correct but R is the correct explanation of A (4) (4) Eact NCERT-XII part 2 Page 458	as Reason R tions given below
301.	Taci NOLITITATI part-2 Fage 430.	
51. Re	Number of compounds giving (i) red colouration with ceric ammonium nitrate and also iodoform test from the following is	(ii) positive
	ОН , ЛО , ОН ,	
	OH , OH ,	
NTA. RESO. Sol.	(3) (3) Only I, II, III gives iodoform test as well as red colour with OH	
	Ceric ammonium nitrate as they have CH_3CH — group.	
52. NTA.	Number of hydrogen atoms per molecule of a hydrocarbon A having 85.8% carbon is (Given: Molar mass of A= 84 g mol ⁻¹) (12)	Ce ³
Sol.	$C = \frac{85.8}{12} H = \frac{14.2}{11} C Resonance $	
Re	12 1 C7.15 H14.2 CH2	
	$n \times EF_{mass} = MF_{mass}$ $14 \times n = 84$ $n = 6$ $C_{6}H_{12}$	

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 555
Tol

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555
Toll Free : 1800 258 5555
Toll Free : 1800 258 5555

59.	A first order react	tion has the r	ate constant.	$k = 4.6 \times 10^{-3}$	s ⁻¹ . The nur	mber of co i	rrect statement/s from
	the following is/ar	re Reson	nance"				
	Given: log 3 = 0.4	18					
	A. Reaction comp	oletes in 100	0 s.				
	B. The reaction h	as a half-life	of 500 s.				
	C. The time requi	ired for 10%	completion is	25 times the t	ime required	d for 90% c	ompletion.
	D. The degree of	dissociation	is equal to (1	– e ^{-kt})			
	E. The rate and the	he rate const	ant have the	same unit.			
NTA.	(2)						
RESC). (2)						
Sol.	(C & D)						
	Statement 4 is co	orrect					
	$C_t = C_o e^{-kt}$						
	$C_o \rightarrow C_o - C_t$						
	$C_{0} - C_{1}$						
	$1 \rightarrow \frac{-6}{2}$						
	C_{o}						
	cating for better to 0						
60.	Total number of r	noles of AgC	l precipitated	on addition of	excess of A	\gNO₃ to or	ne mole each of the
50. R	Total number of r	noles of AgC kes [Co(NH3)	CI precipitated	on addition of	excess of A	\gNO₃ to or I [Pd(NH₃)₄	ne mole each of the
60. NTA.	Total number of r following complex	noles of AgC kes [Co(NH₃)	Cl precipitated)₄Cl₂]Cl, [Ni(H	on addition of 20)6]Cl2, [Pt(N	excess of A H ₃) ₂ Cl ₂] and	\gNO₃ to or I [Pd(NH₃)₄]	ne mole each of the $ C _2$ is
50. NTA. RESC	Total number of r following complex (5)	noles of AgC ĸes [Co(NH₃)	Cl precipitated)₄Cl₂]Cl, [Ni(H	on addition of 20)6]Cl2, [Pt(N	[*] excess of A H ₃) ₂ Cl ₂] and	AgNO₃ to or I [Pd(NH₃)₄	the mole each of the $ C _2$ is
50. NTA. RESC Sol.	Total number of r following complex (5) Theory Based (P	noles of AgC kes [Co(NH₃) PT will occur	Cl precipitated)₄Cl₂]Cl, [Ni(H	on addition of l2O)6]Cl2, [Pt(N ons)	^r excess of A H ₃) ₂ Cl ₂] and	AgNO₃ to or I [Pd(NH₃)₄]́	the mole each of the $ C _2$ is
50. NTA. RESC Sol.	Total number of r following complex (5) . (5) Theory Based (Pl	noles of AgC kes [Co(NH₃) PT will occur	Cl precipitated)₄Cl₂]Cl, [Ni(H	on addition of 20)6]Cl2, [Pt(N ons)	excess of A H ₃) ₂ Cl ₂] and	AgNO₃ to or I [Pd(NH₃)₄]́	ne mole each of the]Cl ₂ is
50. NTA. RESC Sol.	Total number of r following complex (5) . (5) Theory Based (P	noles of AgC kes [Co(NH₃) PT will occur	CI precipitated)₄Cl₂]Cl, [Ni(H	on addition of l ₂ O) ₆]Cl ₂ , [Pt(N ons)	excess of A H ₃) ₂ Cl ₂] and	AgNO₃ to or I [Pd(NH₃)₄	ne mole each of the ICl ₂ is
50. NTA. RESC Sol.	Total number of r following complex (5) (5) Theory Based (P	noles of AgC kes [Co(NH₃) PT will occur	Cl precipitated)₄Cl₂]Cl, [Ni(H	on addition of l ₂ O) ₆]Cl ₂ , [Pt(N ons)	[°] excess of A H₃)₂Cl₂] and	\gNO₃ to or I [Pd(NH₃)₄]́	ne mole each of the JCl ₂ is
50. NTA. RESC Sol.	Total number of r following complex (5) (5) Theory Based (Pl	noles of AgC kes [Co(NH₃) PT will occur	Cl precipitated)₄Cl₂]Cl, [Ni(H	on addition of l ₂ O) ₆]Cl ₂ , [Pt(N ons)	excess of A	\gNO₃ to or I [Pd(NH₃)₄]́	ne mole each of the JCl ₂ is
50. NTA. RESC Sol.	Total number of r following complex (5) 7. (5) Theory Based (P	noles of AgC kes [Co(NH₃) PT will occur	CI precipitated 0₄Cl₂]Cl, [Ni(H	on addition of l ₂ O) ₆]Cl ₂ , [Pt(N	excess of A H ₃) ₂ Cl ₂] and	AgNO₃ to or I [Pd(NH₃)₄	ne mole each of the ICl ₂ is
50. NTA. RESC Sol.	Total number of r following complex (5) 5. (5) Theory Based (Pl	noles of AgC kes [Co(NH₃) PT will occur	Cl precipitated 0₄Cl₂]Cl, [Ni(H	on addition of l ₂ O) ₆]Cl ₂ , [Pt(N	excess of A	\gNO₃ to or I [Pd(NH₃)₄]	he mole each of the JCl ₂ is
50. NTA. RESC Sol.	Total number of r following complex (5) (5) Theory Based (P	noles of AgC xes [Co(NH ₃) PT will occur	Cl precipitated 0₄Cl₂]Cl, [Ni(H	on addition of l ₂ O) ₆]Cl ₂ , [Pt(N ons)	excess of A	AgNO ₃ to or I [Pd(NH ₃)4]	ne mole each of the JCl ₂ is
50. NTA. RESC Sol.	Co Total number of r following complex (5) 7. (5) Theory Based (P	noles of AgC xes [Co(NH ₃) PT will occur	Cl precipitated	on addition of l2O)6]Cl2, [Pt(N ons)	excess of A H ₃) ₂ Cl ₂] and	AgNO ₃ to or I [Pd(NH ₃)4	ne mole each of the ICl ₂ is
50. NTA. RESC 501.	C _o Total number of r following complex (5) 7. (5) Theory Based (P	noles of AgC xes [Co(NH ₃) PT will occur	Cl precipitated 04Cl2]Cl, [Ni(H	on addition of l ₂ O) ₆]Cl ₂ , [Pt(N ons)	excess of A H ₃) ₂ Cl ₂] and	AgNO ₃ to or I [Pd(NH ₃)4]	ne mole each of the JCl ₂ is
50. NTA. RESC Sol.	Co Total number of r following complex (5) 7. (5) Theory Based (P	noles of AgC xes [Co(NH ₃) PT will occur	Cl precipitated $_4$ Cl ₂]Cl, [Ni(H	on addition of l2O)6]Cl2, [Pt(N	excess of A H ₃) ₂ Cl ₂] and	AgNO ₃ to or I [Pd(NH ₃)4]	he mole each of the ICl ₂ is
50. NTA. RESC Sol.	C _o Total number of r following complex (5) Theory Based (P	noles of AgC xes [Co(NH ₃) PT will occur	CI precipitated	on addition of l2O)6]Cl2, [Pt(N ons)	excess of A H ₃) ₂ Cl ₂] and	AgNO ₃ to or I [Pd(NH ₃)4	he mole each of the JCl ₂ is

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 555
Tol

