

		F Ar	TI : PHYSICS		
	A wire of length 1	I m moving with velocity	y 8 m/s at right angles to	a magnetic field of 2T. The	e magnitude
	of induced emf, b	etween the ends of wire	e will be	nance [®] Reso	nance
	(1) 20 V	(2) 16 V	(3) 8 V	(4) 12 V	
Ans.					
		x x x Reso			
	Ed iciting for bette	Educating for			
Educa	ŶŶ 1m →	v = 8 m/s			
Sol.					
	××♥∐ B	X X X			
	2SONating for better to				
	ε = BVℓ				
	= 2 × 8 × 1 = 16	V			
Educa	250NOI ating for better to				
2.	The distance trav	relled by a particle is rel	ated to time t as $x = 4x^2$.	The velocity of the particle	att=5s
۵ne	(1) 8 ms ·	(2) 20 ms ·	(3) 25 ms ·	(4) 40 ms	
Sol.	V = dx/dt = 8t				
	$V(5) = 8 \times 5 = 40$	m/s			
3. Educa	According to law	of equipartition of energy	gy the molar specific heat	of a diatomic gas at cons	stant volume
	where the molecu	ule has one additional v	ibrational mode is :-		
	(1) $\frac{3}{-R}$	(2) $\frac{7}{-R}$	(3) $\frac{9}{-R}$	$(4) \frac{5}{-R}$	
Educa	ating for better to	2	2	· ´ 2	
Ans.	(2)				
Sol.	$C_v = \frac{TR}{2}$				
		- 7			
	here $1 = 3 + 2 + 2$	= /			
	$C_v = \frac{7R}{R}$				
	2 2 2 2 2				
Luuda		a simple hormonic hot		If time taken by particle to	ao from y -
+ .		es simple narmonic bet	ween $x = -A$ and $x = +A$.	if time taken by particle to	go from x =
	0 to $\frac{\pi}{2}$ is 2 s; the	en time taken by particle	e in going from $x = \frac{7}{2}$ to r	A is Resonance	
	(1) 1 .5 s	(2) 3 s	(3) 4 s	(4) 2 s	
Ans.	(3) Resona	er tomorro	better tomorrow	better tomorrow	

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 55555 🔊 7340010333 👫 facebook.com/Resonance.du

The taken from half amplitude to extreme position $\frac{1}{f_2} = 2 \Rightarrow T = 24 \sec C$ Time taken from half amplitude to extreme position $\frac{1}{G} = \frac{24}{6} = 4 \sec C$ 5. The resistance of a wire is 50. It's new resistance in ohm if stretched to 5 times of it's original lender be: (1) 125 (2) 5 (3) 25 (4) 625 Ans. (1) Sol. $R_1 = \frac{\rho L}{R_2} = \frac{\rho L^2}{V}$ $R \propto \ell^2$ $R_2 = 25 \times 5 = 125$ 6. For moving coil galvanometer, the deflection in the coil is 0.05 rad when a current of 10 mA is 1 through it. If the torsional constant of suspension wire is 4.0 × 10 ⁻⁶ Nm rad ⁻¹ , the magnetic field is and the number of turns in the coil is 200, the area of each turn (in cm ²) is: (1) 2.0 (2) 1.0 (3) 1.5 (4) 0.5 Ans. (2) Sol. Touring = transpretered K0 = MB sin90° K0 = NiAB $A = \frac{K0}{NIB}$ $A = \frac{4 \times 10^{-5} \times 0.05}{200 \times 10 \times 10^{-3} \times 0.01} = 1 cm^2$ 7. Statement I: When a SI sample is doped with Boron, it becomes P type and when doped by And becomes N-type semi conductor such that P-type has excess holes and N-type has excess elect Statement I i: When a SI sample is doped with Boron, it becomes P type and when doped by And becomes N-type semi conductor such that P-type has excess holes and N-type has excess elect Statement I i: When a SI sample is doped with Boron; the comes P type and N-type has excess elect Statement I is correct but statement II is incorrect (2) Both Statement I and Statement II is incorrect (3) Statement I and Statement II is incorrect (4) Both Statement I and statement II is incorrect (4) Both Statement I and statement II is correct (5) Statement I and statement II is correct (4) Both Statement I and statement II are correct (5) Both Statement I and statement II are correct (6) Both Statement I and statement II are correct (7) Both Statement I and statement II are correct (8) Both Statement I and statement II are correct	Sol.	Time taken by particle to reac	h half of amplitude from	mean position is equal	I to $\frac{T}{T}$
$\frac{1}{12} = 2 \Rightarrow T = 24 \text{ sec}$ Time taken from half amplitude to extreme position $\frac{1}{6} = \frac{24}{6} = 4 \text{ Sec}$ 5. The resistance of a wire is 5Ω. It's new resistance in ohm if stretched to 5 times of it's original len be: (1) 125 (2) 5 (3) 25 (4) 625 Ans. (1) Sol. R ₁ = $\frac{p\ell}{A} = \frac{p\ell^2}{V}$ R $\propto \ell^2$ R ₂ = $\left(\frac{5\ell}{\ell}\right)^2 = 25$ R ₂ = $25 \times 5 = 125$ 6. For moving coil galvanometer, the deflection in the coil is 0.05 rad when a current of 10 mA is I through it. If the torsional constant of suspension wire is 4.0×10^{-5} Nm rad ⁻¹ , the magnetic field is and the number of turns in the coil is 200, the area of each turn (in cm ²) is : (1) 2.0 (2) 1.0 (3) 1.5 (4) 0.5 Ans. (2) Sol. Tayreg = Transmet field K0 = Mi B sing0° K0 = NiAB $A = \frac{4 \times 10^{-5} \times 0.05}{200 \times 10 \times 10^{-3} \times 0.01} = 1 \text{ cm}^2$ 7. Statement I: When a Si sample is doped with Boron, it becomes P type and when doped by Arr becomes N-type semi conductor such that P-type has excess holes and N-type has excess elect Statement II: When such P-type and N-type semi-conductors, are fused to make junction, a curr automatically flow which can be detected with an externally connected ammeter. In the light of above statement II is incorrect (2) Both Statement I and Statement II is incorrect (3) Statement I and Statement II is correct but statement II is incorrect (4) Both Statement I and statement II are incorrect (4) Both Statement I and statement II are correct Ans. (1)		sonance" Resor	nance [®] Reso	nance [®] Re	so ¹² ance®
Time taken from half amplitude to extreme position $\frac{T}{6} = \frac{24}{6} = 4 \operatorname{Sec}$ 5. The resistance of a wire is 5Ω. It's new resistance in ohm if stretched to 5 times of it's original lender (1) 125 (2) 5 (3) 25 (4) 625 Ans. (1) Sol. $R_1 = \frac{p_A^2}{R_1} = \frac{p_2^2}{V}$ $R \propto t^2$ $\frac{R_2}{R_1} = \left(\frac{5t}{t}\right)^2 = 25$ $R_2 = 25 \times 5 = 125$ 6. For moving coil galvanometer, the deflection in the coil is 0.05 rad when a current of 10 mA is j through it. If the torsional constant of suspension wire is 4.0 × 10 ⁻⁵ Nm rad ⁻¹ , the magnetic field is and the number of turns in the coil is 200, the area of each turn (in cm ²) is : (1) 2.0 (2) 1.0 (3) 1.5 (4) 0.5 Ans. (2) Sol. $t_{apeng} = t_{magnetic field}$ $K = MB \sin 90^{\circ}$ $K = MiB \sin 90^{\circ}$ K = NiAB $A = \frac{4 \times 10^{-5} \times 0.05}{200 \times 10 \times 10^{-3} \times 0.01} = 1 \text{ cm}^2$ 7. Statement 1: When a sich P-type and N-type semi-conductors, are fused to make junction, a curr automatically flow which can be detected with an externally connected ammeter. In the light of above statements, choose the most appropriate answer from the options given be (1) Statement I is incorrect but statement II is incorrect (2) Both Statement I and statement II are correct Ans. (1)		$\frac{1}{42} = 2 \implies T = 24 \text{ sec}$			
1 $\frac{1}{6} = \frac{24}{6} = 4 \operatorname{Sec}$ 5. The resistance of a wire is 50. It's new resistance in ohm if stretched to 5 times of it's original lender 6. (1) 125 (2) 5 (3) 25 (4) 625 Ans. (1) 50. $R_1 = \frac{\rho t}{R_1} = \frac{\rho t^2}{V}$ $R \ll t^2$ $\frac{R_2}{R_1} = \left(\frac{5\epsilon}{t}\right)^2 = 25$ $R_2 = 25 \times 5 = 125$ 5. For moving coil galvanometer, the deflection in the coil is 0.05 rad when a current of 10 mA is j through it. If the torsional constant of suspension wire is 4.0×10^{-5} Nm rad ⁻¹ , the magnetic field is and the number of turns in the coil is 200, the area of each turn (in cm ²) is : (1) 2.0 (2) 1.0 (3) 1.5 (4) 0.5 Ans. (2) Sol. Tapping Emergence field K0 = MB sin90° K0 = NiAB $A = \frac{K0}{200 \times 10^{-5} \times 0.05} = 1 \text{ cm}^2$ 7. Statement I : When a Si sample is doped with Boron, it becomes P type and when doped by Ansi becomes N-type semi conductor such that P-type has excess holes and N-type has excess elect Statement II: When a such p-type and N-type semi-conductors, are fused to make junction, a curr automatically flow which can be detected with an externally connected ammeter. In the light of above statement II is incorrect (2) Both Statement I and Statement II are incorrect (3) Statement I is correct but statement II is correct (4) Both Statement I and Statement II are correct Ans. (1)		12 Time taken from half amplitud	e to extreme position		
5. The resistance of a wire is 5Ω. It's new resistance in ohm if stretched to 5 times of it's original len be: (1) 125 (2) 5 (3) 25 (4) 625 Ans. (1) Sol. $R_1 = \frac{p\ell}{A} = \frac{p\ell^2}{V}$ $R \propto \ell^2$ $\frac{R_2}{R_1} = \left(\frac{5\ell}{\ell}\right)^2 = 25$ $R_2 = 25 \times 5 = 125$ 5. For moving coll galvanometer, the deflection in the coll is 0.05 rad when a current of 10 mA is 1 through it. If the torsional constant of suspension wire is 4.0×10^{-5} Nm rad ⁻¹ , the magnetic field is and the number of turns in the coll is 200, the area of each turn (in cm ²) is : (1) 2.0 (2) 1.0 (3) 1.5 (4) 0.5 Ans. (2) Sol. T _{soring} = tmagnetic field K0 = MB sin90° K0 = NiAB $A = \frac{4 \times 10^{-5} \times 0.05}{200 \times 10 \times 10^{-3} \times 0.01} = 1 cm^2$ 7. Statement I : When a Si sample is doped with Boron, it becomes P type and when doped by Armonic becomes N-type semi-conductors such that P-type has excess holes and N-type has excess elect Statement I : When a Si sample is doped with Boron, it becomes P type and when doped by Armonic becomes N-type semi-conductors such that P-type has excess holes and N-type has excess elect Statement I : When such P-type and N-type semi-conductors, are fused to make junction, a curr automatically flow which can be detected with an externally connected ammeter. In the light of above statement I are incorrect (2) Both Statement I and Statement II are incorrect (3) Statement I is incorrect but statement II is incorrect (4) Both Statement I and statement II are correct Ans. (1)		T 24 A Reso	ance" Reso		
5. The resistance of a wire is 5Ω. It's new resistance in ohm if stretched to 5 times of it's original lenge is the interval of the interval		$\frac{1}{6} = \frac{1}{6} = 4 \operatorname{Sec}$ Educating for bi			
5. The resistance of a wire is 5Ω. It's new resistance in ohm if stretched to 5 times of it's original lende: (1) 125 (2) 5 (3) 25 (4) 625 Ans. (1) Sol. $R_1 = \frac{\rho \ell}{A} = \frac{\rho \ell^2}{V}$ $R \propto \ell^2$ $\frac{R_2}{R_1} = \left(\frac{5\ell}{\ell}\right)^2 = 25$ $R_2 = 25 \times 5 = 125$ 5. For moving coil galvanometer, the deflection in the coil is 0.05 rad when a current of 10 mA is 1 through it. If the torsional constant of suspension wire is 4.0 × 10 ⁻⁵ Nm rad ⁻¹ , the magnetic field is and the number of turns in the coil is 200, the area of each turn (in cm ²) is : (1) 2.0 (2) 1.0 (3) 1.5 (4) 0.5 Ans. (2) Sol. $\tau_{spring} = \tau_{magnetic field}$ $K_0 = NiAB$ $A = \frac{K_0}{NIB}$ $A = \frac{K_0}{NIB}$ $A = \frac{4 \times 10^{-5} \times 0.05}{200 \times 10 \times 10^{-3} \times 0.01} = 1 cm^2$ 7. Statement I : When a Si sample is doped with Boron, it becomes P type and when doped by Amber of becomes N-type semi conductor such that P-type has excess holes and N-type has excess elect Statement II : When such P-type and N-type semi-conductors, are fused to make junction, a curr automatically flow which can be detected with an externally connected ammeter. In the light of above statements, choose the most appropriate answer from the options given be (1) Statement I and Statement II are incorrect (2) Both Statement I and Statement II are correct (3) Statement I and statement II are correct (4) Both Statement I and statement II are correct (4) Both Statement I and statement II are correct (5) Statement I and statement II are correct (6) Both Statement I and statement II are correct (7) Statement I and statement II are correct (8) Both Statement I and statement II are correct (9) Both Statement I and Statement II are correct (1) Both Statement I and statement II are correct (1) Both Statement I and statement II are correct (2) Both Statement I and statement II are correct (3) Statement I and statement II are correct (4) Both Statement I and statement II are correct (5) Both Statement I and Statement II are correct (6) Both Statement I and Statement					
(1) 125 (2) 5 (3) 25 (4) 625 Ans. (1) Sol. $R_1 = \frac{p\ell}{A} = \frac{p\ell^2}{V}$ $R \approx \ell^2$ $\frac{R_2}{R_1} = \left(\frac{5\ell}{\ell}\right)^2 = 25$ $R_2 = 25 \times 5 = 125$ Sol. Torrnoving coil galvanometer, the deflection in the coil is 0.05 rad when a current of 10 mA is 1 through it. If the torsional constant of suspension wire is 4.0 × 10 ⁻⁵ Nm rad ⁻¹ , the magnetic field is and the number of turns in the coil is 200, the area of each turn (in cm ²) is : (1) 2.0 (2) 1.0 (3) 1.5 (4) 0.5 Ans. (2) Sol. Topring = Tringpretic field K0 = MB sin90° K0 = NiAB $A = \frac{4 \times 10^{-5} \times 0.05}{200 \times 10 \times 10^{-3} \times 0.01} = 1 \text{ cm}^2$ 7. Statement I : When a Si sample is doped with Boron, it becomes P type and when doped by An becomes N-type semi conductor such that P-type has excess holes and N-type has excess elect Statement I : When a Si sample is doped with Boron, it becomes P type and when doped by An becomes N-type semi conductor such that P-type has excess holes and N-type has excess elect Statement I : When a Check that P-type and N-type semi-conductors, are fused to make junction, a curr automatically flow which can be detected with an externally connected ammeter. In the light of above statements, choose the most appropriate answer from the options given be (1) Statement I and Statement II are incorrect (2) Both Statement I and statement II are incorrect (3) Statement I and statement II are correct (4) Both Statement I and statement II are correct (5) Both Statement I and statement II are correct (6) Both Statement I and statement II are correct (7) Both Statement I and Statement II are correct (1) Both Statement I and Statement II are correct (1) Both Statement I and Statement II are correct (2) Both Statement I and Statement II are correct (3) Statement I and Statement II are correct (4) Both Statement I and Statement II are correct (5) Both Statement I and Statement II are correct (6) Both Statement I and Statement II are correct (7) Both Statement I and Statement II are correct (8) Both Statement I and	5.	The resistance of a wire is 5Ω	. It's new resistance in o	hm if stretched to 5 tin	nes of it's original length w
Ans. (1) Sol. $R_1 = \frac{\rho\ell}{A} = \frac{\rho\ell^2}{V}$ $R \propto \ell^2$ $\frac{R_2}{R_1} = \left(\frac{5\ell}{\ell}\right)^2 = 25$ $R_2 = 25 \times 5 = 125$ A. For moving coil galvanometer, the deflection in the coil is 0.05 rad when a current of 10 mA is 1 through it. If the torsional constant of suspension wire is 4.0 × 10 ⁻⁵ Nm rad ⁻¹ , the magnetic field is and the number of turns in the coil is 200, the area of each turn (in cm ²) is : (1) 2.0 (2) 1.0 (3) 1.5 (4) 0.5 Ans. (2) Sol. Topring = Trmagnetic field K0 = MB sin90° K0 = NiAB $A = \frac{4 \times 10^{-5} \times 0.05}{200 \times 10 \times 10^{-3} \times 0.01} = 1 cm^2$ 7. Statement I : When a Si sample is doped with Boron, it becomes P type and when doped by An becomes N-type semi conductor such that P-type has excess holes and N-type has excess elect Statement II : When a Si sample is doped with Boron, it becomes P type and when doped by An becomes N-type semi conductor such that P-type has excess holes and N-type has excess elect Statement II : When a Si sample is doped with Boron, it becomes P type and when doped by An becomes N-type semi conductor such that P-type has excess holes and N-type has excess elect Statement I is when can be detected with an externally connected ammeter. In the light of above statements, choose the most appropriate answer from the options given be (1) Statement I and Statement II are incorrect (2) Both Statement I and statement II are correct (4) Both Statement I and statement II are correct (5) Rescanding		De . (1) 125 (2) 5	(3) 2!	5 (4)	625
Sol. $R_1 = \frac{\rho t^2}{A} = \frac{\rho t^2}{V}$ $R \propto t^2$ $\frac{R_2}{R_1} = \left(\frac{5t}{t}\right)^2 = 25$ $R_2 = 25 \times 5 = 125$ S. For moving coil galvanometer, the deflection in the coil is 0.05 rad when a current of 10 mA is j through it. If the torsional constant of suspension wire is 4.0 × 10 ⁻⁵ Nm rad ⁻¹ , the magnetic field is and the number of turns in the coil is 200, the area of each turn (in cm ²) is : (1) 2.0 (2) 1.0 (3) 1.5 (4) 0.5 Ans. (2) Sol. T _{spring} = T _{magnetic field} K0 = MB sin90° K0 = NiAB $A = \frac{4 \times 10^{-5} \times 0.05}{200 \times 10 \times 10^{-3} \times 0.01} = 1 \text{ cm}^2$ Statement I : When a Si sample is doped with Boron, it becomes P type and when doped by Are becomes N-type semi conductor such that P-type has excess holes and N-type has excess elect Statement II : When a be detected with an externally connected ammeter. In the light of above statements, choose the most appropriate answer from the options given be (1) Statement I and Statement II are incorrect (2) Both Statement I and Statement II are correct (4) Both Statement I and Statement II are correct (5) Both Statement I and Statement II are correct (4) Both Statement I and Statement II are correct (5) Both Statement I and Statement II are correct (6) Both Statement I and Statement II are correct (7) Beth Statement I and Statement II are correct (8) Both Statement I and Statement II are correct (9) Both Statement I and Statement II are correct (1)	۸ns.	(1) (2) (2) (2) (2) (2) (3)	(0) 20	(1)	ionance"
50. $r_{1} = \frac{A}{R_{1}} = \frac{V}{V}$ $R \propto \ell^{2}$ $\frac{R_{2}}{R_{1}} = \left(\frac{5}{\ell}\right)^{2} = 25$ $R_{2} = 25 \times 5 = 125$ 5. For moving coil galvanometer, the deflection in the coil is 0.05 rad when a current of 10 mA is l through it. If the torsional constant of suspension wire is 4.0×10^{-5} Nm rad ⁻¹ , the magnetic field is and the number of turns in the coil is 200, the area of each turn (in cm ²) is : (1) 2.0 (2) 1.0 (3) 1.5 (4) 0.5 11. Solve the single the single term of term of the single term of te		$\rho = \rho \ell = \rho \ell^2$			
R $\propto \ell^2$ $\frac{R_2}{R_1} = \left(\frac{5\ell}{\ell}\right)^2 = 25$ $R_2 = 25 \times 5 = 125$ For moving coil galvanometer, the deflection in the coil is 0.05 rad when a current of 10 mA is p through it. If the torsional constant of suspension wire is 4.0 × 10 ⁻⁵ Nm rad ⁻¹ , the magnetic field is and the number of turns in the coil is 200, the area of each turn (in cm ²) is: (1) 2.0 (2) 1.0 (3) 1.5 (4) 0.5 with the magnetic field Ko = MB sin90° K0 = NiAB $A = \frac{K0}{NiB}$ $A = \frac{4 \times 10^{-5} \times 0.05}{200 \times 10 \times 10^{-3} \times 0.01} = 1 \text{ cm}^2$ Statement I : When a Si sample is doped with Boron, it becomes P type and when doped by Ambed becomes N-type semi conductor such that P-type has excess holes and N-type has excess electric Statement I : When a Si sample is doped with Boron, it becomes P type and when doped by Ambed becomes N-type semi conductor such that P-type has excess holes and N-type has excess electric Statement I : When a Si sample is doped with Boron, it becomes P type and when doped by Ambed becomes N-type semi conductor such that P-type has excess holes and N-type has excess electric Statement I : When such P-type and N-type semi-conductors, are fused to make junction, a current automatically flow which can be detected with an externally connected ammeter. In the light of above statements, choose the most appropriate answer from the options given be (1) Statement I and Statement II are incorrect (2) Both Statement I and Statement II are correct (3) Statement I and statement II are correct (4) Both Statement I and statement II are correct (5) Both Statement I and Statement II are correct (6) Both Statement I and Statement II are correct (7) Statement I and statement II are correct (8) Both Statement I and Statement II are correct (9) Both Statement I and Statement II are correct (9) Both Statement I and Statement II are correct (1)	Educa	$\mathbf{R}_1 = \mathbf{R}_1 = \mathbf{V}_1$			
$\frac{R_2}{R_1} = \left(\frac{5\ell}{\ell}\right)^2 = 25$ $R_2 = 25 \times 5 = 125$ For moving coil galvanometer, the deflection in the coil is 0.05 rad when a current of 10 mA is 1 through it. If the torsional constant of suspension wire is 4.0 × 10 ⁻⁵ Nm rad ⁻¹ , the magnetic field is and the number of turns in the coil is 200, the area of each turn (in cm ²) is : (1) 2.0 (2) 1.0 (3) 1.5 (4) 0.5 (4) 0.5 (2) is in the coil is 300 the area of each turn (in cm ²) is in the coil is 300 the area of each turn (in cm ²) is in the coil is 300 the area of each turn (in cm ²) is in the coil is 300 the area of each turn (in cm ²) is in the coil is 300 the area of each turn (in cm ²) is in the coil is 300 the area of each turn (in cm ²) is in the coil is 300 the area of each turn (in cm ²) is in the coil is 300 the area of each turn (in cm ²) is in the second term is a single is doped with Boron, it becomes P type and when doped by Area becomes N-type semi conductor such that P-type has excess holes and N-type has excess electer statement I : When such P-type and N-type semi-conductors, are fused to make junction, a curr automatically flow which can be detected with an externally connected ammeter. In the light of above statements, choose the most appropriate answer from the options given be (1) Statement I and Statement II are incorrect (2) Both Statement I and Statement II are incorrect (4) Both Statement I and statement II are correct (4) Both Statement I and statement II are correct (4) Both Statement I and statement II are correct (5) Statement I and statement II are correct (7) Both Statement I and statement II are correct (7) Both Statement I and statement II are correct (7) Both Statement I and statement II are correct (7) Both Statement I and statement II are correct (7) Both Statement I and statement II are correct (7) Both Statement I and statement II are correct (7) Both Statement I and statement II are correct (7) Both Statement I and statement II are correct (7) Both Statement I and statement II are correct (7) Both State		R ∝ ℓ²			
$R_{1} = \left(\frac{1}{\ell}\right)^{-2.3}$ $R_{2} = 25 \times 5 = 125$ Solution: For moving coil galvanometer, the deflection in the coil is 0.05 rad when a current of 10 mA is 1 through it. If the torsional constant of suspension wire is 4.0 × 10 ⁻⁵ Nm rad ⁻¹ , the magnetic field is and the number of turns in the coil is 200, the area of each turn (in cm ²) is : (1) 2.0 (2) 1.0 (3) 1.5 (4) 0.5 (2) (1) Tspring = Tmagnetic field K0 = MB sin90° K0 = NiAB $A = \frac{K0}{NiB}$ $A = \frac{4 \times 10^{-5} \times 0.05}{200 \times 10 \times 10^{-3} \times 0.01} = 1 \text{ cm}^{2}$ C. Statement I : When a Si sample is doped with Boron, it becomes P type and when doped by Are becomes N-type semi conductor such that P-type has excess holes and N-type has excess electric Statement II : When such P-type and N-type semi-conductors, are fused to make junction, a curr automatically flow which can be detected with an externally connected ammeter. In the light of above statements, choose the most appropriate answer from the options given be (1) Statement I and Statement II are correct (3) Statement I and Statement II are correct (4) Both Statement I and statement II are correct (4) Both Statement I and statement II are correct (5) Statement I and statement II are correct (6) Both Statement I and statement II are correct (7) Statement I and statement II are correct (8) Statement I and statement II are correct (9) Both Statement I and statement II are correct (1) Statement I and statement II are correct (2) Both Statement I and statement II are correct (3) Statement I and statement II are correct (4) Both Statement I and Statement II are correct (5) Statement I and Statement II are correct (6) Both Statement I and statement II are correct (7) Both Statement I and statement II are correct (8) Statement I and statement II are correct (9) Both Statement I and statement II are correct (9) Both Statement I and statement II are correct (9) Both Statement I and statement II are correct (1) Both Statement I and statement II are correct (2) Both Statement I and statement II are correct (3)		$R_{2} = (5\ell)^{2} = 25$			
R ₂ = 25 × 5 = 125 For moving coil galvanometer, the deflection in the coil is 0.05 rad when a current of 10 mA is p through it. If the torsional constant of suspension wire is 4.0 × 10 ⁻⁵ Nm rad ⁻¹ , the magnetic field is and the number of turns in the coil is 200, the area of each turn (in cm ²) is : (1) 2.0 (2) 1.0 (3) 1.5 (4) 0.5 Ns. (2) Sol. $r_{opring} = r_{magnetic field}$ K0 = MB sin90° K0 = NiAB A = $\frac{4 \times 10^{-5} \times 0.05}{200 \times 10 \times 10^{-3} \times 0.01} = 1 cm^2$ Statement I : When a Si sample is doped with Boron, it becomes P type and when doped by An becomes N-type semi conductor such that P-type has excess holes and N-type has excess electric Statement II : When such P-type and N-type semi-conductors, are fused to make junction, a curr automatically flow which can be detected with an externally connected ammeter. In the light of above statements, choose the most appropriate answer from the options given be (1) Statement I is correct but statement II are incorrect (2) Both Statement I and Statement II are correct (4) Both Statement I and statement II are correct (4) Both Statement I and statement II are correct (5) Statement I and statement II are correct (6) Statement I and statement II are correct (7) Statement I and statement II are correct (8) Statement I and statement II are correct (9) Statement I and statement II are correct (9) Statement I and statement II are correct (1)		$\overline{R_1} = \left(\overline{\ell} \right)^2 = 23$			
For moving coil galvanometer, the deflection in the coil is 0.05 rad when a current of 10 mA is a through it. If the torsional constant of suspension wire is 4.0×10^{-5} Nm rad ⁻¹ , the magnetic field is and the number of turns in the coil is 200, the area of each turn (in cm ²) is : (1) 2.0 (2) 1.0 (3) 1.5 (4) 0.5 Ans. (2) Sol. Tspring = Tmagnetic field K0 = MB sin90° K0 = NiAB A = $\frac{K\theta}{NiB}$ A = $\frac{4 \times 10^{-5} \times 0.05}{200 \times 10 \times 10^{-3} \times 0.01} = 1 \text{ cm}^2$ Statement I: When a Si sample is doped with Boron, it becomes P type and when doped by Ambecomes N-type semi conductor such that P-type has excess holes and N-type has excess electric Statement II: When such P-type and N-type semi-conductors, are fused to make junction, a curr automatically flow which can be detected with an externally connected ammeter. In the light of above statements, choose the most appropriate answer from the options given be (1) Statement I and Statement II is incorrect (2) Both Statement I and Statement II are correct (3) Statement I and statement II are correct (4) Both Statement I and statement II are correct (5) Statement I and statement II are correct (6) Both Statement I and statement II are correct (7) Both Statement I and statement II are correct (8) Statement I and statement II are correct (9) Both Statement I and statement II are correct (1)		R ₂ = 25 × 5 = 125			
For moving coil galvanometer, the deflection in the coil is 0.05 rad when a current of 10 mA is p through it. If the torsional constant of suspension wire is 4.0 × 10 ⁻⁵ Nm rad ⁻¹ , the magnetic field is and the number of turns in the coil is 200, the area of each turn (in cm ²) is : (1) 2.0 (2) 1.0 (3) 1.5 (4) 0.5 Nns. (2) Sol. $t_{spring} = t_{magnetic field}$ $K0 = MB sin90^{\circ}$ K0 = NiAB $A = \frac{K0}{NiB}$ $A = \frac{4 \times 10^{-5} \times 0.05}{200 \times 10 \times 10^{-3} \times 0.01} = 1 cm^2$ Statement I : When a Si sample is doped with Boron, it becomes P type and when doped by Am becomes N-type semi conductor such that P-type has excess holes and N-type has excess electric Statement II : When such P-type and N-type semi-conductors, are fused to make junction, a curr automatically flow which can be detected with an externally connected ammeter. In the light of above statements, choose the most appropriate answer from the options given be (1) Statement I is incorrect but statement II is incorrect (2) Both Statement I and Statement II are incorrect (3) Statement I and statement II are correct (4) Both Statement I and statement II are correct (5) Statement I and statement II are correct (6) Statement I and statement II are correct (7) Statement I and statement II are correct (8) Both Statement I and statement II are correct (9) Both Statement I and statement II are correct					g for better tomorrow
through it. If the torsional constant of suspension wire is 4.0 × 10 ⁻⁵ Nm rad ⁻¹ , the magnetic field is and the number of turns in the coil is 200, the area of each turn (in cm ²) is : (1) 2.0 (2) 1.0 (3) 1.5 (4) 0.5 Ans. (2) Sol. $\tau_{spring} = \tau_{magnetic field}$ $K\theta = MB sin 90^{\circ}$ $K\theta = NiAB$ $A = \frac{K\theta}{NiB}$ $A = \frac{4 \times 10^{-5} \times 0.05}{200 \times 10 \times 10^{-3} \times 0.01} = 1 cm^2$ Statement I : When a Si sample is doped with Boron, it becomes P type and when doped by Ambed becomes N-type semi conductor such that P-type has excess holes and N-type has excess electric Statement II : When such P-type and N-type semi-conductors, are fused to make junction, a curr automatically flow which can be detected with an externally connected ammeter. In the light of above statements, choose the most appropriate answer from the options given be (1) Statement I is incorrect but statement II is incorrect (2) Both Statement I and Statement II are incorrect (3) Statement I and statement II are correct (4) Both Statement I and statement II are correct (5) Statement I and statement II are correct (6) Statement I and statement II are correct (7) Statement I and statement II are correct (8) Statement I and statement II are correct (9) Statement I and statement II are correct (1) Statement I and statement II are correct (2) Both Statement I and statement II are correct (3) Statement I and statement II are correct (4) Both Statement I and statement II are correct	Re	For moving coil galvanometer	r, the deflection in the co	il is 0.05 rad when a	current of 10 mA is passe
and the number of turns in the coil is 200, the area of each turn (in cm ²) is : (1) 2.0 (2) 1.0 (3) 1.5 (4) 0.5 is (1) 2.0 (2) 1.0 (3) 1.5 (4) 0.5 is (1) $1 = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + $		through it. If the torsional cons	stant of suspension wire	is 4.0 × 10 ⁻⁵ Nm rad ⁻¹	, the magnetic field is 0.01
(1) 2.0 (2) 1.0 (3) 1.5 (4) 0.5 ins. (2) iol. $\tau_{spring} = \tau_{magnetic field}$ $K\theta = MB \sin 90^{\circ}$ $K\theta = NiAB$ $A = \frac{K\theta}{NiB}$ $A = \frac{4 \times 10^{-5} \times 0.05}{200 \times 10 \times 10^{-3} \times 0.01} = 1 \text{ cm}^2$: Statement I : When a Si sample is doped with Boron, it becomes P type and when doped by Ambed becomes N-type semi conductor such that P-type has excess holes and N-type has excess electric Statement II : When such P-type and N-type semi-conductors, are fused to make junction, a curr automatically flow which can be detected with an externally connected ammeter. In the light of above statements, choose the most appropriate answer from the options given be (1) Statement I and Statement II are incorrect (2) Both Statement I and Statement II are correct (3) Statement I and statement II are correct (4) Both Statement I and statement II are correct (5) Statement I and statement II are correct (6) Both Statement I and statement II are correct (7) Both Statement I and statement II are correct (8) Both Statement I and statement II are correct (9) Both Statement I and Statement II are correct (1)		and the number of turns in the	e coll is 200, the area of e	each turn (in cm²) is :	
inits. (2) iol. $\tau_{spring} = \tau_{magnetic field}$ $K\theta = MB \sin 90^{\circ}$ $K\theta = NiAB$ $A = \frac{K\theta}{NiB}$ $A = \frac{4 \times 10^{-5} \times 0.05}{200 \times 10 \times 10^{-3} \times 0.01} = 1 \text{ cm}^2$. Statement I : When a Si sample is doped with Boron, it becomes P type and when doped by Ambedometry becomes N-type semi conductor such that P-type has excess holes and N-type has excess electric Statement II : When such P-type and N-type semi-conductors, are fused to make junction, a curring automatically flow which can be detected with an externally connected ammeter. In the light of above statements, choose the most appropriate answer from the options given be (1) Statement I is correct but statement II is incorrect (2) Both Statement I and Statement II are incorrect (3) Statement I and statement II are correct (4) Both Statement I and statement II are correct (5) Statement I and statement II are correct (6) Statement I and statement II are correct (7) Statement I and statement II are correct (8) Statement I and statement II are correct (9) Statement I and statement II are correct (9) Statement I and statement II are correct (1)		(1) 2.0 (2) 1.	0 (3) 1.	5 (4)	0.5
b). T _{spring} = T _{magnetic field} K0 = MB sin90° K0 = NiAB $A = \frac{K0}{NiB}$ $A = \frac{4 \times 10^{-5} \times 0.05}{200 \times 10 \times 10^{-3} \times 0.01} = 1 \text{ cm}^2$. Statement I : When a Si sample is doped with Boron, it becomes P type and when doped by An becomes N-type semi conductor such that P-type has excess holes and N-type has excess electing Statement II : When such P-type and N-type semi-conductors, are fused to make junction, a curring automatically flow which can be detected with an externally connected ammeter. In the light of above statements, choose the most appropriate answer from the options given be (1) Statement I and Statement II are incorrect (2) Both Statement I and Statement II are incorrect (3) Statement I and statement II are correct (4) Both Statement I and statement II are correct (5) Statement I and statement II are correct (6) Both Statement I and statement II are correct (7) Both Statement I and statement II are correct (8) Statement I and statement II are correct (9) Both Statement I and statement II are correct (1)	ins.	ting for better to			
K0 = MB singur K0 = NiAB $A = \frac{K0}{NiB}$ $A = \frac{4 \times 10^{-5} \times 0.05}{200 \times 10 \times 10^{-3} \times 0.01} = 1 \text{ cm}^2$ 2. Statement I : When a Si sample is doped with Boron, it becomes P type and when doped by Arbecomes N-type semi conductor such that P-type has excess holes and N-type has excess electric Statement II : When such P-type and N-type semi-conductors, are fused to make junction, a curr automatically flow which can be detected with an externally connected ammeter. In the light of above statements, choose the most appropriate answer from the options given be (1) Statement I is correct but statement II is incorrect (2) Both Statement I and Statement II are incorrect (3) Statement I is incorrect but statement II are correct (4) Both Statement I and statement II are correct (5) Statement I and statement II are correct (6) Both Statement I and statement II are correct (7) Statement I is incorrect but statement II are correct (8) Both Statement I and statement II are correct (9) Both Statement I and statement II are correct (9) Both Statement I and statement II are correct (1) Statement I and statement II are correct (1) Both Statement I and statement II are correct (2) Both Statement I and statement II are correct (3) Statement I and statement II are correct (4) Both Statement I and statement II are correct (5) Both Statement I and statement II are correct (6) Both Statement I and statement II are correct (7) Both Statement I and statement II are correct (8) Both Statement I and statement II are correct (9) Both Statement I are correct	01.	$\tau_{\rm spring} \equiv \tau_{\rm magnetic field}$			
$A = \frac{K0}{NiB}$ $A = \frac{4 \times 10^{-5} \times 0.05}{200 \times 10 \times 10^{-3} \times 0.01} = 1 \text{ cm}^2$ Statement I : When a Si sample is doped with Boron, it becomes P type and when doped by Arrow becomes N-type semi conductor such that P-type has excess holes and N-type has excess electric Statement II : When such P-type and N-type semi-conductors, are fused to make junction, a curr automatically flow which can be detected with an externally connected ammeter. In the light of above statements, choose the most appropriate answer from the options given be (1) Statement I is correct but statement II is incorrect (2) Both Statement I and Statement II are incorrect (3) Statement I and Statement II are correct (4) Both Statement I and statement II are correct (5) Both Statement I and statement II are correct (6) Both Statement I and statement II are correct (7) Both Statement I and statement II are correct (8) Both Statement I and statement II are correct (9) Both Statement I and statement II are correct (1) Both Statement I and statement II are correct (1) Both Statement I and statement II are correct (2) Both Statement I and statement II are correct (3) Statement I and statement II are correct (4) Both Statement I and statement II are correct (5) Both Statement I and statement II are correct (6) Both Statement I and statement II are correct (7) Both Statement I and statement II are correct (8) Both Statement I and statement II are correct (9) Both Statement I and statement II are correct (9) Both Statement I and statement II are correct (1) Both Statement I and statement II are correct (1) Both Statement I and statement II are correct (2) Both Statement I and statement II are correct (3) Statement I and statement II are correct (4) Both Statement I and statement II are correct (5) Both Statement I and statement II are correct (6) Both Statement I and statement II are correct (7) Both Statement I and statement II are correct (8) Both Statement I and statement I are correct (9) Both Statement I and stat					
$A = \frac{K\theta}{NiB}$ $A = \frac{4 \times 10^{-5} \times 0.05}{200 \times 10 \times 10^{-3} \times 0.01} = 1 \text{ cm}^2$ Statement I : When a Si sample is doped with Boron, it becomes P type and when doped by Arr becomes N-type semi conductor such that P-type has excess holes and N-type has excess electric Statement II : When such P-type and N-type semi-conductors, are fused to make junction, a curr automatically flow which can be detected with an externally connected ammeter. In the light of above statements, choose the most appropriate answer from the options given be (1) Statement I is correct but statement II is incorrect (2) Both Statement I and Statement II are incorrect (3) Statement I is incorrect but statement II is correct (4) Both Statement I and statement II are correct (5) Statement I and statement II are correct (6) Both Statement I and statement II are correct (7) Both Statement I and statement II are correct (8) Both Statement I and statement II are correct (9) Both Statement I and statement II are correct (9) Both Statement I and statement II are correct (1)		KØ = NIAB			
A = $\frac{4 \times 10^{-5} \times 0.05}{200 \times 10 \times 10^{-3} \times 0.01}$ = 1 cm ² Statement I : When a Si sample is doped with Boron, it becomes P type and when doped by Are becomes N-type semi conductor such that P-type has excess holes and N-type has excess electric Statement II : When such P-type and N-type semi-conductors, are fused to make junction, a curr automatically flow which can be detected with an externally connected ammeter. In the light of above statements, choose the most appropriate answer from the options given be (1) Statement I is correct but statement II is incorrect (2) Both Statement I and Statement II are incorrect (3) Statement I and Statement II are correct (4) Both Statement I and statement II are correct (5) Both Statement I and statement II are correct (6) Both Statement I and statement II are correct (7) Both Statement I and statement II are correct (8) Both Statement I and statement II are correct (9) Both Statement I and statement II are correct (1)		$A = \frac{K\theta}{NED}$			
A = $\frac{4 \times 10^{-5} \times 0.05}{200 \times 10 \times 10^{-3} \times 0.01}$ = 1 cm ² Statement I : When a Si sample is doped with Boron, it becomes P type and when doped by Arr becomes N-type semi conductor such that P-type has excess holes and N-type has excess electric Statement II : When such P-type and N-type semi-conductors, are fused to make junction, a curr automatically flow which can be detected with an externally connected ammeter. In the light of above statements, choose the most appropriate answer from the options given be (1) Statement I is correct but statement II is incorrect (2) Both Statement I and Statement II are incorrect (3) Statement I is incorrect but statement II are correct (4) Both Statement I and statement II are correct (5) Both Statement I and statement II are correct (6) Both Statement I and statement II are correct (7) Both Statement I and statement II are correct (8) Both Statement I and statement II are correct (9) Both Statement I and statement II are correct (9) Both Statement I and statement II are correct (9) Both Statement I and statement II are correct (1)		NIB			
 200×10×10⁻³×0.01 Statement I : When a Si sample is doped with Boron, it becomes P type and when doped by Arr becomes N-type semi conductor such that P-type has excess holes and N-type has excess electines Statement II : When such P-type and N-type semi-conductors, are fused to make junction, a curr automatically flow which can be detected with an externally connected ammeter. In the light of above statements, choose the most appropriate answer from the options given be (1) Statement I is correct but statement II is incorrect (2) Both Statement I and Statement II are incorrect (3) Statement I and Statement II are incorrect (4) Both Statement I and statement II are correct (4) Both Statement I and statement II are correct (4) Both Statement I and statement II are correct (4) Both Statement I and statement II are correct (4) Both Statement I and statement II are correct (4) Both Statement I and statement II are correct (4) Both Statement I and statement II are correct (4) Both Statement I and statement II are correct (4) Both Statement I and statement II are correct (4) Both Statement I and statement II are correct (4) Both Statement I and statement II are correct (4) Both Statement I and statement II are correct (4) Both Statement I and statement II are correct (4) Both Statement I and statement II are correct (4) Both Statement I and statement II are correct (4) Both Statement I and statement II are correct (4) Both Statement I and statement II are correct (5) Both Statement I and statement II are correct (6) Both Statement I and Statement II are correct (7) Both Statement I and Statement II are correct (7) Both Statement I and Statement II are correct (7) Both Statement I and Statement II are correct (7) Both Statement I and Statement II are correct (7) Both Statement I and Statement II are correct (7) Both Statement I and Statement II are correct (7) Both Statement I and Statement II are correct (7) Both Statement I and Statement II are correct (7) Both Statement I are correct (7) Both Stat		$A = \frac{4 \times 10^{-5} \times 0.05}{2} = 1$	cm ²		
 Statement I : When a Si sample is doped with Boron, it becomes P type and when doped by Ar becomes N-type semi conductor such that P-type has excess holes and N-type has excess elections statement II : When such P-type and N-type semi-conductors, are fused to make junction, a curr automatically flow which can be detected with an externally connected ammeter. In the light of above statements, choose the most appropriate answer from the options given be (1) Statement I is correct but statement II is incorrect (2) Both Statement I and Statement II are incorrect (3) Statement I is incorrect but statement II is correct (4) Both Statement I and statement II are correct (5) Statement I and statement II are correct 		$200 \times 10 \times 10^{-3} \times 0.01$			
 Statement I : When a Si sample is doped with Boron, it becomes P type and when doped by Ar becomes N-type semi conductor such that P-type has excess holes and N-type has excess electines. Statement II : When such P-type and N-type semi-conductors, are fused to make junction, a curr automatically flow which can be detected with an externally connected ammeter. In the light of above statements, choose the most appropriate answer from the options given be (1) Statement I is correct but statement II is incorrect (2) Both Statement I and Statement II are incorrect (3) Statement I and Statement II are correct (4) Both Statement I and statement II are correct (5) Both Statement I and statement II are correct (6) Both Statement I and statement II are correct (7) Both Statement I and statement II are correct (7) Both Statement I and statement II are correct (7) Both Statement I and statement II are correct (7) Both Statement I and statement II are correct (7) Both Statement I and statement II are correct (7) Both Statement I and statement II are correct (7) Both Statement I and statement II are correct (7) Both Statement I and statement II are correct (8) Both Statement I and statement II are correct (7) Both Statement I and statement II are correct (7) Both Statement I and statement II are correct (7) Both Statement I and statement II are correct (7) Both Statement I and statement II are correct (7) Both Statement I and statement II are correct (7) Both Statement I and statement II are correct (7) Both Statement I and statement II are correct (7) Both Statement I and statement II are correct (8) Both Statement I and statement II are correct (8) Both Statement I and statement II are correct (8) Both Statement I and statement II are correct (8) Both Statement I and statement II are correct (8) Both Statement I and statement II are correct (8) Both Statement I and statement II are correct (8) Both Statement I and Statement II are correct (8) Both Statement I and Statement II are correct (8) Both Statement I a					
 becomes N-type semi conductor such that P-type has excess holes and N-type has excess electine Statement II : When such P-type and N-type semi-conductors, are fused to make junction, a currautomatically flow which can be detected with an externally connected ammeter. In the light of above statements, choose the most appropriate answer from the options given be (1) Statement I is correct but statement II is incorrect (2) Both Statement I and Statement II are incorrect (3) Statement I is incorrect but statement II is correct (4) Both Statement I and statement II are correct (5) Statement I and statement II are correct 	•	Statement I : When a Si sam	ple is doped with Boron,	it becomes P type an	d when doped by Arsenic
Statement II : When such P-type and N-type semi-conductors, are fused to make junction, a curr automatically flow which can be detected with an externally connected ammeter. In the light of above statements, choose the most appropriate answer from the options given be (1) Statement I is correct but statement II is incorrect (2) Both Statement I and Statement II are incorrect (3) Statement I is incorrect but statement II is correct (4) Both Statement I and statement II are correct (5) Both Statement I and statement II are correct (6) Both Statement I and statement II are correct (7) Both Statement I and statement II are correct (8) Both Statement I and statement II are correct (9) Both Statement I and statement II are correct (9) Both Statement I and statement II are correct		becomes N-type semi conduc	tor such that P-type has	excess holes and N-ty	/pe has excess electrons.
 automatically now which can be detected with an externally connected ammeter. In the light of above statements, choose the most appropriate answer from the options given be (1) Statement I is correct but statement II is incorrect (2) Both Statement I and Statement II are incorrect (3) Statement I is incorrect but statement II is correct (4) Both Statement I and statement II are correct (5) Statement I and statement II are correct (6) Both Statement I and statement II are correct 		Statement II : when such P-t	ype and N-type semi-cor	iductors, are fused to	make junction, a current w
 (1) Statement I is correct but statement II is incorrect (2) Both Statement I and Statement II are incorrect (3) Statement I is incorrect but statement II is correct (4) Both Statement I and statement II are correct (5) Resonance 		In the light of above statemen	te obcoso the most an	nally connected amine	the options given below
 (1) Statement I is correct but statement II are incorrect (2) Both Statement I and Statement II are incorrect (3) Statement I is incorrect but statement II is correct (4) Both Statement I and statement II are correct (5) Resonance (1) Resonance (2) Resonance (3) Resonance (4) Resonance (5) Resonance (6) Resonance (7) Resonance (7) Resonance (8) Resonance (9) Resonance (1) Resonance 		(1) Statement Lis correct but	ts, choose the most app		sonance
(3) Statement I is incorrect but statement II is correct (4) Both Statement I and statement II are correct (1) Resonance Resonance Resonance Resonance Resonance Resonance Resonance		(1) Statement I and State	ament II are incorrect		
(4) Both Statement I and statement II are correct sonance Resonance Resonance Resonance Resonance Resonance Resonance Resonance Resonance		(2) Statement Lis incorrect bu	t statement II is correct		
Ins." (1) better tomorrow Educating for better tomorrow Educating for better tomorrow Resonance [®] Resonance [®] Resonance [®] Resonance [®]		(4) Both Statement I and state	ement II are correct		
M Resonance" M Resonance" M Resonance" M Resonance	ns.	(1) Detter tomorrow	etter tomorrow Educating for		

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 55555 🔊 7340010333 👫 facebook.com/Resonance.du

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Ph. No.: +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

10. Re	Every A. Th B. Fo C. Th D. Th	v planet revolves around the e force acting on a planet is rce acting on planet in inver- e Centripetal force acting or he square of time period of r	sun in inverse sely pro the pla evolutio	an elliptical orbit :- ely proportional to square of portional to product of the anet is directed away from on of planet around sun is	of distance from sun. masses of the plane the sun. directly proportional	t and the sun. to cube of semi-
	majoi	axis of elliptical orbit.				
Ans.	(1) A (1)					
Sol.	(A)	$F = \frac{GM_{s}m_{p}}{R^{2}}$ Resonar				
		By Kepler's 3^{rd} law T ² \propto a ³				
	Giver State State wave In the (1) Bo (2) St (3) Bo (4) St	below are two statements a ment I : Stopping potential i ment II : For a given meta- length of the incident light. bight of above statements, of oth Statement I and Statement atement I is correct but state oth Statement I and statement atement I is incorrect but statement atement I is incorrect but statement	n photo al, the r choose ent II ar ement I nt II are atemen	pelectric effect does not dep maximum kinetic energy of the most appropriate answ e incorrect I is incorrect e correct t II is correct	pend on the power of of the photoelectron ver from the options g	the light source depends on the iven below
Alls.C	(J) ating for bett					
12.	M <mark>atcl</mark>	n List I with List II				
	esona	List I		List II		
	Α.	Troposphere	I.	Approximate 65-75 km c	over Earth's surface	
	B.	E-Part of Stratosphere	11.	Approximate 300 km ove	er Earth's surface	g for better tomorrow
	D.	P ₂ -Part of Thermosphere	III.	Approximate 10 km over Approximate 100 km over	er Farth's surface	8
Ans.	Choo (1) A- (3) A- (1)	se the correct answer from t -III, B-IV, C-II, D-I -III, B-II, C-I, D-IV	he opti	ons given below : (2) A-I, B-II, C-IV, (4) A-I, B-IV, C-III	D-III , D-II	For better tomorrow
13. Re	Cons to jus of fric	ider a block kept on an incli t push it up the incline is 2 tin tion between the block and	ned pla nes the inclined	ine (inclined at 45°) as sho force required to just preve d plane(μ) is equal to :	wn in the figure. If the ent if from sliding dow	e force required n, the coefficien
			nce [®] Morrow			
Ans.	(1) 0. (2)	50 (2) 0.33		(3) 0.25	(4) 0.60	
	Reg. Of	fice & Corp. Office : CG Tower, Ph. No.: +91-744	A-46 &	Eduventures 52, IPIA, Near City Mall, Jhala 7, 2777700 FAX No. : +91-022	Ltd. awar Road, Kota (Raj.) 2-39167222	- 324005

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 🔞 7340010333 📑 facebook.com/ResonanceEdu 📝 twitter.com/ResonanceEdu 📓 www.youtube.com/resowatch

Sol.	mg sin θ + μ mg cos θ =	$= 2(\text{mg sin}\theta - \mu\text{mg cos}\theta)$)		
	mg sinθ = 3μmg <mark>cos</mark> θ				
	$\tan\theta = 3\mu$				
14. Re	The light rays from ar image observed by th A. Real	n object have been refle e observer are :-	ected towards an obser	ver from a standard	l flat mirror, th
	C. Smaller in size the	n object			
Ans. Sol.	(1) B and C only (3) Properties of image for	(2) A, C, and D only	(3) B and D only	(4) A and D onl	y for better tomorrow
Educa	ating for better to				
15. Re	A body of mass is tal increase in potential e (g = acceleration due	ken from earth surface energy will be : to gravity on the surface	to the height h equal to e of Earth)	twice the radius of	earth (R _e), the
	(1) <mark>1</mark> mgR _e	(2) 3 mgR _e	(3) $\frac{2}{3}$ mgR _e	(4) $\frac{1}{3}$ mgR _e	
Ans.	(3) 1				
Sol.	$U_i = \frac{-GM_em}{R_e}$				
	$U_{\rm F} = \frac{-GM_{\rm e}m}{3R_{\rm e}}$				
	$\Delta U = U_{\rm F} - U_{\rm i} = \frac{2GM_{\rm e}}{3R_{\rm e}}$	<u>m</u>			
	$= \frac{2GM_em}{3R_e} \times \frac{R_e}{R_e} = \frac{2}{3} r$	ngR _e			
16. Re	A point charge of 10 µ	C is placed at the origin	. At what location on the	e X-axis should a po	int charge of 40
	μ <mark>C be</mark> placed so that t	the net electric field is z	ero at $x = 2$ cm on the X	(-axis?	
Ans	(1) $x = -4$ cm	(2) x - 4 cm	(3) x = 8 cm	(4) x = 6 cm	
Cill Zduca	10 mC E = 0	ducating for better tomorrow $40 \ \mu C$			
Sol.	(0, 0) (2 cm, 0) At x = 2; E ₁ + k(10µC) k ×	(x cm, 0) $E_2 = 0$			
	$\frac{1}{(2 \times 10^{-2})^2} = \frac{1}{((x-2))^2}$	<10 ⁻²) ² Resonant			

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

	250N3NCe [®] JEE (MAIN) 2023 DATE	: 25-01	2023 (SHIF	T-2) PAPE	R-1 OFFICA	L BASED	PHYSICS
17.	Match List I with List II							
	sonance [®] List F	esonanc	e	Reso	List	l Res	onance	
	A. Young's Modulu	s (Y)	Ĩ.	[ML ⁻¹ T ⁻¹]	bottor tomorrow	Educating	, for bottor tomorro	
	B. Co-efficient of V	iscosi <mark>ty (</mark> η)	tng for bette	[ML ² T ⁻¹]	Resc Educating for	JI ICI ILC	Re	SONANCE [®]
	C. Planck's Consta	nt (h)	dil.	[ML ⁻¹ T ⁻²]		Dee		8
	D. Work Function (ϕ) ing for better tomorro	IV.	[ML ² T ⁻²]	better tomorrow	Educating	for better tomorro	2 W
	Choose the correct an	swer <mark>from</mark> the	options	s given bel <mark>o</mark>	w:Reso	Subsection	Re	sonance
	(1 <mark>) A-I</mark> , B-III, C-IV, D-II							
	(2) A-I, B-II, C-III, D-IV							
	(3) A-II, B-III, C-IV, D-I							
A	(4) A-III, B-I, C-II, D-IV							
Ans.								
Sol.	(A) Y = $\frac{F}{A} \frac{L_o}{A}$							
	Ed AL	AΔL						
	(B) $\eta = \frac{10}{Av}$							
	Ελ							
	(C) h = C							
	(D) φ = hv – eV ₀							
18.	M <mark>atch</mark> List I with List II							
	List I							
	A. Isothermal Proc	ess I. W	/ork do	ne by the ga	as decreas	es internal e	energy	
	B. Adiabatic Proce	ss II. N	o chan	ge in interna	al energy			
	C. Isochoric Proces	ss III. Th	he heat	absorbed g	goes partly	to increase i	internal	
	atir g for bet er to	er	nergy a	nd partly to	do work			
	D. Isobaric Process	S IV. N	o work	is done on	or by the g	jas		
		swer from the	options		W: II BI CIV			
	(1) A-I, B-II, C-IV, D-III (3) A-I, B-II, C-III, D-IV			(2) A- (4) A-	II, B-I, C-IV	/, D-III I_D_IV		
Ans.	(c) / (l, b ll, c ll, b ll)			(+)//	II, D I, O II	1, 010		
Sol.								
Re	Isothermal Process	Temper	rature c	onstant	7			
	Adiabatic Process	No heat	b heat transfer $\Delta Q = 0$					
	Isochoric Process	e consta	ant $\Delta V = 0$	Educating for				
	Isobaric Process	re con <mark>s</mark>	tant ∆P = 0	nance®				

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 3 7340010333 ff facebook.com/Resonance.du 2 twitter.com/Resonance.du 2 twitter.c

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 55555 💿 7340010333 👫 facebook.com/ResonanceEdu 💟 twitter.com/ResonanceEdu 📓 www.youtube.com/resowatch 🖹 blog.resonance.ac.in

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 💿 7340010333 😭 facebook.com/ResonanceEdu 💟 twitter.com/ResonanceEdu 🔡 www.youtube.com/resowatch 📔 blog.resonance.ac.in

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 55555 💿 7340010333 👫 facebook.com/ResonanceEdu 💟 twitter.com/ResonanceEdu 📓 www.youtube.com/resowatch 🕒 blog.resonance.ac.in

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 55555 💿 7340010333 👫 facebook.com/ResonanceEdu 💟 twitter.com/ResonanceEdu 📓 www.youtube.com/resowatch 🕒 blog.resonance.ac.in

27. If a solid sphere of mass 5kg and a disc of mass 4kg have the same radius. Then the ratio of moment of inertia of the disc about a tangent in its plane to the moment of inertia of the sphere about its tangent will

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 55555 💿 7340010333 👫 facebook.com/ResonanceEdu 💟 twitter.com/ResonanceEdu 📓 www.youtube.com/resowatch 🕒 blog.resonance.ac.in

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 55555 💿 7340010333 👫 facebook.com/ResonanceEdu 💟 twitter.com/ResonanceEdu 📓 www.youtube.com/resowatch 📔 blog.resonance.ac.in

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 55555 💿 7340010333 👫 facebook.com/ResonanceEdu 💟 twitter.com/ResonanceEdu 📓 www.youtube.com/resowatch 🖹 blog.resonance.ac.in

