

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

Reso Ans. (3)

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

Resonance[®] | JEE (Main) 2023 | DATE : 29-01-2023 (SHIFT-1) | PAPER-1 MATHEMATICS Sol. $14\alpha^2 - 31\alpha + 3\lambda = 0$(i) $35\alpha^2 - 53\alpha + 4\lambda = 0.$(ii) $\therefore \alpha$ will satisfy both give equations $\therefore 14\alpha^2 - 31\alpha + 3\lambda = 0 \Rightarrow \alpha^2 - \frac{31\alpha}{14} + \frac{3\lambda}{14} = 0$(iii) $35\alpha^2 - 53\alpha + 4\lambda = 0 \implies \alpha^2 - \frac{53\alpha}{35} + \frac{4\lambda}{35} = 0 \qquad \dots (iv)$ from (iii) – (iv) we get $\lambda = 7\alpha$ put in ... (iii) $\alpha^{2} - \frac{31\alpha}{14} + \frac{3}{14}(7\alpha) = 0$ $\alpha^{2} - \frac{31\alpha}{14} + \frac{3\alpha}{2} = 0$ $\Rightarrow \alpha = 0 \text{ or } \alpha = \frac{5}{7}$ $(\alpha = 0 \text{ not acceptable as } \lambda \neq 0)$ $\therefore \alpha = \frac{5}{7}$ $\therefore \alpha + \beta = \frac{31}{14} \Rightarrow \beta = \frac{3}{2}$ $\therefore \alpha + \gamma = \frac{53}{35} \Rightarrow \gamma = \frac{4}{5}$ $\therefore \frac{3\alpha}{\beta} = \frac{10}{7} \text{ and } \frac{4\alpha}{\gamma} = \frac{25}{7}$ \therefore Reqd. Q. E is $\left(x - \frac{10}{7}\right)\left(x - \frac{25}{7}\right) = 0$ (7x - 10)(7x - 25) = 0 $49x^2 - 245x + 250 = 0$ 65. Let y = f(x) be the solution of the differential equation $y(x+1)dx - x^2dy = 0$, y(1) = e. Then $\lim_{x \to 1} f(x)$ is equal to (1) $\frac{1}{2}$ (2) $\frac{1}{2}$ (3) 0 (4) e^2 NTA Ans. (3) Reso Ans. (3) $\frac{x+1}{x^2}dx = \frac{dy}{y}$ Sol. $\ln x - \frac{1}{x} = \ln y + c \quad \because \quad y(1) = e$ $\therefore 0-1=1+c \Rightarrow c=-2$ $\ln x - \frac{1}{x} = \ln y - 2$ $\ln y = \ln x - \frac{1}{x} + 2$ $y = x.e^{2-\frac{1}{x}}$ $\therefore \quad \lim_{x \to 0^+} y = 0$

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 🔊 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

EXERCISE 1 JEE (Main) 2023 IDATE: 22-01-2023 (GHIFT-1) | PAPER-1 MATHEMATICS
68. Let
$$x = 2$$
 be a root of the equation $x^2 + px + q - 0$ and
 $f(x) = \left[\frac{1 - \cos(x^2 - 4gx + g^2 + 8gx + 16)}{(x - 2g)^4}, x \neq 2g\right]$
Then, $\lim_{x \to 0^+} [f(x)]$, $\lim_{x \to 0^+} [f(x)] = \lim_{x \to 0^+} [f(x)] = \lim$

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 5555

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

	SONANCE® JEE (Main) 2023 DATE : 29-01-2023 (SH	FT-1) PAPER-1 MA	THEMATICS	
Sol.	$\therefore D = \begin{vmatrix} \alpha & 2 & 1 \\ 2\alpha & 3 & 1 \\ 3 & \alpha & 2 \end{vmatrix} = \alpha(6 - \alpha) - 2(4\alpha - 3) + 1(2\alpha^2 - 3) = \alpha^2 - 2\alpha - 3$	Э) Вератал		5010054°
	$\therefore \qquad D = (\alpha - 3) \ (\alpha + 1)$			
	$:: D = \begin{vmatrix} 1 & 2 & 1 \\ 1 & 3 & 1 \\ \beta & \alpha & 2 \end{vmatrix} = 1(6 - \alpha) - 2(2 - \beta) + 1(\alpha - 3\beta)$			
	$= 6 - \alpha - 4 + 2\beta + \alpha - 3\beta$ $= 2 - \beta$ Similarly $D_2 = \alpha (\beta - 2)$ $D_3 = \alpha^2 - \alpha \beta - 3$ Let $\alpha = -1$ and $\beta = 2$ \therefore system of equations will become. $P_1 : x - 2y - z = -1$ $P_2 : 2x - 3y - z = -1$ $P_3 : 3x - y + 2z = 2$ $\therefore x = t, y = t, z = 1 - t, t \in \mathbb{R}$ is satisfying all the thr \therefore if $\alpha = -1$ and $\beta = 2$ the system of equations will have \therefore (2) is not correct.	ee planes P1 ,P2 and ve infinite solutions	d P ₃ .	
73.	Let $f(\theta) = 3\left(\sin^4\left(\frac{3\pi}{2} - \theta\right) + \sin^4(3\pi + \theta)\right) - 2(1 - \sin^2 \theta)$	2θ) and		
	$S = \left\{ \theta \in [0,\pi] : f'(\theta) = -\frac{43}{2} \right\}. \text{ If } 4\beta = \sum_{\theta \in S} \theta, \text{ then } f(\beta) \text{ is e}$	qual to		
	(1) $\frac{11}{8}$ (2) $\frac{3}{2}$ (3)	<u>9</u> 8	(4) $\frac{5}{4}$	
	ns. (4)			
Sol.	$f(\theta) = 3 (\cos^4 \theta + \sin^4 \theta) - 2 (1 - \sin^2 2 \theta)$ $f(\theta) = 3 [(\sin^2 \theta + \cos^2 \theta) - 2 \sin^2 \theta \cos^2 \theta)] - 2 + 2 \sin^2 \theta$	20		
	$= 3 - \frac{3}{2}\sin^2 2\theta - \frac{2 + 2\sin^2 2\theta}{2}$			
	$1 + \frac{1}{2}\sin^2 2\theta$ (1)			
	$\therefore f'(\theta) = \sin 4\theta$			
	$f'(\theta) = -\frac{\sqrt{3}}{2} \Rightarrow \sin 4\theta = -\frac{\sqrt{3}}{2} \qquad \because \ \theta \in [0,\pi] \ \therefore \ 4\theta \in [0,\pi]$	<mark>0, 4</mark> π]		
	$\therefore 4\theta = \pi - \frac{\pi}{3}; \ 4\theta = 2\pi - \frac{\pi}{3}; \ 4\theta = 3\pi + \frac{\pi}{3}; \ 4\theta = 4\pi - \frac{\pi}{3}$			

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 bwitter.com/ResonanceEdu

	2SONANCe [®] JEE (Main) 2023	DATE : 29-01-20	23 (SHIFT-1) PAPER-	1 MATHEMATICS	
R	$\therefore \theta = \frac{\pi}{4} + \frac{\pi}{12}; \theta = \frac{\pi}{2} - \frac{\pi}{12}; \theta$	$=\frac{3\pi}{4}+\frac{\pi}{12}; \theta=\pi$	$-\frac{\pi}{12}$	Respect	E.
	$\therefore \frac{4\beta}{2} = \frac{5\pi}{2} \Longrightarrow \beta = \frac{5\pi}{8}$				
	$\therefore f(\beta) = 1 + \frac{1}{2}\sin^2\frac{5\pi}{4}$ from (1)			
	$=1+\frac{1}{2}\times\frac{1}{2}=1+\frac{1}{4}$				
	$\therefore f(\beta) = \frac{5}{4}$				
74	For two non-zero complex	numbers z, andz	if $Be(z, z_n) = 0$ ar	and $Be(z_1 + z_2) = 0$ t	hen which of the
	following are possible ?		2, 1110(2122) = 0.01	$(2_1 + 2_2) = 0, t$	nen which of the
	A. $Im(z_1) > 0$ and $Im(z_2) > 0$	>0			
	B. $Im(z_1) > 0$ and $Im(z_2)$	> 0			
	$C_{\rm Im}(z_1) > 0$ and $Im(z_2) < 0$	0			
	D. $Im(z_1) < 0$ and $Im(z_2) < 0$	<0			
	Choose the correct answer t	from the options a	iven below :		
	(1) A and B (2)	B and C	(3) B and D	(4) A and C	
NTA A	ns. (2)		. ,		
Reso	Ans. (2)				
Sol.	$Let z_1 = x_1 + iy_1 and z_2 =$	= x ₂ + iy ₂			
	\therefore Re($z_1 z_2$) = 0 and Re(z	$_{1}+z_{2})=0,$			
	$x_1x_2 - y_1y_2 = 0 \dots(i)$				
	x ₁ + x ₂ = 0(ii)				
	$x_1^2 + y_1y_2 = 0$				
	$y_1y_2 = -x_1^2$				
	\Rightarrow Im(z ₁) and Im(z ₂) are of o	pposite sign.			
75.	Let α and β be real numbers	. Consider a 3x3 i	matrix A such that A ²	$=$ 3A + α I. If A ⁴ = 2	$21A + \beta I$, then
	(1) $\beta = -8$ (2)	$\beta = 8$	(3) $\alpha = 4$	(4) $\alpha = 1$	
	Ans. (1)	Parameter		ance R	
Reso	Ans. (1)				
Sol.	$\therefore A^2 = 3A + \alpha I \text{ and } A^4 = 21 A$	Α + βΙ			
	$:: A^4 = (A^2)^2 = (3A + \alpha I)^2$				
	$= (3A + \alpha I) (3A + \alpha I)$	= 9A	$A^2 + 6\alpha A + \alpha^2 I$		
	$= 9(3A + \alpha I) + 6\alpha A$	$+ \alpha^2 I$			
	$= (27 + 6\alpha) A + (9\alpha)$	$+ \alpha^2$) I			
	$\therefore 27 + 6\alpha = 21 \text{ and } 9\alpha + \alpha^2$	= β.			
	$\therefore \alpha = -1 \text{ and } \beta = -8$				

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 555
Tol

	SONANCe [®] JEE (Main)	2023 DATE : 29-01-202	3 (SHIFT-1) PAPER-1	MATHEMATICS	
76.	Fifteen football players the players pick up the shirt is	of a club-team are give T-shirts randomly, then	n 15 T-shirts with thei the probability that at	r names written o t least 3 players p	on the backside. If bick the correct T-
	(1) <u>5</u> <u>36</u>	(2) <mark>2</mark> 15	(3) $\frac{5}{24}$	(4) $\frac{1}{6}$	
NTA A	Ans. (4)				
Reso /	Ans. (Bonus)	Rasphano			
501.	15 players and 15. 1-sr				
	The answer of this que	stion given by NTA is 6	A REAL POINT A DOM PARTY		
	Which might be calcula	ted by them like $\frac{{}^{15}C_3 \times 1}{15!}$	$\frac{ 2 }{ 2 } = \frac{1}{6}$.		
	But calculating favoura	ble case by (¹⁵ C ₃)12 ! w	II be wrong because it	will included rep	etitions also
	The correct answer wo	build be $\frac{15! - ({}^{15}C_2D_{13} + {}^{15})}{45!}$	$D_{14} + D_{15}!$		
	Where $D_n = De$ -arrange	15! ement of 'n' things			
	15!–(105	$D_{10} + 15D_{11} + D_{12}$			
	∴ P (Reqd) =`	15!			
77.	Let $f: \mathbb{R} \to \mathbb{R}$ be a function	tion such that $f(x) = \frac{x^2}{x}$	$\frac{-2x+1}{2}$. Then		
	(1) $f(x)$ is many one	$x in(-\infty - 1)$	(2) f(x) is one - on	$e_{in}(-\infty -\infty)$	
	(3) $f(x)$ is many-one	$a in (1, \infty)$	(4) $f(x)$ is one - on	$e in(1 \infty)$ but not	$in(-\infty\infty)$
	(6) ((1) (2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	, (,,)		o m[.,) but not	
Reso A	Ans. (4)				
Sol.	$\therefore f(x) = \frac{(x+1)^2}{(x+1)}$				
	$\therefore f'(x) = \frac{(x^2 + 1)2(x + 1)}{(x^2 + 1)}$	$\frac{(x+1)^2(2x)}{(2x)} - \frac{2(x+1)^2(2x)}{(2x)^2}$	1)(x-1)		
	(x^2)	$(x^2 + 1)^2$	+ 1) ²		
	clearly f(x) is one – one	is $(-\infty, -1)$ and also in	1, ∞) but f(x) is not of	ne – one is $(-\infty,\infty)$	
78.	If the vectors $\vec{a} = \lambda \hat{i} + \beta$	$\mu \hat{j} + 4\hat{k}, \ \vec{b} = -2\hat{i} + 4\hat{j} - 2\hat{k}$, $\vec{c} = 2\hat{i} + 3\hat{j} + \hat{k}$ are c	oplanar and the	projection of \overline{a} on
	the vector \vec{b} is $\sqrt{54}$ unit	s, th <mark>en th</mark> e sum of all po	ssible values of λ+μi	s equal to	
	(1 <mark>) 18</mark>	(2) 6	(3) 24	(4) 0	
NTA A Reso A	Ans. (3) Ans. (3)				
	[] λ μ	4			
Sol.	$\therefore [\overline{a}b\overline{c}] = 0 \Rightarrow \begin{vmatrix} -2 & 4 \\ 2 & 3 \end{vmatrix}$	$\begin{vmatrix} -2 \\ 1 \end{vmatrix} = 0$			
	$\Rightarrow \frac{\lambda}{4} + 6) -\mu (-2 + 4)$	+) + 4(-6 - 8) = 0			
	$5\lambda - \mu - 28 = 0 \dots$	(1)			
	$\overline{a}.\hat{b} = \sqrt{54}$				

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 bwitter.com/ResonanceEdu

NOTE: CONSECTED
I JEE (Main) 2023 | DATE : 29-01-2023 (SHIFT-1) | PAPER-1 MATHEMATICS

$$\frac{-2\lambda + 4\mu - 8}{\sqrt{4 + 16 + 4}} = \sqrt{54}$$

$$\lambda - 2\mu + 42 = 0$$
(2)
Solving (1) and (2), we get

$$\lambda - \frac{78}{9} \text{ and } \mu = \frac{39}{9} + 11$$

$$\therefore \lambda + \mu = 24$$
79. Let $f(x) = x + \frac{a}{\pi^2 - 4} \sin x + \frac{b}{\pi^2 - 4} \cos x, x \in \mathbb{R}$ be a function which satisfies
 $f(x) = x + \int_{0}^{1/2} \sin(x + y)f(y)dy$. Then $(a + b)$ is equal to
(1) $-\pi(\pi + 2)$
(2) $-\pi(\pi - 2)$
(3) $-2\pi(\pi + 2)$
(4) $-2\pi(\pi - 2)$
NTA Ans. (3)
Reso Ans. (3)
Sol. $\because f(x) = x + \left(\frac{\pi}{\pi^2 - 4}\right) \sin x + \left(\frac{b}{\pi^2 - 4}\right) \cos x, x \in \mathbb{R}$
 $\because f(x) = x + \int_{0}^{\frac{\pi}{2}} \sin(x + y)f(y)dy$
 $\Rightarrow f(x) = x + \int_{0}^{\frac{\pi}{2}} (\sin x \cos y + \cos x \sin y)f(y)dy$
 $\Rightarrow f(x) = x + (\sin x) \int_{0}^{\frac{\pi}{2}} (\cos y f(y)dy + (\cos x)) \int_{0}^{\pi} \sin y f(y)dy$ (1)
 $\det A = \int_{0}^{\frac{\pi}{2}} \cos y f(y)dy = \int_{0}^{\frac{\pi}{2}} (y + A \sin y + B \cos y) \sin y dy$
 $\therefore A = \int_{0}^{\frac{\pi}{2}} y \cos y dy + A \int_{0}^{\frac{\pi}{2}} \sin y \cos y dy + B \int_{0}^{\frac{\pi}{2}} (2\cos^2 y) dy$
 $A = (y \sin y) \int_{0}^{\frac{\pi}{2}} \frac{A}{2} \left(\frac{-\cos 2y}{2} \right) \int_{0}^{\frac{\pi}{2}} + \frac{B}{2} \int_{0}^{\frac{\pi}{2}} (1 + \cos 2y) dy$

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 F facebook.com/ResonanceEdu www.youtube.com/resowatch bog.resonance.ac.in

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

🔼 Resonance® | JEE (Main) 2023 | DATE : 29-01-2023 (SHIFT-1) | PAPER-1 MATHEMATICS

83. Suppose f is a function satisfying f(x+y) = f(x) + f(y) for all $x, y \in N$ and

f(1) =
$$\frac{1}{5}$$
.If $\sum_{n=1}^{m} \frac{f(n)}{n(n+1)(n+2)} = \frac{1}{12}$, then m is equal to
NTA Ans. (10)
Reso Ans. (10)
Sol. $f(x+y) = f(x) + f(y) \Rightarrow f(x) = ax$
 $f(1) = \frac{1}{5} \Rightarrow a.1 = \frac{1}{5} \Rightarrow a = \frac{1}{5}$
 $f(n) = \frac{n}{5}$
 $\therefore \sum_{n=1}^{m} \frac{f(n)}{n(n+1)(n+2)} = \frac{1}{12} \Rightarrow \sum_{n=1}^{m} \frac{(n)}{5n(n+1)(n+2)} = \frac{1}{12}$
 $\left(\sum_{n=1}^{m} \left(\frac{1}{n+1} - \frac{1}{n+2}\right)\right) = \frac{5}{12}$
 $\left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{m+1} - \frac{1}{m+2}\right) = \frac{5}{12}$
 $\frac{1}{2} - \frac{1}{m+2} = \frac{5}{12} \Rightarrow \frac{1}{2} - \frac{5}{12} = \frac{1}{m+2}$
 $\Rightarrow \frac{2}{2 \times 12} = \frac{1}{m+2} \Rightarrow m + 2 = 12 \Rightarrow m = 10$
84. Let the coefficients of three consecutive terms in the binomial expansion of $(1 + 2x)^n$ be in the ratio 2 : 5 : 8. Then the coefficient of the term, which is in the middle of these three terms, is
NTA Ans. (1120)

Reso Ans. (1120) Sol. (1+2x)ⁿ

(1+2x)ⁿ T_{r+1} = ⁿC_r (2x)^r

Let T_r , $T_{r+1} T_{r+2}$ are three consecutive terms $\therefore {}^{n}C_{r-1} \cdot 2^{r-1} : {}^{n}C_{r} \cdot 2^{r} : {}^{n}C_{r+1} \cdot 2^{r+1} :: 2 : 5 : 8$

$$\Rightarrow \frac{{}^{n}C_{r}.2^{r}}{{}^{n}C_{r-1}.2^{r-1}} = \frac{5}{2} \Rightarrow 2\left(\frac{n-r+1}{r}\right) = \frac{5}{2}$$

4n - 9r + 4 = 0(1)

$$\frac{{}^{n}C_{r+1}.2^{r+1}}{{}^{n}C_{r}.2^{r}} = \frac{8}{5}$$

$$\Rightarrow \frac{n-r}{r+1} = \frac{4}{5} \Rightarrow 5n - 9r - 4 = 0 \dots (2)$$

On solving (1) and (2) we get n = 8, r = 4

consecutive terms T_r , T_{r+1} , T_{r+2} will be T_4 , T_5 , T_6 , and T_5 , is middle term of these three consecutive terms. \therefore coefficient of $T_5 = {}^8C_4 2^4$

= 1120

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No. :** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 5555
Toll Free : 1800 258 5555

Resonance JEE (Main) 2023 DATE : 29-01-2023 (SHIFT-1) PAPER-1 MATHEMATICS	
85. Let $f: R \rightarrow R$ be a differentiable function that satisfies the relation $f(x + y) = f(x) + f(y) + f($	$-1, \forall x, y \in \mathbf{R}.$
If f' (0)=2, then $ f(-2) $ is equal to	
NTA Ans. (3)	
Reso Ans. (3)	
Sol. $f(x + y) = f(x) + f(y) - 1$ (1)	
Partial differential w.r.t. x	
f'(x + y) = f'(x)	
put x = 0	
f'(y) = f'(0) = 2	
$\Rightarrow f(y) = 2y + c$	
f(x) = 2x + c	
Now put $x = y = 0$ in (1) we get $f(0)=1$	
$\Rightarrow f(0) = 0 + c$	
\Rightarrow c = 1	
$\Rightarrow f(x) = 2x + 1$	
$\Rightarrow f(-2) = 3$	
86. Let the equation of the plane P containing the line $x + 10 = \frac{8 - y}{2} = z$ be ax + by + 3:	z = 2 (a+b) and the
distance of the plane P from the point (1, 27, 7) be c. Then $a^2 + b^2 + c^2$ is equal to	
NTA Ans (355)	
Reso Ans. (355)	
x + 10 $y - 8$ z	
Sol. $\frac{1}{1} = \frac{1}{-2} = \frac{1}{1}$ (1)	
and $ax + by + 3z = 2 (a + b)$ (2)	
\therefore (2) contains the line (1)	
∴ (–10, 8,0) will lie on (2)	
\Rightarrow -10a + 8b = 2a + 2b	
b = 2a (3)	
and $a - 2b + 3 = 0$ (4)	
form (3) and (4), we get	
a = 1 & b= 2	
$\therefore eq^n \text{ of plane (2) is } x + 2y + 3z - 6 = 0$	
$\therefore c = \left \frac{1 + 54 + 21 - 6}{\sqrt{1 + 4 + 5}} \right = 5\sqrt{14}$	
$\therefore a^2 + b^2 + c^2 = 1 + 4 + 25 \times 14 = 5 + 350 = 355$	
87. Five digit numbers are formed using the digits 1, 2, 3, 5, 7 with repetitions and are w	ritten in descending
order with serial numbers. For example, the number 77777 has serial number 1. The of 35337 is	n the serial number
NTA Ans. (1436)	

Reso Ans. (1436)

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 F facebook.com/ResonanceEdu www.youtube.com/resowatch bog.resonance.ac.in

	2SONANCE JEE (Main) 2023 DATE : 29-01-2023 (SHIFT-1) PAPER-1 MATHEMATICS
Sol.	Number of numbers starting with $7 \rightarrow 625$
	Number of numbers starting with $5 \rightarrow 625$
	Number of numbers starting with $37 \rightarrow 125$
	Number of numbers starting with $357 \rightarrow 25$
	Number of numbers starting with $355 \rightarrow 25$
	Number of numbers starting with 3537 \rightarrow 5
	Number of numbers starting with 3535 \rightarrow 5
	Number of numbers starting with $35337 \rightarrow 1$
	1436
	The position of the number 35337 is 1436
88.	Let the co-ordinates of one vertex of $\triangle ABC$ be A (0, 2, α) and the other two vertices lie on the line
	$\frac{x+\alpha}{5} = \frac{y-1}{2} = \frac{z+4}{3}$. For $\alpha \in Z$, if the area of $\triangle ABC$ is 21 sq. units and the line segment BC has length
	$2\sqrt{21}$ units, then α^2 is equal to
NTA / Reso	Ans. (9) Ans. (9)
Sol.	∴ Area = 21
	$\Rightarrow \frac{1}{2}(BC)(AD) = 21$
	$\Rightarrow \frac{1}{2} (2\sqrt{2}1) (AD) = 21$
	$AD = \sqrt{21}$
	\therefore eqn of BC is $\frac{x+\alpha}{5} = \frac{y-1}{2} = \frac{z+4}{3} = \lambda$
	\therefore D is a point on line BC
	\therefore let D (5 λ – α ,2 λ +1, 3 λ -4)
	\therefore dr's of AD : $5\lambda - \alpha$, $2\lambda - 1$, $3\lambda - 4 - \alpha$
	$\therefore AD \perp BC$
	$\Rightarrow 5(5\lambda - \alpha) + 2(2\lambda - 1) + 3(3\lambda - 4 - \alpha) = 0$
	$19\lambda - 4\alpha - 7 = 0$
	$1a^{-1}a^{$
	$\Rightarrow \lambda = \frac{\pi \alpha + \gamma}{19}$
	∵ (AD) ² = 21
	$\Rightarrow (5\lambda - \alpha)^2 + (2\lambda - 1)^2 + (3\lambda - 4 - \alpha)^2 = 21 \dots (1)$
	$A\alpha + 7$
	$\therefore \lambda = \frac{4\alpha + \gamma}{19}$ put in (1), we get
	$\therefore \frac{(\alpha + 35)^2}{19^2} + \frac{(8\alpha - 5)^2}{19^2} + \frac{(7\alpha + 55)^2}{19^2} = 21$
	$(\alpha + 35)^2 + (8\alpha - 5)^2 + (7\alpha + 55)^2 = 361 \times 21$
	$\therefore \alpha = 3$ satisfies it
	$\Rightarrow \alpha^2 = 9$

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 F facebook.com/ResonanceEdu www.youtube.com/resowatch bog.resonance.ac.in

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No. :** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 555
Tol

