

Educatir		PART :	CHE	MISTRY			
	A doctor prescribed the drug Equanil to a patient. The patient was likely to have symptoms of v						
	(1) Ar	nxiety and stress	(2) Hyperacidity			
T Advestin	(3) De	epression and hypertension	(4) Stomach ulcers			
ESO.	(3)						
ol.	Equanil is a tranquilizer and it is used to treat depression and hypertension.						
Res	Reaction of propanamide with Br ₂ /KOH(aq) produces:						
	(1) Pr	opanenitrile (2) Ethylamine	(3) Propylamine (4) Ethylnitrile			
ΓΑ.	(2)						
ESO.	(2)						
ol.	\sim	NH ₂ Ethanamina					
		nonmann degradation reaction					
3.	Which	n of the following relations are correct?					
	(A) ∆l	$J = q + p\Delta V$					
	(B) ∆($\Delta = \Delta H - I\Delta S$					
	(C <mark>) ∆</mark> \$	$S = \frac{q_{rev}}{T}$					
	(D) ∆I	$H = \Delta U - \Delta nRT$					
	Choo	se the most appropriate answer from th	e optic	ons given below:			
Ŧ۸	(1) B	and D only (2) B and C only	(3) A and B only (4) C and D only				
FSO.	(2)						
ol.	(2) (A) $\Delta U = q + w$						
	ΔU =	q – ΡΔV					
	(B) ∆0	$G = \Delta G - T\Delta S$					
	(C) ∆3	$S = \frac{q_{rev}}{T}$					
	(D) AI	J = AV + ApgPT					
	So co	rrect option are B & C only.					
		List Lond List II					
Poo	Match	ו בוסג דמווע בוסג וו					
Res	Match	•	LISt-				
Educativ	Match List (A)	Van't Hoff factor (i)	LISt- (I)	Cryoscopic constant	nance'		
Educatio	Match List (A) (B)	I Van't Hoff factor (i) K _f	(I) (II)	Cryoscopic constant	nance'		
Res Education	Match List (A) (B)	I Van't Hoff factor (i) K _f Solutions with same osmotic	(I) (II) (III)	Cryoscopic constant Isotonic solutions Normal molar mass	nance'		
Education Research	Match List (A) (B) (C)	I Van't Hoff factor (i) K _f Solutions with same osmotic pressure	List- (I) (II) (III)	Cryoscopic constant Isotonic solutions Normal molar mass Abnormalmolar mass	nance'		
Res Education	Match List (A) (B) (C) (D)	Van't Hoff factor (i) K _f Solutions with same osmotic pressure Azeotropes	List- (l) (II) (III) (IV)	Cryoscopic constant Isotonic solutions Normal molar mass Abnormalmolar mass Solutions with same composition of vap	pour above		

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 🔊 7340010333 🚹 facebook.com/ResonanceEdu 💟 twitter.com/ResonanceEdu 🔠 www.youtube.com/resowatch 🕒 blog.resonance.ac.in

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555 () 7340010333 f acebook.com/ResonanceEdu vitter.com/ResonanceEdu blog.resonance.ac.in

	SONANCE [®] JEE(Main) 2023 DATE : 29-01-	2023 (SHIFT-2) PAPER-'	I OFFICIAL PAF	ER CHEMISTRY
Sol.		OH ── C≡N		
		ohydrin		
	Esterification OH/A			
	Ф ОН о	C OH Me		
	$CI \longrightarrow CI \longrightarrow$	CH ₃ Me		
37.	The set of correct statements is:			
	(i) Manganese exhibits +7 oxidation state ir	n its oxide.		
	(ii) Ruthenium and Osmium exhibit +8 oxid	ation in their oxides.		
	(iii) Sc shows +4 oxidation state which is o	xidizing in nature.		
	(iv) Cr shows oxidising nature in +6 oxidation	on state.		
	(1 <mark>) (ii)</mark> , (iii) and (iv) (2) (ii) and (iii)	(3) (i) and (iii)	(4) (i), (ii)	and (iv)
NTA.	(4)			
RESO.	(4)			
Sol.	$_{21}$ Sc = $3d^{1}4s^{2}$ can show maximum +3 oxida	ation state it does not sho	ow +4 oxidation	state.
Re				
38.	When a hydrocarbon A undergoes combust	tion in the presence of air	, it requires 9.5 e	equivalents of oxygen
	and produces 3 equivalents of water. What			
NTA	(1) C9H6 (2) C6H6 (3)	(3) C8H6	(4) €9⊓9	
RESO	(3)			
Sol.	$C_xH_y + (x + \frac{y}{4})O_2 \longrightarrow xCO_2 + \frac{y}{2}H_2O$			
	No. of equivalents of O ₂ = No. of equivalen	ts of H ₂ O		
	No. of equivalents of $H_2O = \frac{y}{2} = 3$			
	y = 6			
	No. of equivalents of $O_2 = x + \frac{y}{4} = 9.5$			
	$x + \frac{6}{4} = 9.5$			
	x <mark>= 9.5</mark> – 1.5 = 8 and e Resona			
	$C_xH_y = C_8H_6$			

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555 S 7340010333 F acebook.com/ResonanceEdu www.youtube.com/resowatch bog.resonance.ac.in

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No. :** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

	SONANCE JEE(Main) 202	23 DATE : 29-01-2023 (SHIFT-2) PAPER-1 OFFICIAL PAPER CHEMISTRY			
42. Re	Given below are two statements : Statement I : The decrease in first ioniza <mark>tion</mark> enthalpy from B to A <mark>I is much larger than that from AI tc</mark> Ga.				
NTA. RESO. Sol.	Statement II : The d orbitals in Ga are completely filled. In the light of the above statements, choose the most appropriate answer from the options given below (1) Both the statements I and II are incorrect (2) Statement I is correct but statement II is incorrect (3) Statement I is incorrect but statement II is correct (4) (4)				
	ElementBA IE_1 (KJ/mol)8015 ΔIE_1 of B & AI in greater thThis is due to completely the increase in nuclear characteristic	I Ga In II 77 579 558 589 han Δ IE1 of AI & Ga. filled d-orbitals in Ga and d-electron have low screening effect to compensate arge.			
AD RE	The major component of y	which of the following are in culphide based mineral?			
43. NTA. RESO.	(1) Calamine (2 (3) (3)	2) Malachite (3) Sphalerite (4) Siderite			
Sol.	Calamine – $ZnCO_3$ Siderite – $FeCO_3$ Sphalerite – ZnS Malachite – $CuCO_2$ Cu(Ob	Ha for better tomorrow			
		1/2			
44.	Match List - I and List - II				
	List – I A. Osmosis	List - II I. Solvent molecules pass through semi permeable membrane towards solvent side.			
	B. Reverse osmosis	II. Movement of charged colloidal particles under the influence of applied electric potential towards oppositely charged electrodes.			
	C. Electro osmosis	III. Solvent molecules pass through semi permeable membrane towards solution side.			
	D. Electrophoresis	IV. Dispersion medium moves in an electric field.			
NTA.	(1) A-I, B-III, C-II, D-IV (3) A-III, B-I, C-II, D-IV (4)	(2) A-I, B-III, C-IV, D-II (4) A-III, B-I, C-IV, D-II			
RESO. Sol.	 (4) (i) Electro osmosis: When movement of colloidal particles is prevented by some suitable means (porous diaphragm or semi permeable membranes), it is observed that the D.M. begins to move in an electric field. This phenomenon is termed electrosmosis. (ii) Solvent molecules pass through semi-permeable membrane towards solvent side is termed as reverse osmosis. (iii) When an electric potential is applied across two platinum electrodes dipping in a colloidal solution, the colloidal particles move towards one or the other electrode. The movement of colloidal particles under an applied electric potential is called electrophoresis. 				
	(iv) Solvent molecules par osmosis.	ss through semipermeable membrane towards the solution side is termed as			

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 🔊 7340010333 🚹 facebook.com/ResonanceEdu 🔽 twitter.com/ResonanceEdu 🔠 www.youtube.com/resowatch 🕒 blog.resonance.ac.in

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No. :** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

		JEE(Main) 2023 DATE : 29-01-2023 (SHIFT-2) PAP	ER-1 OFFICIAL PAPER	CHEMISTRY	
49. Re	According t (1) 1, 3 and	to MO theory the bond orders for O_2^{-2} , CO and NO ⁺ r d 3 (2) 2, 3 and 3 (3) 1, 2 and 3	respectively, are (4) 1, 3 and 2		
NTA. RESO. Sol.	(1) (1)				
	Species	Molecular Orbital configuration	Band order = $\frac{1}{2}$ (N _b – B _a)		
	со	$KK^* \sigma_{2s^2}^* \sigma_{2s^2}^* \left(\pi_{2p_x}^2 \equiv \pi_{2p_y}^2 \right) \sigma_{2p_z^2}$	$\frac{1}{2}(10-4)=3$		
	NO+	$KK^{*} \sigma_{2s^{2}}^{} \sigma_{2s^{2}}^{*} \sigma_{2p_{z}^{2}}^{} \left(\pi_{2p_{x}}^{2} \equiv \pi_{2p_{y}}^{2} \right) \left(\pi_{2p_{x}^{0}}^{*} \equiv \pi_{2p_{y}^{0}}^{*} \right)$	$\frac{1}{2}(10-4)=3$		
	0 ₂ ⁻²	$KK^{*} \sigma_{2s^{2}}^{*} \sigma_{2s}^{*} \sigma_{2p_{z}^{2}}^{*} \left(\pi_{2p_{x}^{2}}^{2} = \pi_{2p_{y}^{2}}^{2} \right) \left(\pi_{2p_{x}^{2}}^{*} = \pi_{2p_{y}^{2}}^{*} \right)$	$\frac{1}{2}(10-8)=1$	e" sonance"	
50.	Find out the	e major product for the following reaction.			
	ОН	$\xrightarrow{H_3O^{\oplus}}$ Major product			
	(1)		(4)		
NTA. RESO.	(3) (3)				
Sol.		$H_{2O} \rightarrow \bigcirc$			
	С.Н	Rearrange			
	\bigwedge				
	Major prod				
	SATIZEV	sonance' Resonance' Res			
51. NTA.	The dentici (4)	ty of the ligand present in the Fehling's reagent is	P Resonance Educating for better tomorr		
RESO.	(4)				
52.	The volume of HCI, containing 73 g L ⁻¹ , required to completely neutralise NaOH obtained by reacting 0.69 g of metallic sodium with water, ismL. (Nearest Integer) (Given: molar Masses of Na				
NTA. RESO.	(15) (15)	a" Oneonanco" Oneonanco			

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 bwitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 🔊 7340010333 👫 facebook.com/ResonanceEdu 💟 twitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 **| FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

