

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No. :** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

	ating for better tomorrow JEE MAIN-2023 DATE : 29-01-2023 (SHIFT-2) PAPER-1 PHYSICS				
7.	A force acts for 20 s on a body of mass 20 kg, starting form rest, after which the force ceases and then				
	body describes <mark>50 m</mark> in the next 10 s. The value of force will be:				
	(1) 40 N (2) 20 N (3) 5 N (4) 10 N				
Ans.	(3) Educating for better tomorrow Educating for better tomorrow				
Sol.	F = 20 × a				
	\mathbb{R} Resonance $\rightarrow \mathbb{V}$ Reson $\rightarrow \mathbb{V}$ Resonance Resonance				
	F>20kg 20kg 20kg				
	10sec				
	20s 50 m				
	$V = \frac{50}{10} = 5$				
	V = u + at				
	$5 = 0 + a \times 20$ $a = 1/4$ $E = 20 \times 1/4 = 5$ N				
	and $a = 1/4$, $1 = 20 \times 1/4 = 0.14$				
8.	With the help potentiometer, we can determine the value of emf of a given cell. The sensitivity of the				
	potentiometer is				
	(A) directly proportional to the length of the potentiometer wire				
	(B) directly proportional to the potential gradient of the wire				
	(C) inversely proportional to the potential gradient of the wire				
	(D) inversely proportional to the length of the potentiometer wire				
	(1) B and D only (2) A and C only (3) A only (4) C only				
Ans.	(2)				
0.01	sonance*				
501.	Sensitivity $\propto \frac{1}{\text{Potential gradient}}$				
	esonar Lating for better to 1 l				
	$\frac{1}{ \mathbf{v}/\ell } \Rightarrow \frac{1}{ \mathbf{v} } \Rightarrow \frac{1}{ \mathbf{v} }$				
9.	Heat energy of 184 kJ is given to ice of mass 600 g at -12° C. Specific heat of ice is 2222.3 J kg ^{-1°} C ⁻¹				
	and latent heat of ice in 336 kJ/kg ⁻¹				
	A. Final temperature of system will be 0°C.				
	B. Final temperature of the system will be greater than 0°C.				
	C. The final system will have a mixture of ice and water in the ratio of 5:1				
	D. the final system will have a mixture of ice and water in the ratio of 1:5.				
	E. The final system will have water only.				
	Choose the correct answer from the options given below:				
	(1) A and D only (2) B and D only (3) A and E only (4) A and C only				
Ans.					

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No. :** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 555
Tol

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

	2SONANCe [®] JEE MAIN	-2023 DATE : 29-01-202	23 (SHIFT-2) PAPER-1	PHYSICS				
12.	Identify the correct statements from the following:							
	A. Work done by a man in lifting a bucket out of a well by means of a rope tied to the bucket is negative.							
	rope tied to the bucket is ne	gative.						
	C. Work done by friction on a body sliding down an inclined plane is positive.							
	D. Work done by an applied force on a body moving on a rough horizontal plane with uniform velocity in							
	zero.							
	E. Work done by the air resistance on an oscillating pendulum in negative.							
	Choose the correct answer from the options given below:							
	(1) B, D and E only	(2) A and C only	(3) B and D only	(4) B and E only				
Ans.	(4)							
Sol.	W = FS cosθ							
13.	13. • A fully loaded boeing aircraft has a mass of 5.0×10^5 kg. Its total wing area is 500 m ² . It is in level flight							
	with a speed of 1080 km/h. If the density of air ρ is 1.2 kg m ⁻³ , the fractional increase in the speed of the							
	air on the upper surface of the wing relative to the lower surface in percentage will be, $(g = 10 \text{ m/s}^2)$							
	(1) 16	(2) 8	(3) 10	(4) 6	,			
Ans.	(3)							
Sol.	$P_1 + \frac{1}{2}\rho v^2 = P_2 + \frac{1}{2}\rho (v^2)$	$(v + \Delta v)^2$						
	$P_{1} - P_{2} + \frac{1}{2}\rho v^{2} \left[\left(1 + \frac{\Delta v}{v} \right)^{2} \right]$ Lift force (P_{1} - P_{2}) A =	$\left(\frac{y}{z}\right)^2 - 1$ mg						
	$\frac{1}{2} \frac{\rho v^2}{2} \left[\frac{2 \frac{\Delta v}{v}}{v} \right] A = mg$; $\frac{\Delta v}{v} = \frac{mg}{\rho v^2 A}$						
	Δν ma	$5.4 \times 10^{5} \times 10^{10}$						
	$\frac{1}{v} \times 100 = \frac{3}{\rho v^2 A} \times 100$	$0 = \frac{1}{1.2 \times (300)^2 \times 500}$ %	= 10%					
	E	(
<mark>14</mark> .	The time period of a s	atellite of earth is 24 ho	urs. If the separation be	tween the earth and the sat	ellite is			
	decreased to one four	th of t <mark>he p</mark> revious value	, then it <mark>s new</mark> time perio	d will become.				
	(1) 12 hours	(2) 6 hours	(3) 4 hours	(4) 3 hours				
Ans.	(4)							
Sol.	T ² ∝ R ³							
	$\Rightarrow \left(\frac{T_1}{T_2}\right)^2 = \left(\frac{R_1}{R_2}\right)^3 \Rightarrow$	$T_2 = T_1 \times \left(\frac{R_2}{R_1}\right)^{3/2} = 24$	$\left(\frac{R_1}{4 \times R_1}\right)^{3/2}$					
	$T_2 = 24 \times \frac{1}{2^3} = 3h$							

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 f acebook.com/ResonanceEdu vww.youtube.com/resowatch com/resowatch building b

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 🝥 7340010333 🛉 facebook.com/ResonanceEdu 🕑 twitter.com/ResonanceEdu 🔛 www.youtube.com/resowatch 🕒 blog.resonance.ac.in

