
Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

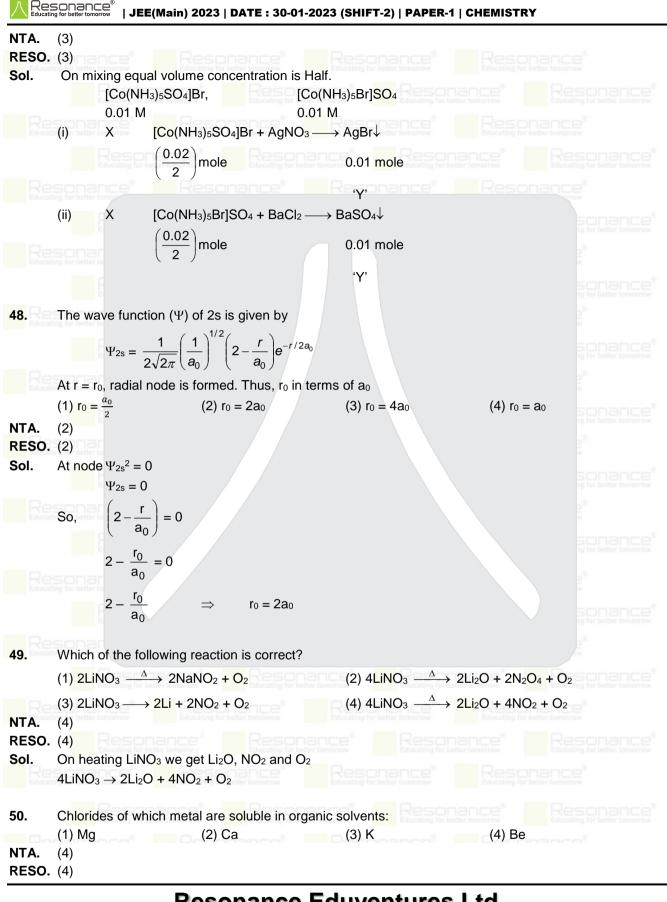
Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No. :** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

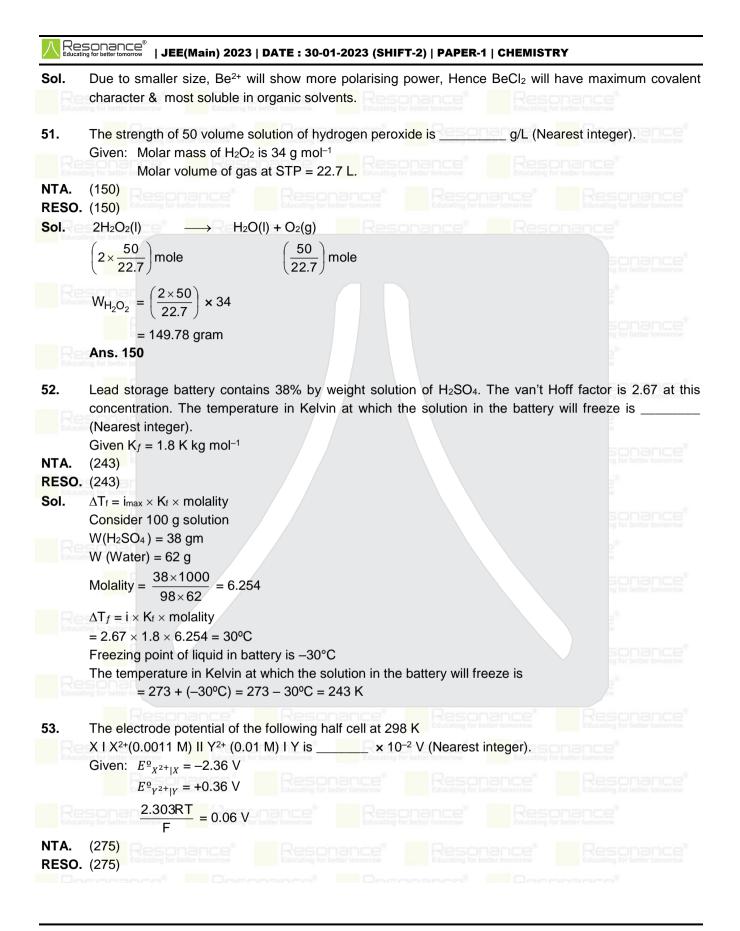
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

	Bond dissociation energy of "E-H" bond of the "H2E" hydrides of group 16 elements (given below), follows									
	order.									
	A. O									
	B. S									
	C. Se									
	D. Te									
	Choose the correct									
	(1) D > C > B > A	(2) B	> A > C > D	(3) A > B > D > C	(4) A > B	> C > D				
NTA.	(4) nance									
RESO.	(4)									
Sol.	In <mark>the</mark> given compo		der of bond leng	gth						
	H–Te < H–Se < H-									
	So the bond streng	gth for H–O	is maximum.							
12.				commodated in shel						
Educa	(1) 72	(2) 16	6	(3) 32	(4) 50					
NTA.	(3)									
RESO.										
Sol.	Maximum no. of el	-		en as						
	2n ² , n = principal quantum no. or shell no.									
	He <mark>re,</mark> n = 4, then r	naximum no	 of electron wi 	II be = $2 \times (4)^2 = 32 e^{-3}$)-					
		naximum no	o. of electron wi	II be = $2 \times (4)^2 = 32 \epsilon$) -					
	Here, $n = 4$, then r	naximum no CH		II be = $2 \times (4)^2 = 32 \epsilon$	j -					
				II be = $2 \times (4)^2 = 32 \epsilon$	F					
R a 13.				II be = 2 × (4)² = 32 €	F					
Re 13. Re	\leftarrow			II be = 2 × (4) ² = 32 ε	-					
t3.	$\bigcup_{NO_2}^{CH_3} \longrightarrow \longrightarrow$	CH	3	II be = 2 × (4)² = 32 €						
Re Educa 13. Ree Educa	(X)	CH Br	3 Br							
Re Educa 13. Re	(X)	CH Br	3 Br	II be = $2 \times (4)^2 = 32 \epsilon$ product (Y), the sequ		sonance sonance				
H3. Real Real Real Real Real Real	$\begin{array}{c} CH_{3} \\ \hline \\ NO_{2} \\ \hline \\ \\ NO_{2} \\ \hline \\ \\ NO_{2} \\ \hline \\ \\ \end{array}$	CH Br	3 Br			to be used will be:				
13. Real Education	CH ₃ \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow	CH Br (Y) ersion of co	³ Br mpound (X) to p	product (Y), the sequ						
43. Ree Education	CH ₃ \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow	CH Br (Y) ersion of co) Br ₂ (aq)) Br ₂ (aq)) Fe, H ⁺	³ Br mpound (X) to p (iii) HNO ₂ (iii) HNO (iii) LiAlH ₄	product (Y), the sequ (iv) CuBr		s to be used will be:				
Alan Alan References References References	CH ₃ \downarrow NO_2 (X) In the above convert (1) (i) Fe, H ⁺ (ii) (2) (i) Fe, H ⁺ (iii) (3) (i) Br ₂ , Fe (iii) (4) (i) Br ₂ (aq) (iii)	CH Br (Y) ersion of co) Br ₂ (aq)) Br ₂ (aq)	³ Br mpound (X) to r (iii) HNO ₂ (iii) HNO	product (Y), the sequ (iv) CuBr						
Re	CH ₃ NO ₂ (X) In the above converses (1) (i) Fe, H ⁺ (ii) (2) (i) Fe, H ⁺ (ii) (3) (i) Br ₂ , Fe (ii) (4) (i) Br ₂ (aq) (ii) (2)	CH Br (Y) ersion of co) Br ₂ (aq)) Br ₂ (aq)) Fe, H ⁺	³ Br mpound (X) to p (iii) HNO ₂ (iii) HNO (iii) LiAlH ₄	product (Y), the sequ (iv) CuBr						
NTA. RESO.	CH ₃ NO ₂ (X) In the above converses (1) (i) Fe, H ⁺ (ii) (2) (i) Fe, H ⁺ (ii) (3) (i) Br ₂ , Fe (ii) (4) (i) Br ₂ (aq) (ii) (2)	CH Br (Y) ersion of co) Br ₂ (aq)) Br ₂ (aq)) Fe, H ⁺	³ Br mpound (X) to p (iii) HNO ₂ (iii) HNO (iii) LiAlH ₄	oroduct (Y), the sequ (iv) CuBr (iv) H₃PO₂						
Re	CH ₃ \rightarrow NO_2 (X) In the above convective (1) (i) Fe, H ⁺ (ii) (2) (i) Fe, H ⁺ (iii) (3) (i) Br ₂ , Fe (iii) (4) (i) Br ₂ (aq) (iii) (2) (2)	CH Br (Y) ersion of co) Br ₂ (aq)) Br ₂ (aq)) Fe, H ⁺	Br mpound (X) to p (iii) HNO2 (iii) HNO (iii) LiAIH4 (iii) H ₃ O+	product (Y), the sequ (iv) CuBr (iv) H ₃ PO ₂	ence of reagents					
NTA. RESO.	CH ₃ NO ₂ (X) In the above converses (1) (i) Fe, H ⁺ (ii) (2) (i) Fe, H ⁺ (ii) (3) (i) Br ₂ , Fe (ii) (4) (i) Br ₂ (aq) (ii) (2)	CH Br (Y) ersion of co) Br ₂ (aq)) Br ₂ (aq)) Fe, H ⁺	³ Br mpound (X) to p (iii) HNO ₂ (iii) HNO (iii) LiAIH ₄ (iii) H ₃ O ⁺	product (Y), the sequ (iv) CuBr (iv) H ₃ PO ₂	ence of reagents					
NTA. RESO.	CH ₃ \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow	CH Br (Y) ersion of co) Br ₂ (aq)) Br ₂ (aq)) Fe, H ⁺) LiAIH ₄	Br mpound (X) to p (iii) HNO ₂ (iii) HNO (iii) LiAIH ₄ (iii) H ₃ O ⁺	oroduct (Y), the sequ (iv) CuBr (iv) H ₃ PO ₂	ence of reagents					
NTA. RESO.	CH ₃ \rightarrow NO_2 (X) In the above convective (1) (i) Fe, H ⁺ (ii) (2) (i) Fe, H ⁺ (iii) (3) (i) Br ₂ , Fe (iii) (4) (i) Br ₂ (aq) (iii) (2) (2)	CH Br (Y) ersion of co) Br ₂ (aq)) Br ₂ (aq)) Fe, H ⁺) LiAIH ₄	³ Br mpound (X) to p (iii) HNO ₂ (iii) HNO (iii) LiAlH₄ (iii) H ₃ O+	product (Y), the sequ (iv) CuBr (iv) H ₃ PO ₂	ence of reagents	Resonance CH ₃				
NTA. RESO.	CH ₃ NO ₂ (X) In the above convective (1) (i) Fe, H ⁺ (ii) (2) (i) Fe, H ⁺ (iii) (3) (i) Br ₂ , Fe (iii) (4) (i) Br ₂ (aq) (ii) (2) (2) CH ₃ Fe/H^{+}	CH Br (Y) ersion of co) Br ₂ (aq)) Br ₂ (aq)) Fe, H ⁺) LiAIH ₄	Br mpound (X) to p (iii) HNO ₂ (iii) HNO (iii) LiAIH ₄ (iii) H ₃ O ⁺	product (Y), the sequ (iv) CuBr (iv) H ₃ PO ₂	ence of reagents					
NTA. RESO.	CH ₃ \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow	CH Br (Y) ersion of co) Br ₂ (aq)) Br ₂ (aq)) Fe, H ⁺) LiAIH ₄	³ Br mpound (X) to p (iii) HNO ₂ (iii) HNO (iii) LiAIH₄ (iii) H ₃ O+	broduct (Y), the sequ (iv) CuBr (iv) H ₃ PO ₂	ence of reagents					
NTA. RESO.	CH ₃ NO ₂ (X) In the above converses (1) (i) Fe, H ⁺ (ii) (2) (i) Fe, H ⁺ (ii) (3) (i) Br ₂ , Fe (ii) (4) (i) Br ₂ (aq) (ii) (2) (2) CH ₃ $\xrightarrow{Fe/H^{+}}$	CH Br (Y) ersion of co) Br ₂ (aq)) Br ₂ (aq)) Fe, H ⁺) LiAIH ₄	Br mpound (X) to p (iii) HNO ₂ (iii) HNO (iii) LiAIH ₄ (iii) H ₃ O ⁺ G_{aq}	broduct (Y), the sequ (iv) CuBr (iv) H ₃ PO ₂	ence of reagents CH_3 H_3F Br					

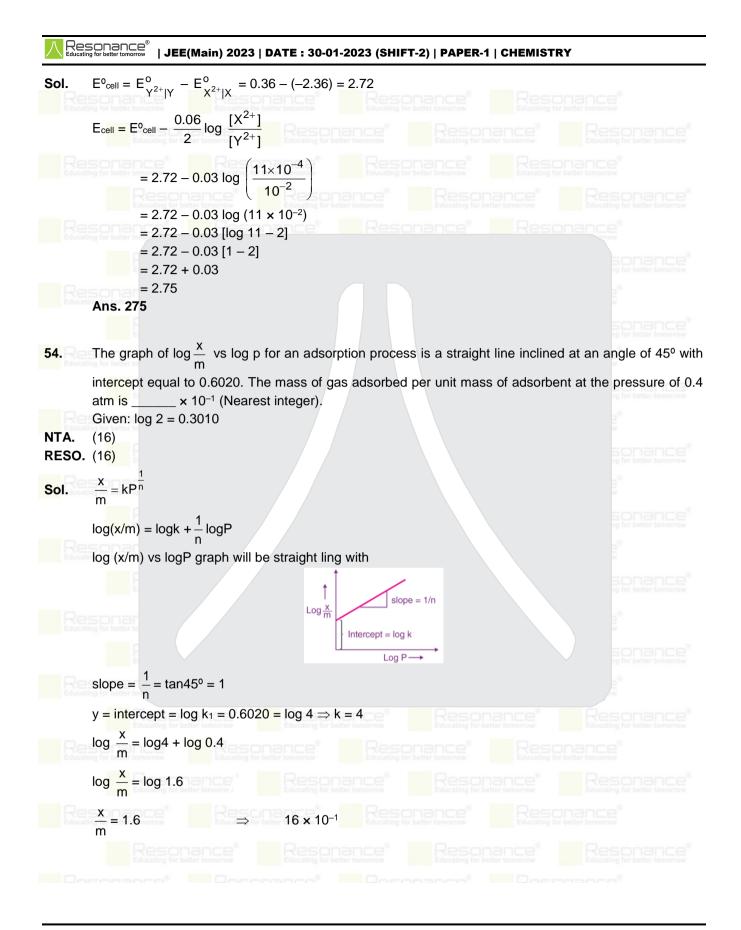

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 Toll 7340010333 F facebook.com/ResonanceEdu www.youtube.com/resonance.ac.in E-mail : contact@resonanceEdu Beg.resonance.ac.in E-mail : contact@resonance.ac.in E-mai

	Match List I with List II										
	List I (Complexes)		List II (Hybridisation)		ation)						
	A.	[Ni(CO)4]	l.	sp ³							
	B.	[Cu(NH ₃) ₄] ²⁺	П.	dsp ²	or better tomorrow						
	C.	[Fe(NH ₃) ₆] ²⁺	JIII.	sp ³ d ²	Resona						
	D.	[Fe(H ₂ O) ₆] ²⁺	IV.g for better	d ² sp ³	Iducating for bette	tomorrow	Educating for better tomorrow				
	• •	-I, B-II, C-III. D-I\	/_ (2) <mark>A-II</mark> ,	B-I, C-	III, D-IV (3) A <mark>-I, E</mark>	B-II, C-IV, D-	III (4) A- <mark>II, B</mark> -I, C-IV, D-III				
۱.	(3)										
50.											
•	A.	[Ni(CO)4]	sp ³								
	B.	[Cu(NH ₃) ₄] ²⁺	dsp ²								
	C.	[Fe(NH ₃) ₆] ²⁺	d ² sp ³								
	D.	[Fe(H ₂ O) ₆] ²⁺	sp ³ d ²								
		h List I with List I	1:	1.1.1.4	" (O	. I ¹					
		I (Mixture)		-	II (Separation Te						
	A.	$CHCl_3 + C_6H_5NI$	1 2	.	Steam distillation						
	В.	$C_6H_{14} + C_5H_{12}$.	Differential extra	ction					
	C.	$C_6H_5NH_2 + H_2O$			Distillation						
	D. Organic compound in H ₂ O IV.				Fractional distilla						
	• •	-IV, B-I, C-III, D-I	I (2) A-III,	B-1V,	C-I, D-II (3) A-II,	B-I, C-III, D-I	V (4) A-III, B-I, C-IV, D-II				
A.	(2)										
SO.	. ,	ter to	/								
-		$I_3 + C_6 H_5 N H_2 \rightarrow I_3$									
		$_{4} + C_{5}H_{12} \rightarrow Fractions$									
		$NH_2 + H_2O \to Ste$									
	Orga	nic compound in	$H_2O \rightarrow Dif$	ferentia	al extraction						
		ulae for Nessler'	/ -	s :							
Educat	(1) K	Hgl₃	(2) Hgl ₂		(3) K ₂ Hg	4	(4) KHg ₂ I ₂				
A.	(3)										
SO.	. ,	- F			<i></i>		hg for better tomor				
Re	Nessler's reagent is a mercury (ii) iodide (Hgl ₂) solution in potassium iodide (KI) and potassium										
	hydroxide (KOH).										
	Nessler's reagent: K ₂ Hgl ₄ + KOH It is used for confirmation test of NH ₄ ⁺ ion.										
	It is t	ised for confirma	tion test of	NH4 ⁺ I(on. Resona						
	ing for bet	Er tomorrow	ducating for better		Educating for bette		Educating for better tomorrow				
				the second se			solution of [Co(NH ₃) ₅ Br]SO ₄				
		-		-	ial parts (X) and tre	eated with ex	cess of AgNO ₄ solution and I				
	solution respectively as shown below:										
	1 L Solution (X) + AgNO ₃ solution (excess) \rightarrow Y										
		olution (X) + Ba		Educating Ir	or better tomorrow						
	The	number of moles	of Y and Z	respec	ctively are						
		02, 0.02	(2) 0.02		(3) 0.01,		(4) 0.01, 0.02				

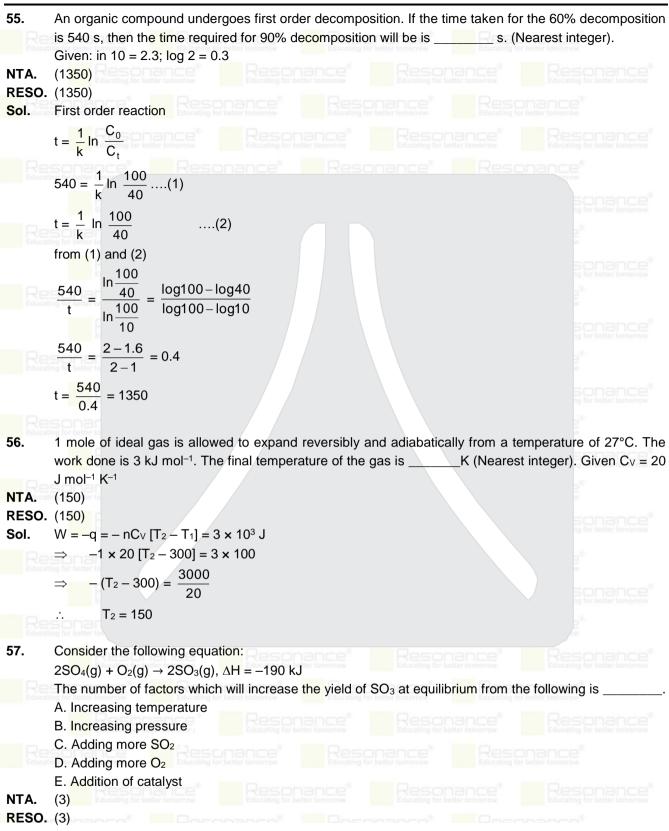

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 555
Tol


Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

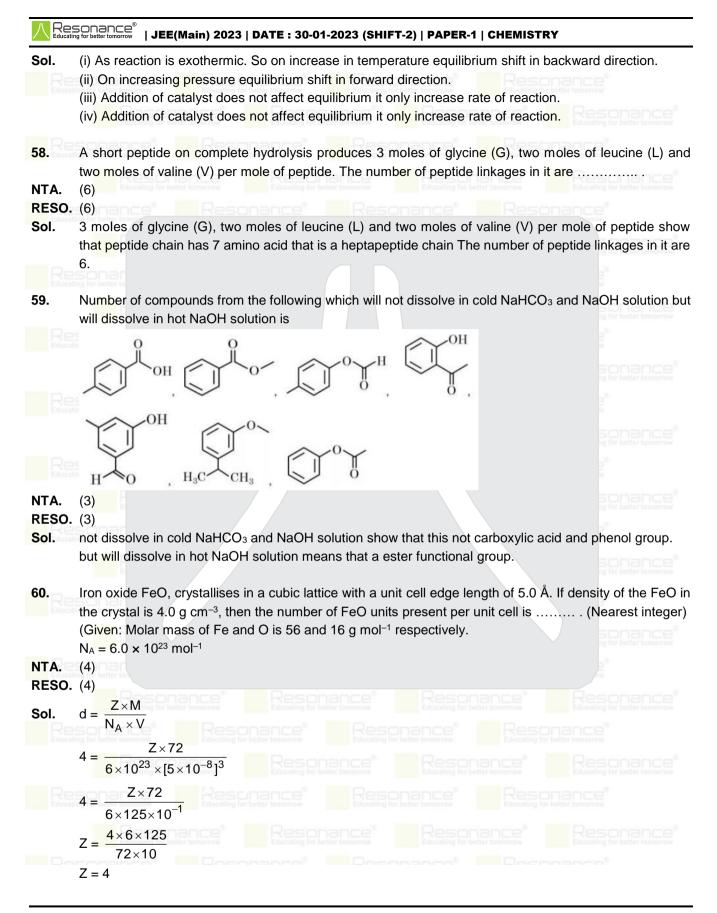
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 🔊 7340010333 👫 facebook.com/ResonanceEdu 💟 twitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222


To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu


Resonance[®] | JEE(Main) 2023 | DATE : 30-01-2023 (SHIFT-2) | PAPER-1 | CHEMISTRY

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

