

Date: 30 January, 2023 (SHIFT-2) | TIME : (3.00 p.m. to 6.00 p.m) Duration: 3 Hours | Max. Marks: 300

SUBJECT: MATHEMATICS

Resonance Eduventures Ltd.

 Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)
 324005

 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555 🔊 7340010333 🗗 facebook.com/ResonanceEdu 🔽 twitter.com/ResonanceEdu 🔛 www.youtube.com/resowatch 🕒 blog.resonance.ac.in

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555 () 7340010333 f acebook.com/ResonanceEdu vitter.com/ResonanceEdu blog.resonance.ac.in

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555 () 7340010333 f acebook.com/ResonanceEdu vitter.com/ResonanceEdu blog.resonance.ac.in

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 1800 258 5555 () 7340010333 f acebook.com/ResonanceEdu vitter.com/ResonanceEdu blog.resonance.ac.in

Resonance[®] | JEE MAIN-2023 | DATE : 30-01-2023 (SHIFT-2) | PAPER-1 | MATHEMATICS The parabolas : $ax^2 + 2bx + cy = 0$ and $dx^2 + 2ex + fy = 0$ intersect on the line y = 1. If a, b, c, d, e, f are 69. positive real numbers and a, b c are in G.P., then (4) $\frac{d}{a}, \frac{e}{b}, \frac{f}{c}$ are in A.P (1) $\frac{d}{d}$, $\frac{e}{b}$, $\frac{f}{c}$ are in G.P (2) d, e, f are in A.P. (3) d, e, f are in G.P NTA Ans. (4) Reso. Ans. (4) y = 1 is common to both Sol. \Rightarrow ax² + 2bx + c = 0 and dx² + 2ex + f = 0 $\therefore b^2 = ac$ $\Rightarrow ax^2 + 2\sqrt{a}\sqrt{c} x + c = 0$ $\Rightarrow \left(\sqrt{a} x + \sqrt{c}\right)^2 = 0$ $\Rightarrow \mathbf{x} = -\sqrt{\frac{\mathbf{c}}{\mathbf{c}}}$ Put this value in second equation $d\left(\frac{c}{a}\right) - 2e\sqrt{\frac{c}{a}} + f = 0$ $\frac{\text{cd}}{\text{a}} + f = 2\text{e}\frac{\sqrt{\text{c}}}{\sqrt{2}}$ $cd + af = 2e\sqrt{ac}$ cd + af = 2eb \Rightarrow dir. by ac $\frac{d}{a} + \frac{f}{c} = \frac{2e}{b}$ $\frac{d}{a}, \frac{e}{b}, \frac{f}{c}$ are in A.P. Let \vec{a} and \vec{b} be two vectors, Let $|\vec{a}| = 1$; $|\vec{b}| = 4$ and $\vec{a} \cdot \vec{b} = 2$. If $\vec{c} = (2\vec{a} \times \vec{b}) - 3\vec{b}$, then the value of 70. b.c is (1) - 60(2) - 48(3) - 84(4) - 24NTA Ans. (2) Reso. Ans. (2) $\vec{c} = (2\vec{a} \times \vec{b}) - 3\vec{b}$(1) Sol. b..(1) \vec{b} , $\vec{c} = 0 - 3\vec{b}$, $\vec{b} = -48$ \rightarrow $\lim_{n \to \infty} \frac{3}{n} \left[4 + \left(2 + \frac{1}{n}\right)^2 + \left(2 + \frac{2}{n}\right)^2 + \dots + \left(3 - \frac{1}{n}\right)^2 \right] \text{ is equal to}$ 71. (1) $\frac{19}{3}$ (2) 12 (3) 0(4) 19NTA Ans. (4) Reso. Ans. (4)

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

Sol.
$$\lim_{n \to m} \frac{3}{n} \left[4 + \left(2 + \frac{1}{n}\right)^{2} + \left(2 + \frac{2}{n}\right)^{2} + \dots + \left(3 - \frac{1}{n}\right)^{2} \right]$$
$$\lim_{n \to m} \frac{3}{2} \left[\left(2 + \frac{0}{n}\right)^{2} + \left(2 + \frac{1}{n}\right)^{2} + \left(2 + \frac{2}{n}\right)^{2} + \dots + \left(2 + \frac{n-1}{n}\right)^{2} \right]$$
$$\lim_{n \to m} \frac{3}{2} \left[\left(2 + \frac{1}{n}\right)^{2} + \left(2 + \frac{1}{n}\right)^{2} + \left(2 + \frac{2}{n}\right)^{2} + \dots + \left(2 + \frac{n-1}{n}\right)^{2} \right]$$
$$\operatorname{Let} \frac{1}{n} = 4x$$
$$= 3 \frac{1}{9} \left[\left(2 + x\right)^{2} dx$$
$$= 3 \frac{1}{9} \left[\left(2 + x\right)^{2} dx$$
$$= 3 \frac{1}{9} \left(2 + x\right)^{2} dx$$
$$=$$

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 555
Tol

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

Educa	ing for better tomorrow JEE MAIN-2023 DATE : 3	0-01-2023 (SHIFT-2) PAPER-1 MATHEMATI	CS			
Sol.	Any tangent for $y^2 = 16x$ is $y = mx + \frac{4}{m}$	R				
	it is also a tangent to $x^2 + y^2 = 8$					
	$(4)^2$					
	if $\left(\frac{1}{m}\right) = 8(1+m^2)$					
	16					
	$\frac{10}{m^2} = 8(1+m^2)$					
	$\Rightarrow m^4 + m^2 - 2 = 0 \Rightarrow (m^2 + 2) (m^2 - 1)$	$) = 0 \implies m = \pm 1$				
	\therefore common tangent is y = x + 4	,				
	\Rightarrow x - y + 4 = 0					
	tangent to $x^2 + y^2 = 8$ is $xx_1 + yy_1 - 8 =$	= 0				
	X1 V1 -8					
	$\therefore \frac{-1}{1} = \frac{-1}{-1} = \frac{-1}{4} \therefore \mathbf{Q}(-2, 2)$					
	tangent to $y^2 = 16x$ is $yy_1 = 8(x + x_1)$					
	$8x - yy_1 + 8x_1 = 0$					
	8y, _ 8x,					
	$\frac{1}{1} - \frac{1}{-1} - \frac{1}{4}$					
	$y_1 = 8, x_1 = 4,$					
	∴ P(4, 8)					
	: distance = PQ = $\sqrt{(4+2)^2 + (8-2)^2}$	$e^{2} = \sqrt{36+36} = 6\sqrt{2}$				
	$\therefore PQ^2 = 72$					
76.	Consider the following statements:					
	P : I have fever					
	Q : I will not take medicine					
	R : I will take rest.					
	The statement "If I have fever, then I will take medicine and I will take rest" is equivalent to :					
	(1) (P ∨ Q) ∨ ((~P) ∨ R)	(2) (P ∨ ~Q) ∧ (P∨ ~R)				
	(3) (~P) \lor ~Q \land ((~P) \lor ~R)	$(4) ((^P) \vee (^Q)) \land ((^P) \vee R)$				
	ns. (4)					
Sol.	Ans. (4) Given $P \rightarrow (\sim Q \land B)$					
	$= \sim P_V (\sim Q \land R)$					
	$= ((\sim P) \lor \sim Q) \land (\sim P \lor R)$					

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 5555

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

		E MAIN-2023 DATE : 30	0-01-2023 (SHIFT-2) PAPEI	R-1 MATHEMATICS	i	
79.	Let $\lambda \in \mathbf{R}$, $\vec{a} = \lambda \hat{i} + 2\hat{j} - 3\hat{k}$, $\vec{b} = \hat{i} - \lambda \hat{j} + 2\hat{k}$,					
	If $\left(\left(\vec{a}+\vec{b}\right)\times\left(\vec{a}\times\vec{b}\right)\right)\times\left(\vec{a}-\vec{b}\right)=8\hat{i}-40\hat{j}-24\hat{k}$, then $\left \lambda\left(\vec{a}+\vec{b}\right)\times\left(\vec{a}-\vec{b}\right)^2$ is equal to					
	(1) <mark>13</mark> 6	(2) 132	(3) 140	(4) 144		
	Ans. (3)					
Reso.	Ans. (3) $(\vec{b} \cdot \vec{c}) \times ((\vec{c} \cdot \vec{b}))$	$\left(\frac{1}{2}\sqrt{5}\right) = 8i \frac{1}{2}$				
501.	$(D-a) \times ((a+b))$	/× (a×0))=01-401-24K				
	\Rightarrow (lb-a). (a×	$(a+b) - ((b-a) \cdot (a+b)$	b∭(a×b)=81−40j−24k			
	\Rightarrow 0 + (($\vec{a} - \vec{b}$).	$(\vec{a}+\vec{b}))(\vec{a}\times\vec{b})=8\hat{i}-40\hat{j}$	-24k			
	$\Rightarrow (\lambda^2 + 13) - (\lambda^2 + 13)$	$(\lambda^{2} + 5))(\vec{a} \times \vec{b}) = 8\hat{i} - 40\hat{i}$	- 24k			
	Now $\vec{a} \times \vec{b} = \lambda$	$\begin{bmatrix} J & K \\ 2 & -3 \end{bmatrix} = (4 - 3\lambda)\hat{i} - (1 - 3\lambda)\hat{i}$	$(2\lambda + 3)\hat{i} - (\lambda^2 + 2)\hat{k}$			
	1	$-\lambda$ 2				
	(1 02);	$(0, 0)$; $(0, 2)$ $\hat{\mathbf{r}}$				
	$\Rightarrow (4-3\lambda)I - ($	$(2\lambda + 3)$ J - $(2 + \lambda^{-})$ K = I -	- 5J – 3K			
	\Rightarrow 4 - 3 λ = 1 a	and $2\lambda + 3 = 5$ and $2 - \frac{1}{2}$	$\lambda^2 = -3$			
	$\Rightarrow \lambda = 1$	$\Rightarrow \vec{a} \times b = i - i$	5j – 3k			
	Th <mark>ere</mark> fore λ(ā	$(\vec{a} + \vec{b}) \times (\vec{a} - \vec{b})^2 = 2^2 \vec{a} \times \vec{b} ^2$	$ ^2 = 140$			
80.	For $\alpha, \beta \in R$, s	suppose the system of lir	near equations			
	x - y + z = 5					
	$2x + 2y + \alpha z =$ $3x - y + 4z - \beta$	8				
	has infinitely m	, nany solutions. Then $lpha$ a	nd β are the roots of			
	(1) x ² – 18x + 5	56 = 0	, (2) x ² + 14x + 24	4 = 0		
	(3 <mark>) x² –</mark> 10x + ⁻	16 = 0	(4) $x^2 + 18x + 50$	6 = 0		
NTA A Reso.	Ans. (1) Ans. (1)					
Sol.	$\Delta = \Delta \mathbf{x} = \Delta \mathbf{y} = \mathbf{z}$	∆z = 0				
	1 -1	1				
	$\Rightarrow \Delta = \begin{vmatrix} 2 & 2 \\ 3 & -1 \end{vmatrix}$	$\alpha = 0 \implies 8 + \alpha + 8 - \alpha$	$3\alpha - 8 = 0$			
	0	$\rightarrow \alpha = 1$				
	1 -1	$\rightarrow \alpha = 4$				
	$\Rightarrow \Delta_z = 2 2$	$8 = 0 \implies 3(-18) + 1$ ($(-2) + \beta (4) = 0$			
	3 -1	β				
		$\Rightarrow \beta = 14$				
	So equation is	$x^2 - 18x + 56 = 0$				

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 F facebook.com/ResonanceEdu www.youtube.com/resowatch bog.resonance.ac.in

81. Let a line L pass through the point P(2, 3, 1) and be parallel to the line x + 3y - 2z - 2 = 0 = x - y + 2z.

If the distance of L from the point (5, 3, 8) is α , then $3\alpha^2$ is equal to NTA Ans. (158) Reso. Ans. (158) a + 3b - 2c = 0Sol. given line a - b + 2c = 0 $\frac{a}{4} = \frac{b}{-4} = \frac{c}{-4}$ P(2, 3, 1) D So dr's of L can be -1, 1, 1a,b,c L: $\frac{x-2}{-1} = \frac{y-3}{1} = \frac{z-1}{1}$ Q(5, 3, 8)a.b.c Let D $(2 - \lambda, 3 + \lambda, 1 + \lambda)$ Dr's of DQ : $3 + \lambda$, $-\lambda$, $7 - \lambda$ ÷. DQ+L $\Rightarrow \lambda = \frac{4}{2}$ \Rightarrow -3 - λ - λ + 7 - λ = 0 $\Rightarrow \alpha^2 = \frac{169}{9} + \frac{16}{9} + \frac{289}{9} = \frac{474}{9} \Rightarrow 3\alpha^2 = 158$ Let P(a₁, b₁) and Q (a₂, b₂) be two distinct points on a circle with center C $(\sqrt{2}, \sqrt{3})$. Let O be the origin 82. and OC be perpendicular to both CP and CQ. If the area of the triangle OCP is $\frac{\sqrt{35}}{2}$, then $a_1^2 + a_2^2 + b_1^2 + b_2^2$ is equal to _ NTA Ans. (24) Reso. Ans.(24) $\frac{1}{2} \times \mathsf{PC} \times \sqrt{5} = \frac{\sqrt{35}}{2}; \mathsf{PC} = \sqrt{7}$ Sol. (0, 0) c 90º $a_1^2 + b_1^2 + a_2^2 + b_2^2 = OP^2 + OQ^2$ = 2 (5 + 7) = 2483. The 8th common term of the series $S_1 = 3 + 7 + 11 + 15 + 19 + \dots$ $S_2 = 1 + 6 + 11 + 16 + 21 + \dots$ is NTA Ans. (151) Reso. Ans. (151)

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 5555
Toll Free : 1800 258 5555

🔨 Resonance® | JEE MAIN-2023 | DATE : 30-01-2023 (SHIFT-2) | PAPER-1 | MATHEMATICS

```
Sol. For common series a = 11, d = LCM of (4, 5) = 20
T_8 = 11 + (8 - 1) \times 20
= 11 + 140 = 151
```

84. 50^{th} root of a number x is 12 and 50^{th} root of another number y is 18. Then the remainder obtained on dividing (x + y) by 25 is ______.

NTA Ans. (23) Reso. Ans. (23)

Sol. $(x)^{\frac{1}{50}} = 12 \text{ and } (y)^{\frac{1}{50}} = 18$ $\Rightarrow x = 12^{50} \Rightarrow y = 18^{50}$ $x + y = 12^{50} + 18^{50}$ $= (2^2 \times 3^1)^{50} + (3^2 \times 2)^{50}$ $= 6^{50}(2^{50} + 3^{50})$ $= (5+1)^{50} (4^{25} + 9^{25})$ $= (25\lambda + 1)[(5-1)^{25} + (10-1)^{25}]$ $= (25\lambda + 1) (25k - 1 + 25\mu - 1)$ $= (25\lambda + 1) (25t + 23)$ $= 25\ell + 23$

so remainder is 23, when x+y is divided by 25.

85. A bag contains six balls of different colours. Two balls are drawn in succession with replacement. The probability that both the balls are of the same colour is p. Next four balls are drawn in succession with replacement and the probability that exactly three balls are of the same colour is q. If p : q = m : n, where m and n are co-prime, then m + n is equal to

NTA Ans. (14) Reso. Ans. (14)

Sol. $p = \frac{{}^{6}C}{}$

$$p = \frac{C_1}{6 \times 6} = \frac{1}{6}$$

$$q = \frac{{}^6C_1 \times {}^5C_1 \times 4}{6 \times 6 \times 6 \times 6} = \frac{5}{54}$$

$$\therefore p : q = 9 : 5 \implies m + n = 1$$

86. If $\int \sqrt{\sec 2x - 1} \, dx = \alpha \log_e \left| \cos 2x + \beta + \sqrt{\cos 2x} \left(1 + \cos \frac{1}{\beta} x \right) \right|$ + constant, then $\beta - \alpha$ is equal to _____

NTA Ans. (1)

Reso. Ans. (1) Sol. $\int \sqrt{\sec 2x - 1} dx = \int \sqrt{\frac{1 - \cos 2x}{\cos 2x}} dx = \sqrt{2} \int \frac{\sin x}{\sqrt{2\cos^2 x - 1}}$

put
$$\cos x = t \Rightarrow -\sin x \, dx = dt$$

$$= -\sqrt{2} \int \frac{dt}{\sqrt{2t^2 - 1}} = -\ln|\sqrt{2}\cos x + \sqrt{\cos 2x}| + c = -\frac{1}{2}\ln|\cos 2x + \frac{1}{2} + \sqrt{\cos 2x} \cdot \sqrt{1 + \cos 2x}| + c$$
$$\therefore \beta = \frac{1}{2}, \alpha = -\frac{1}{2} \Longrightarrow \beta - \alpha = 1$$

NTA Ans. (240) Reso. Ans. (240)

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 555
Tol

	SONANCe [®] JEE MAIN-2023 DATE : 30-01-2023 (SHIFT-2) PAPER-1 MATHEMATICS
Sol.	$\frac{1}{2!3!} = 60$
	$\frac{3}{3!} = \frac{6!}{3!} = 120$
	$\frac{5}{3!2!} = 60$
	To <mark>tal =</mark> 60 + 120 + 60 = 240
88.	Let A = {1, 2, 3, 5, 8, 9}. Then the number of possible functions $f : A \rightarrow A$ such that $f(m.n) = f(m)$. $f(n)$
	for every m, $n \in A$ with m. $n \in A$ is equal to
NTA A Reso.	ns. (432) Ans. (432)
Sol.	f(1) = 1 $f(9) = f(3) \times f(3)$ $\Rightarrow f(3) = 1 \text{ or } 3$ Total number of such functions = 1 × 6 × 2 × 6 × 6 × 1 = 432
89. NTA A	Let A be the area of the region $\{(x,y) : y \ge x^2, y \ge (1-x)^2, y \le 2x(1-x)\}$. Then 540 A is equal to
Sol.	Ans. (25) $Y = X^2$
	$A = 2 \int_{\frac{1}{3}}^{\frac{1}{2}} (2x - 2x^2 - (1 - x)^2) dx$ $\begin{pmatrix} \frac{1}{3}, \frac{4}{9} \\ \frac{1}{2}, \frac{1}{4} \end{pmatrix} = \begin{pmatrix} \frac{1}{2}, \frac{1}{4} \\ \frac{1}{2}, \frac{1}{4} \end{pmatrix}$ $Y = (1 - x)^2$
	$= 2 \left[2x^2 - x^3 - x \right]_{1/3}^{1/2} $
	So $A = \frac{5}{108} \Rightarrow 540 A = \frac{5}{108} \times 540 = 25$ (1,0) Y = 2x(1-x)
00	If the value of real number $a > 0$ for which $x^2 = 5ax + 1 = 0$ and $x^2 = ax = 5 = 0$ have a common real reat
50.	is $\frac{3}{\sqrt{2\beta}}$ then β is equal to
NTA A	ns. (13)
Reso. Sol.	Ans. (13) Let α be the common root
	So $\alpha^2 - 5a\alpha + 1 = 0$
	$\alpha^2 - a\alpha - 5 = 0$ $\alpha^2 - \alpha - 1$
	$\Rightarrow \overline{26a} = \overline{6} = \overline{4a}$
	$\Rightarrow \alpha^{2} = \frac{13}{2} \Rightarrow \alpha = \sqrt{\frac{13}{2}} \Rightarrow a = \frac{3}{2\alpha} = \frac{3}{\sqrt{2\beta}}$
	$\Rightarrow \beta = 13$

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 F facebook.com/ResonanceEdu www.youtube.com/resowatch bog.resonance.ac.in

