

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

		JEE (MAIN) 2022 DATI	E : 31-01-2023 (S	HIFT-2) PAPER-	1 MATHEM#	TICS
65.	Let $\alpha > 0$. If $\int_{0}^{\alpha} -\sqrt{2}$	$\frac{x}{\sqrt{x+\alpha} - \sqrt{x}} dx = \frac{16 + 20\sqrt{x}}{15}$	$\frac{2}{2}$, then α is equ	al to :	Resphanc	se'
NTA. Reso.	(1) 2 (1) (1)	(2) 2√2	(3) 4		(4) √2	
Sol.	$\int_{0}^{\alpha} \frac{x(\sqrt{\alpha + x} + \sqrt{x})}{\alpha}$	$\int dx = \frac{1}{\alpha} \left[\int_{0}^{\alpha} x \sqrt{\alpha + x} dx + \right]$	$\int_{0}^{\alpha} x^{3/2} dx$			
	Put $\alpha + x = t^2 =$	\Rightarrow dx = 2tdt				
	$\frac{1}{\alpha} \int_{\sqrt{\alpha}}^{\sqrt{2\alpha}} (t^2 - \alpha) 2t^2$	2 dt + $\frac{2\alpha^{3/2}}{5}$				
	$\frac{1}{\alpha} \left[\frac{2t^5}{5} - \frac{2\alpha t^3}{3} \right]_{\sqrt{2}}^{\sqrt{2}}$	$\frac{2\alpha}{\alpha}$ + $\frac{2\alpha^{3/2}}{5}$				
	$\frac{4\alpha\sqrt{2\alpha}+10\alpha\sqrt{\alpha}}{15}$	$\frac{\alpha}{15} = \frac{16 + 20\sqrt{2}}{15} \Rightarrow \alpha = 2$				
66.	Let $a_1, a_2, a_3,$ zero then $n! - 4$	be an A.P. If $a_7 = 3$, $a_{n(n+2)}$ is equal to	the product (a₁a	4) is minimum ar	nd the sum of	its first n terms is
	(1) $\frac{381}{4}$	(2) 9	(3) $\frac{33}{4}$		(4) 24	
Reso.	(4) (4)					
Sol.	$a_7 = 3 = a + 6d$					
	\Rightarrow a = 3 - 6d					
	= (3 - 6d)(/ (3 – 3d)				
	= 18d ² - 2	7d + 9				
	$d = \frac{27}{2 \times 18}$	$=\frac{3}{4}$				
	$a = 3 - \frac{9}{2} =$	$=\frac{-3}{2}$				
	$S_{n} = \frac{n}{2} [2a + (n + 1)]$	– 1)d] =0				
	$-3 + (n - 1)\frac{3}{4} = 0$					
	⇒ n = 5					
	Now n! - $4a_{n(n+2)}$ = 120 - 4(a+34)	$a_{2} = 5! - 4a_{35}$				
	$= 120 - 4(\frac{-3}{2} +$	$+ \frac{34 \times \frac{3}{4}}{3}$				
	= 120 + 6 -102	= 24				

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 🔊 7340010333 🚹 facebook.com/ResonanceEdu 🔽 twitter.com/ResonanceEdu 🔠 www.youtube.com/resowatch 🕒 blog.resonance.ac.in

		JEE (M	AIN) 2022 DA	TE : 31-01-20	23 (SHIFT-	2) PAPER	R-1 MA	THEMATI	CS
67.	$\lim_{x\to\infty}\frac{\left(\sqrt{3x+1}+\right)}{\left(x+\right)}$	$\frac{\sqrt{3x-1}^{6}}{\sqrt{x^{2}-1}^{6}}$	$+\left(\sqrt{3x+1}-\sqrt{3}\right)$ $+\left(x-\sqrt{x^2-1}\right)$	$\left(\frac{3x-1}{6}\right)^{6}$ x ³	ignanc Ri		Resp ce'	nance Res	epansa"
	(1) is equal to	2	(2) is e	equal to 9					
NTA. Reso.	(3) does not e (4) (4)	xist	(4) is e	equ <mark>al to</mark> 27					
Sol.	$\operatorname{Limx^{3}} \frac{(\sqrt{3x} + 1)^{3}}{(\sqrt{3x} + 1)^{3}}$	$1 + \sqrt{3x} - \sqrt{2}$	$(\sqrt{3x+1})^6 + (\sqrt{3x+1})^6$	$-\sqrt{3x-1}^6$					
	$(a + b)^{6} + (a - b)^{6} = 2 ({}^{6}C_{0} a^{6} + {}^{6}C_{0} a$	$(x + \sqrt{x^2} - \frac{1}{2})^6 = 2 (T_1)^6 = 2 (T_2)^6 + \frac{1}{2} (T_2)^6 + \frac{1}{2} (T_1)^6 + \frac{1}{2} (T_1)$	1)° + (x – √x² · + T₃ + T₅ + T⁊) c₄ a² b⁴ + 6C ₆ k	– 1) ⁶ 0 ⁶)					
	$\lim_{x \to \infty} \frac{(2(3x+1)^2)}{(2(3x+1)^2)}$	$\frac{3^{3}+30(3x+2x^{6}+30)}{2x^{6}+30}$	$(-1)^{2}(3x-1)+30x^{4}(x^{2}-1)+30x^{2}(2x$	$\frac{1}{x^2(x^2-1)^2}$	$(x^2 - 1)^2 + 2(3x)^3$	$(-1)^3$)x ³	1/203		
	$\lim_{x\to\infty}\frac{x}{x} = \frac{1}{2} + \frac{1}{2}$	x ⁶ [2+	3+1/x $(3-1)30(1-1/x^2+3)$	$\frac{7x}{0(1-1/x^2)^2}$	(3 - 1/2) + 2(1 - 1/x ²	$(x)^{2} + 2(3 - x)^{2})^{3}$	· 1/ X)		
	$=2(3)^3+30$	$(3)^3 + 30(3)^3$ (30+30+2)	$\frac{3^{2}+2(3)^{3}}{2}=(3)^{3}$	= 27					
68.	Let H be the rectum is :	hyperbola	, whose foci a	are $(1\pm\sqrt{2},0)$	and ecce	ntricity is	$\sqrt{2}$. The	n the len	gth of its latus
	(1) 3		(2) $\frac{5}{2}$	(3) 2		(4)	$\frac{3}{2}$	
NTA. Reso. Sol.	(3) (3) $S(1 + \sqrt{2}, 0) S$	S′(1 – √2 , ()				. ,	2	
	SS' = 2ae = 2	$\sqrt{2} \Rightarrow ae$	$=\sqrt{2} \Rightarrow a\sqrt{2}$	$\overline{2} = \sqrt{2} \Rightarrow a$	= 1				
	$L. R. = \frac{2b^2}{a} =$	$\frac{2a^2(e^2 - a)}{a}$	$\frac{1}{2} = 2a(e^2 - 1)$	= 2					
69.	Th <mark>e nu</mark> mber o	f values of	$r \in \{p, q, \sim p, \gamma\}$	~q} for which	$((p \land q) \Rightarrow$	$(r \lor q) \land ((p$	$(A) \ge C$) is a tau	tology, is :
NTA. Reso. Sol	$(1) I (2) (2) (7 \vee 6)$	ı) ∧ ((n ∧ r	$(2) \ge a$	(3) 4		(4) 3		
R	we know $p \rightarrow$ Hence $(p \land r)$	$q \equiv \sim p \lor q$ $\rightarrow q \equiv \sim (p$	∧ r) ∨ q						
	$\Rightarrow \frac{p \land q \rightarrow (r)}{\Rightarrow \sim (p \land q) \lor (q)}$ $\Rightarrow (p \land q) \lor (q)$ $\Rightarrow (-p \lor -q) \lor$	$ = (\sim p) = (\sim p) \land ((\sim p) \land ((\sim q) (((\sim q) ((((\sim q) (((((\sim q) (((((((((($	$ \bigvee \sim \mathbf{r} \bigvee \mathbf{q} \\ \lor \sim \mathbf{r} \bigvee \mathbf{q})) \\ \neg \mathbf{p} \lor \sim \mathbf{r}) \lor \mathbf{q})) \\ (\sim \mathbf{p} \lor \sim \mathbf{r}) \lor \mathbf{q})) \\ (\sim \mathbf{p} \lor \sim \mathbf{r}) \lor \mathbf{q})) $						
	$\Rightarrow (^{\circ}p \lor (^{\circ}q \lor))$ $\Rightarrow (^{\circ}p \lor t) \land (())$ $\Rightarrow ^{\circ}p \lor ^{\circ}r \lor q$ When r = ~p ()	$(\sim p \lor \sim r) \land ((\sim p \lor \sim r) \lor q)$	$\begin{array}{c} (\mathbf{p} \lor \mathbf{r}) \lor \mathbf{q} \\ (\mathbf{q}) \\ \Rightarrow \mathbf{r} \lor \mathbf{q} \lor \mathbf{r} \lor \mathbf{q} \end{array}$	= t					

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 bwitter.com/ResonanceEdu

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 (7340010333 f facebook.com/ResonanceEdu) twitter.com/ResonanceEdu) www.youtube.com/resowatch) blog.resonance.ac.in

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No. :** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🗾 twitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 f facebook.com/ResonanceEdu vww.youtube.com/resowatch blog.resonance.ac.in

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 **| FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 555
Tol

