DR.HOMI BHABHA BALVAIDNYANIK COMPETITION

HINTS \& SOLUTIONS

1. (D)
2. (B)
3. (C)
4. (C)
5. (D)
6. (A) Average temperature at night in the month of march in pune is about $15^{\circ} \mathrm{C}$ so correct option is (A).
7. (C)
8. (B)
9. (A) $T=2 \pi \sqrt{\frac{\ell}{g}}$ that means $T \propto \sqrt{\ell}$

$$
\text { for } T_{p} \propto \sqrt{25} \quad \ldots \text { (i) }
$$

$\mathrm{T}_{\mathrm{q}} \propto \sqrt{20} \quad \ldots$ (ii)
$\frac{\mathrm{T}_{\mathrm{P}}}{\mathrm{T}_{\mathrm{Q}}}=\sqrt{\frac{25}{20}}$
$\frac{T_{P}}{T_{Q}}>1$

So $T_{P}>T_{Q}$
010. (D) area under velocity time graph represent distance travelled

So distance $=60 \times(5-2)$
$=60 \times 3=180 \mathrm{~km}$
011. (A) Electric energy consume perday $=\frac{4 \times 100}{1000}=0.4 \mathrm{kwh}$.

So total electric energy consume in February $2010=0.4 \times 29=11.6 \mathrm{kwh}$.
012. (D) According to image formation rules of mirror 'D' option is wrong.
013. (A)
014. (B) We know $1 \mathrm{KWh}=3.6 \times 10^{6} \mathrm{~J}$

So $\quad 0.5 \mathrm{KWh}=1 / 2 \times 3.6 \times 10^{6}=1.8 \times 10^{6} \mathrm{~J}$

015 . (A)
016. (B)
017. Bonus According to Class-IX NCERT
018. (B)

From III equation of motion

$$
\begin{aligned}
& V^{2}=u^{2}+2 g h \\
& V^{2}=0+2 \times g \times 1 \\
& V=\sqrt{2 g}
\end{aligned}
$$

19. (A)
20. (C) We know

$$
\begin{aligned}
& E_{K}=1 / 2 m v^{2} \\
& E_{k}=1 / 2 m v \cdot v \\
& =1 / 2 p v \quad(p=m v)
\end{aligned}
$$

21.

(A)

$P \rightarrow \ln$ all 3 mirrors virtual image can be formed but real image can not be formed in convex mirror.
$\mathrm{Q} \rightarrow \mathrm{In}$ both plane and convex mirror erect image can be formed.
$R \rightarrow I n$ both plane and concave mirror similar sized image can be formed.
$S \rightarrow \ln$ both concave and convex mirror diminished image can be formed.
022. (B) $X \rightarrow$ momentum $=$ mass \times velocity

Unit $=\mathrm{kg} \mathrm{ms}^{-1}$
It is vector quantity
$\mathrm{Y} \rightarrow$ Work $=\mathrm{F} \times \mathrm{d}$ unit $=\mathrm{N}-\mathrm{m}$
Scalar quantity
$Z \rightarrow$ Pressure $=\frac{F}{A}$
Unit Nm^{-2} scalar
$W \rightarrow$ Power $=\frac{\text { work }}{\text { time }}$

$$
\text { Unit }=\frac{N-M}{\text { Sec }} \text { Scalar }
$$

23. (D) We know $R=\frac{\rho \ell}{A}$

In $\quad \mathrm{A}$ option $\mathrm{R}=\frac{\mathrm{P} \ell}{\mathrm{A}}$

In $\quad B$ option $R_{1}=\frac{\rho \times 2 \ell}{A / 2}=\frac{4 \rho \ell}{A}=4 R$

In $\quad C$ option $R_{2}=\frac{\rho \times \ell / 2}{2 A}=\frac{\rho \ell}{4 A}=R / 4$
In D option $R_{3}=\frac{\rho \times 2 \ell}{A / 3}=\frac{6 \ell \rho}{A}=6 R$
024. (C) In P virtual image is diminished so mirror should be convex

In Q virtual image is enlarged so mirror should be concave
025. (A) $\mathrm{W}_{\mathrm{e}}=\mathrm{Mg}_{\mathrm{e}}=29.4 \mathrm{~N}$
$M=\frac{29.4}{9.8}=3$

Now from conservation of energy at moon
Change in K.E. $=$ Change in P.E
$\mathrm{K}_{\text {at surface }}-\mathrm{K}_{\text {at 20M height }}=P E_{\text {at } 20 \mathrm{M}}-P E_{\text {at surface }}$
$K E-0=3 \times \frac{g}{6} \times 20$
$=3 \times \frac{9.8}{6} \times 20$
$=97.8 \approx 98 \mathrm{~J}$
026.
(C) $V=\frac{2 d}{t}$
$\mathrm{T}=\frac{2 \mathrm{~d}}{\mathrm{~V}}=\frac{2 \times 3100}{1550}=4 \mathrm{sec}$.
027. (B) For one complete cycle displacement $=0$

So Average velocity is ' 0 '.
028. (B)

In parallel combination
-Potential difference each resistor is same
-If minimize resistor of circuit
-Resultant of resistance will be less than lowest resistance connected in parallel
029. (A)
$M_{x}: M_{y}=1: 2$
$P_{x}=P_{y}$ (given)
$M_{x} \times V_{x}=M_{y} \times V_{y}$
$\frac{\mathrm{V}_{\mathrm{x}}}{\mathrm{V}_{\mathrm{y}}}=\frac{\mathrm{M}_{\mathrm{y}}}{\mathrm{M}_{\mathrm{x}}}=\frac{2}{1}$
030. (C)

Given $u=7 \mathrm{~m} / \mathrm{s}$
$\mathrm{s}=92 \mathrm{~m}$.
$\mathrm{t}=4 \mathrm{sec}$.
$a=$?
$s=u t+\frac{1}{2} a t^{2}$
$92=7 \times 4+1 / 2 a \times 4^{2}$
$92-28=8 a \Rightarrow a=\frac{64}{8}=8 \mathrm{~m} / \mathrm{sec}^{2}$
031. When we move from left to right in a period the atomic size decreases.
\therefore Atomic size of $\mathrm{Na}>$ Atomic size Al
$\mathrm{Na}>\mathrm{Al}$
Ans. (A)
032. Graphite and diamond both are represented by carbon (C) while formula of marble is CaCO_{3} and wool is protein (Organic compound).

Ans. (C)
033.

Outer most zone
Ans. (C)
034. Chemical equation are balance to follow the law of conservation of mass.
\therefore Total number of atoms of each element on reactant side $=$ total numbers of atoms of each element on product side.
$2 \mathrm{KNO}_{3} \rightarrow 2 \mathrm{KNO}_{2}+\mathrm{O}_{2}$
Ans. (D)
035. Liquefied Petroleum Gas (LPG) is a colourless, odourless and inflammable gas. A strong smelling substance called ethyl mercaptan $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{SH}\right)$ is added to LPG to detect the leakage of gas from the cylinder.

Ethyl mercaptane $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{SH}\right)$
Ans. (C)
036. (i) Salt of strong acid and strong base is neutral.
(ii) Salt of strong acid and weak base is acidic.
(iii) Salt of weak acid and strong base is basic.

Only statement (i) is correct.
Ans. (B)
037. Malleability is not a single reason for α particles experiment.

Ans. (D)
038. $\mathrm{X}+$ dil $\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow$ Salt $+\mathrm{H}_{2}$
$\mathrm{X}+\mathrm{NaOH} \rightarrow \mathrm{Salt}+\mathrm{H}_{2}$
X is an amphoteric metals which shows the properties of acids as well as bases.
Ans. (A)
039. Number of proton in $X=8$

Number of neutron in $\mathrm{X}=8$
Atomic mass $=$ Number of neutron + Number of proton $=8+8$
Atomic mass $=16$ i.e. ${ }_{8}^{16} \mathrm{X}$

Number of neutron in $Y=10$
Atomic mass $=10+8=18$
i.e. ${ }_{8}^{18} Y$
$\therefore \mathrm{X}$ and Y are isotopes because same atomic number of elements i.e. X and Y have different physical properties but identical chemical properties.

Ans. (C)
040. Because blood ($\mathrm{pH}=7.35$ to 7.45) is basic in nature while others are acidic nature.
black coffee ($\mathrm{pH}=5$)
Urine ($\mathrm{pH}=6.5$ to 6.9)
Vinegar ($\mathrm{pH}=3$ to 4)
Ans. (C)
041.

at	at
Cathode	
Anode	

i.e the volume of gas evolved at the anode is half the volume of gas evolved at the cathode.

Ans. (C)
042. $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ (Borax)

Ans. (D)
043. XCl_{2} Valency of X is +2

Metal sulphate
$\mathrm{X}^{+2} \quad \mathrm{SO}_{4}^{2-} \Rightarrow \mathrm{XSO}_{4}$
22

Metal Hydroxide

$$
\begin{array}{cc}
\mathrm{X}^{+2} & \mathrm{OH}^{-} \\
2 & 1
\end{array} \Rightarrow \mathrm{X}(\mathrm{OH})_{2}
$$

Ans. (C)
044. The neon sign bulbs and fluorescent tubes glow because of high applied voltage

Ans. (C)
045. Because LPG (liquefied petroleum gas) contain butane $\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)$.

Ans. (C)
046. In chemical reaction electrons are transferred from one atom to another and shared between two atoms. Both statement are true.
$\mathrm{Mg}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2}$ (Transfer of electrons)
$\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$ (Sharing of electrons)
Ans. (C)
047. The composition of portland cement is CaO (60 to 67%), SiO_{2} (17 to 25%), $\mathrm{Al}_{2} \mathrm{O}_{3}$ (3 to 8%) and $\mathrm{Fe}_{2} \mathrm{O}_{3}(0.5$ to 6%)

Ans. (B)
048. Decomposition of vegetable matter into compost is an example of exothermic reaction, aerobic and anerobic decomposition reaction.

Ans. (B)
049. $\quad \mathrm{CuCl}_{2}(\mathrm{aq}) \xrightarrow{\text { electrolysis }} \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq})$
(P) anode (+)
(Q) cathode(-)
oxidation reduction
$2 \mathrm{Cl}^{-} \rightarrow \mathrm{Cl}_{2}+2 \mathrm{e}^{-}$
$\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}$
P is a $\mathrm{Cl}_{2} \& Q$ is a Cu
Ans (B)
050. Low melting point and high boiling point are not the properties of covalent compounds.

Ans.(C)

51. Acetic acid $\mathrm{CH}_{3} \mathrm{COOH}$ is a weak acid ammonium hydroxide is a weak base because both of them undergo partial ionisation in aqueous solution

Ans. (A)
052.

Removal of electron \Rightarrow oxidation

Addition of electron \Rightarrow Reduction
$\therefore \mathrm{Mg}$ is getting oxidised and act as an reducing agent while CuO is getting reduced and act as an oxidising agent.
\therefore Its is a redox reaction because of both oxidation and reduction reaction takes place.
(i), (ii) (iv) are correct

Ans. (A)
053. Number of moles $=\frac{\text { Givenmass }}{\text { Molarmass }}$
\therefore Number of moles of $\mathrm{CO}_{2}=\frac{77 \mathrm{~g}}{44 \mathrm{~g} / \mathrm{mol}}=\frac{7}{4} \mathrm{~mol}$
Number of molecule in $1 \mathrm{~mole}=\mathrm{N}_{\mathrm{A}}=6.023 \times 10^{23}$ molecule
\therefore Number of molecules in $\frac{7}{4}$ mole of $\mathrm{CO}_{2}=\frac{7}{4} \times 6.023 \times 10^{23}$
$=10.54 \times 10^{23}$
Ans. (B)
054. Dalton use the symbol of elements in the form of sketches.

Dalton's symbol for hydrogen element is
Ans. (B)
055. All sulphides are insoluble lead sulphide is particularly insoluble
$\mathrm{Pb}^{+}+\mathrm{S}^{2-} \rightarrow \mathrm{PbS}(\mathrm{s}) \downarrow$
This is the net ionic equation. The stoichiometric equation would be :
$\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \mathrm{~Pb}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{aq}) \rightarrow \mathrm{PbS}(\mathrm{s}) \downarrow+2 \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})$
A black precipitate of lead sulphide would precipitate with clarity.
056. According to reactivity series of metal $\mathrm{Li}>\mathrm{K}>\mathrm{Na}>\mathrm{Ca}$ and so on.

So K (potassium) is the second most reactive metal. It reacts violently with cold water thereby producing large amount of energy due to which the hydrogen gas produced in the reaction catches fire.
$2 \mathrm{~K}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\ell) \longrightarrow 2 \mathrm{KOH}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})+$ Energy
(Potassium) (Cold water)
(Potassium hydroxide) (Hydrogen gas)
Ans. (B)
057. Mass proportion of an element in a compound $=\frac{\text { Molar Mass of an element }}{\text { Total molar mass of compound }} \times 100$

Molar mass of $\mathrm{CuO}=63.546+16=79.546 u$
Weight proportion of $\mathrm{Cu}=\frac{63.546}{79.546} \times 100$
Weight proportion of $O=\frac{16}{79.546} \times 100$
Ratio of weight proportion of $\mathrm{Cu} \& \mathrm{O}$

63.546 : 16
3.968 : 1

Ans. (A)
058. I-131, Cs -137, Sr-90, Pu-241

Ans. (B)
059. All positive radicals are basic radicals except hydrogen ion $\left(\mathrm{H}^{+}\right)$

So option (A) is correct. Which contain all positive radical.
Ans. (A)
060. Water contains H^{+}\& OH^{-}ions is equal ratio, so on adding acid, H^{+}ions concentration increases while OH^{-}ion concentration decreases.

Ans. (B)

