

NMTC JUNIOR LEVEL – IX & X GRADES

Saturday, the 07 October 2023

M. M. : 30

INSTRUCTIONS

Time : 2 Hrs.

- 1. Fill in the Response sheet with your Name, Class and the Institution through which you appear, in the specified places.
- 2. Diagrams are only Visual guides; they are not drawn to scale.
- 3. You may use separate sheets to do rough work.
- 4. Use of Electronic gadgets such as Calculator, Mobile Phone or Computer is not permitted.
- 5. Duration of Test: 10 am to 12 Noon (Two hours)
- 6. For each correct response you get 1 mark ; for each incorrect response, you lose ½ mark.

SECTION-A

- 1.If a, b, c are real numbers such that the polynomial $x^3 + 6x^2 + ax + b$ is the cube of (x + c) then
a) (a + b + c) is divisible by 13
c) a > b and b < cb) a + b = 11c
d) (a + b + c) is divisible by 11.
- 2. In the adjoining figure, AB = 9 cm, AC = 7 cm, BC = 8 cm, AD is the median and $\angle C = 40^{\circ}$. Then measure of $\angle ADB$ (in degrees) is

b c b) 140 $y^4 + ky^2 + 1$

3. If $x^2 + 6x + 1 = 0$ and $\frac{x^4 + kx^2 + 1}{3x^3 + kx^2 + 3x} = 2$ then the value of k is a) 68 b) 72 c) 65

b) 6√3

If
$$x = \sqrt[3]{49} + \sqrt[3]{42} + \sqrt[3]{36}$$
, then the value of $x - \frac{1}{x^2}$ is
a) $2\sqrt[3]{42}$ b) $3\sqrt[3]{42}$ c) $\sqrt[3]{42}$ d) $4\sqrt[3]{42}$

5. In the adjoining figure, AB = BC = CD. P is the midpoint of AQ. If CR = 4, QC = 12, then PQ is equal to

c) 45

d) 120

d) 70

d) 2√3

4.

	Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005		PAGE
	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	NMTC_JUNIOR LEVEL	1
	Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	CLASS-IX & X -07 OCTOBER 2023	

c) 8√3

6. In the adjoining figure, A is the midpoint of the arc BAC. Given that AB = 15 and AD = 10. Then the value of AE is

- 7. The number of real numbers x which satisfy the equation $\frac{6^{-1}+27}{12^{x}+18^{x}} = \frac{7}{6}$ is a) 1 b) 2 c) 0 d) 4
- 8. a, b are real numbers such that $2a^2 + 5b^2 = 20$. Then the maximum value of a^4b^6 is a) 256 b) 1024 c) 1262 d) 16
- 9. The number of ordered pairs (x, y) of integers such that $x y^2 = 4$ and $x^2 + y^4 = 26$ is a) 4 b) 3 c) 2 d) 1
- **10.** In the adjoining figure, three equal squares are placed. The squares are unit squares. The area of the shaded region (in cm²) is

11. In the adjoining figure, AB is a diameter of the circle. Given $\angle BAC = 20^\circ$, $\angle AEB = 56^\circ$. Then the measure (in degrees) of $\angle BCD$ is

b) 10 c) 14 d) 16

12. The number of ordered pairs (m, n) of integers such that $1 \le m$, $n \le 100$ and $m^n n^m$ leaves a remainder 1 when divided by 4 is a) 2250 b) 1000 c) 1125 d) 1250

- **13.** The number of ordered pairs of positive integers (x, y) satisfying the equation $x^2 + 4y = 3x + 16$ is a) 1 b) 2 c) 3 d) 4
- **14.** The algebraic expression $(a + b + ab + 2)^2 + (a ab + 2 b)^2 2b^2(1 + a^2)$ reduces to a) $4(a + 2)^2$ b) $2(a + 2)^2 + 4ab^2$ c) $(a - 2)^2$ d) $2(a - 2)^2 + 4ab^2$
- **15.** The sum of (1×4) + (2×7) + (3×10) + (4×13) + ... 49 terms is equal to a) 122500 b) 116800 c) 11800 d) 117600

八	F
---	---

SECTION-B

- 16. If the equations $x^3 + ax + 1 = 0$ and $x^4 ax^2 + 1 = 0$ have a common root, then the value of a^2 is
- 17. If a, b, c, d are positive reals such that abcd = 1 then the maximum value of $a^2 + b^2 + c^2 + d^2 + ab + ac + ad + bc + bd + cd$ is ______.
- **18.** The sum of all natural numbers 'n' for which n(n + 1) is a perfect square is ______.
- **19.** P is a point inside the square ABCD such that PA = PB = Distance of P from CD.

The ratio of the areas of the triangle PAB to the area of the square ABCD is $\frac{m}{n}$ where m, n are relatively prime integers. Then the value of m + n = _____.

20. The sum of roots of the simultaneous equations $\sqrt[y]{4^x} = 32\sqrt[x]{8^y}$, $\sqrt[y]{3^x} = 3\sqrt[y]{9^{1-y}}$ is _____.

21. If $2\sqrt{3} + \sqrt{5} - \sqrt{13} + \sqrt{48} = \sqrt{a} + \sqrt{b}$ where a, b are natural numbers, then the value of a + b is

22. In the adjoining figure, $\angle ACD = 38^\circ$. Then the measure (in degrees) of angle x is _____

- 23. If $\frac{a}{b+c} + \frac{c}{a+b} = \frac{2b}{c+a}$ (where a + b, b + c, c + a, a + b + c are all not zero), then the numerical value of $\frac{a^2 + c^2}{b^2}$ is _____.
- **24.** The geometric and arithmetic means of two positive numbers are respectively 8 and 17. The larger among the two numbers is ______.
- 25. The number of two-digit numbers in which the tens and the units digit are different and odd is
- **26.** The value of $(5\sqrt[3]{4} 3\sqrt[3]{\frac{1}{2}})(12\sqrt[3]{2} + \sqrt[3]{16} 2\sqrt[3]{2})$ is equal to ______.
- 27. If $\frac{xy}{x+y} = 1$, $\frac{yz}{y+z} = 2$, $\frac{zx}{z+x} = 3$, then the numerical value of 15x 7y z is _____.

- **28.** The sum of all natural numbers which satisfy the simultaneous inequations x + 3 < 4 + 2x and 5x 3 < 4x 1 is ______.
- 29. In an increasing geometric progression (with 1st term a and nth term t_n), the difference between the fourth and the first term is 52 and the sum of the first three terms is 26. Then the numerical value of $\frac{t_{2024}}{t_{2023}} + \frac{a^{2024}}{a^{2023}}$ is _____
- **30.** The base of a triangle is 4 units less than the altitude drawn to it. The area of the triangle is 96 (unit²). The ratio of the base to height is $\frac{p}{q}$ where p, q are relatively prime to each other. Then the value of

p + q is _____.

