

ASSOCIATION OF MATHEMATICS TEACHERS OF INDIA Screening Test – Bhaskara Contest

NMTC JUNIOR LEVEL - IX & X GRADES

Saturday, the 31 August 2024

INSTRUCTIONS

Time: 2 Hrs. M. M.: 30

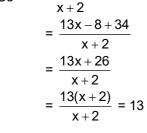
- 1. Fill in the Response sheet with your Name, Class and the Institution through which you appear, in the specified places.
- 2. Diagrams are only Visual guides; they are not drawn to scale.
- 3. You may use separate sheets to do rough work.
- Use of Electronic gadgets such as Calculator, Mobile Phone or Computer is not permitted. 4.
- 5. Duration of Test: 10 am to 12 Noon (Two hours)
- 6. For each correct response you get 1 mark; for each incorrect response, you lose ½ mark.

SECTION-A

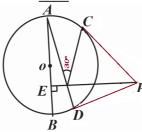
1. If
$$x^2 + x = 1$$
, then the value of $\frac{x^7 + 34}{x + 2}$ is equal to
a) 7 b) 1 c) 13 d) 17

Ans. (c)

Ans. (c)
Sol.
$$x^2 + x = 1$$
 $x^2 = 1 - x$...(1)
squaring both sides
 $x^4 = x^2 + 1 - 2x$
 $= 1 - x + 1 - 2x = 2 - 3x$...(2)
From (1) and (2)
 $x^4 \times x^2 = (2 - 3x)(1 - x)$
 $x^6 = 2 - 5x + 3x^2$
 $x^6 = 2 - 5x + 3(1 - x)$
 $x^6 = 5 - 8x$
 $x^7 = 5x - 8x^2$
 $= 5x - 8(1 - x)$
 $= 13x - 8$
So
$$\frac{x^7 + 34}{x + 2}$$
 $= \frac{13x - 8 + 34}{x + 2}$
 $= \frac{13x + 26}{x + 26}$



- 2. The angle between the hour hand and the minute hand of a clock at the time 9:38 pm is a) 60°
- Ans. (b)
- $Q = \left| \frac{11}{2} M 30 H \right|$ Sol. $= \left| \frac{11}{2} \times 38 - 30 \times 9 \right|$ = |209 – 270| = 61
- In the adjoining figure, AOB is a diameter of the circle with centre O. PC and PD are two tangents. 3. Then the measure of ∠EPD is



- a) 15°
- b) 10°
- c) 12°
- d) 20°

- Ans. (b)
- The value of x satisfying $4^x 3^{x-1/2} = 3^{x+1/2} 2^{2x-1}$ is of the form $\frac{a}{b}$ where gcd(a, b) = 1. Then the value 4.
 - of $\left(\frac{a+b}{a-b}\right)$ is equal to

- b) -5
- c) 4

d) 5

- Ans.
- $4^{x} 3^{x-\frac{1}{2}} = 3^{x+\frac{1}{2}} 2^{2x-1}$ Sol.

$$2^{2x} - \frac{3^x}{\sqrt{3}} = 3^x \times \sqrt{3} - \frac{2^{2x}}{2}$$

$$2^{2x} \times \frac{3}{2} = 3^x \left(\sqrt{3} + \frac{1}{\sqrt{3}} \right)$$

$$2^{2x} \times \frac{3}{2} = 3^x \times \frac{4}{\sqrt{3}}$$

$$2^{2x} \times 3^{3/2} = 3^x \times 2^3$$

On comparing

$$x = \frac{3}{2} = \frac{a}{b}$$

$$\frac{a+b}{a-b} = \frac{3+2}{3-2} = 3$$

- The number of polynomials of the form $(x^3 + ax^2 + bx + c)$ which are divisible by $x^2 + 1$ where a, b, c \in 5. $\{1,2,3,4,...,12\}$ is
 - a) 12^3
- b) 12²
- c) 12
- d) 1

6. The number of real solutions of the equation
$$\frac{(x+2)(x+3)(x+4)(x+5)}{(x-2)(x-3)(x-4)(x-5)} = 1$$
 is

Ans. (a)

Sol.
$$\frac{(x+2)(x+3)(x+4)(x+5)}{(x-2)(x-3)(x-4)(x-5)} = 1$$

$$\frac{(x^2+7x+10)(x^2+7x+12)}{(x^2-7x+10)(x^2-7x+12)}=1$$

$$\frac{x^2 + 7x + 10}{x^2 - 7x + 10} = \frac{x^2 - 7x + 12}{x^2 + 7x + 12}$$

componendo & divide

$$\frac{2(x^2+10)}{14x} = \frac{2(x^2+12)}{-14x}$$

$$x(x^2 + 10) = -x(x^2 + 12)$$

$$\frac{14x}{14x} = \frac{7}{-14x}$$

$$x(x^2 + 10) = -x(x^2 + 12)$$

$$x[x^2 + 10 + x^2 + 12] = 0$$

$$x(2x^2 + 22) = 0$$

$$x(x^2 + 11) = 0$$

$$\Rightarrow$$
 x(x² + 11) = 0

$$\Rightarrow$$
 x = 0 or $x^2 = -11$

∠CDA is

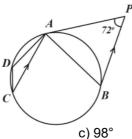
$$x^2 = -1$$

(Not real solution)

Only 1 solution

7. If
$$a = \sqrt{23a + b}$$
, $b = \sqrt{23b + a}$, $a \ne b$ then the value of $\sqrt{a^2 + b^2 + 48}$ is a) 30 b) 25 c) 24 d) 23

Ans.



a) 118°

d) 88°

Ans. (b)

9. If
$$\sqrt{\frac{19^8 + 19^x}{19^x + 1}}$$
 = 361, then x satisfies the equation

b)
$$2x^2 - 9x - 5 = 0$$

a)
$$4x^2-7x-15=0$$
 b) $2x^2-9x-5=0$ c) $3x^2+11x-4=0$ d) $3x^2-11x-4=0$

d)
$$3x^2 - 11x - 4 = 0$$

Ans.

10. If
$$S = 4^2 + 2.5^2 + 3.6^2 + \dots + 25.28^2$$
, then the value of $\frac{S}{325}$ is equal to

a) 436

b) 326

c) 346

d) 324

Ans. (a)

11. A sequence
$$\{a_n\}$$
, $n \ge 1$ with $a_1 = \frac{1}{2}$ and $a_n = \frac{a_{n-1}}{2na_{n-1}+1}$ is given. Then the value of $a_1 + a_2 + a_3 + ...$

Toll Free: 1800 258 5555 | CIN: U80302RJ2007PLC024029

... + a₂₀₂₄ is equal to

2025 a) $\frac{20}{2024}$

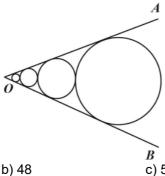
c) 2025

Ans. (b)

- If a and b ($\alpha > \beta$) satisfy the equation $x^{1 + \log_{10} x} = 10x$ then the value of $\alpha + \frac{1}{\beta}$ is equal to 12.
 - a) 100
- b) 20

(b) Ans.

In the adjoining figure, four successively touching circles are placed in the interior of ∠AOB. The first 13. (smallest) has a radius 7 cm. The third circle has a radius 28 cm. Then the radius of the largest circle (in cm) is



- a) 42
- c) 52
- d) 56

Ans. (d)

The coefficient of x in the equation $x^2 + px + q = 0$ was taken as 17, in place of 13 and its roots were 14. found to be -2 and -15. If α , β are the roots of the original equation, then the equation whose roots

are
$$\frac{\alpha}{\beta}$$
 and $\frac{\beta}{\alpha}$ is

a) $30x^2 + 109x + 30 = 0$

b) $20x^2 - 107x + 20 = 0$

c) $30x^2 - 109x + 30 = 0$

d) $20x^2 + 107x + 20 = 0$

Ans.

- If $(1 + xy + x + y)^2 (1 xy + x y)^2 = ky(1 + x)^2$, then k equals to a) 1 b) 2 c) 3 15.
 - d) 4

Ans. (d)

Section- B (Fill in the Blanks)

When $x^{10} + 1$ is divided by $x^2 + 1$, we get 16.

$$ax^{8} + bx^{7} + cx^{6} + dx^{5} + ex^{4} + fx^{3} + gx^{2} + hx + k$$

as quotient. Then the value of

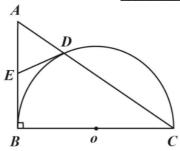
$$a^{2024} + b^{2024} + c^{2024} + d^{2024} + e^{2024} + f^{2024} + g^{2024} + h^{2024} + k^{2024}$$
 is ______

Ans.

The equation $x^4 - 4x^3 + ax^2 + bx + 1 = 0$ has 4 positive roots. Then a + b =_____ 17.

Ans.

18. In the adjoining figure, BOC is the diameter of the semicircle with centre O. DE is the tangent at D. If AB = k(AE), then the numerical value of k is



Ans. (02) 19. In triangle ABC, tanA: tanB: tanC = 1:2:3.

If
$$\frac{AC}{AB} = \frac{p\sqrt{q}}{r}$$
, where q is Square free and gcd(p, r) = 1 then the value of p + q + r is _____.

Ans.

20. Simon was given a number and asked to divide it by 120. He divided the number by 5, 6 and 7 and got 3, 2 and 2 as remainders respectively. The remainder when the number is divided by 120 is

(43)* Ans.

21. The greatest number that leaves the same remainder when it divides 30, 53 and 99 is

Ans. (23)

22. If $f(x + 1) = x^2 - 3x + 2$ and if the roots of the equation f(x) = 0 are α and β , then the value of $\alpha^2 + \beta^2$ is

Ans. (13)

 $f(x + 1) = x^2 - 3x + 2$ Sol.

roots of
$$f(x) = 0 < \frac{\alpha}{\beta}$$

let
$$y = x + 1$$
 then $x = y - 1$
 $f(y) = (y - 1)^2 - 3(y - 1) + 2$

$$= y^2 + 1 - 2y - 3y + 3 + 2$$

$$f(y) = y^2 - 5y + 6$$

$$f(x) = x^2 - 5y + 6$$

$$f(x) = x^2 - 5y + 6$$

$$f(x) = 0$$

$$x^2 - 5x + 6 = 0$$

$$(x-2)(x-3)=0$$

$$x = 2, 3$$

$$a = 2$$

$$b = 3$$

$$\alpha^2 + \beta^2 = 2^2 + 3^2 = 4 + 9 = 13$$

The maximum volume of a cylinder is cut from a cube of edge α . The volume of the remaining solid is 23.

ka³, where k =
$$\frac{p}{q}$$
, gcd(p, q) = 1. Taking $\pi = \frac{22}{7}$, the value of p + q is _____.

Ans. (17)

If the irreducible quadratic factor of $5x^4 + 9x^3 - 2x^2 - 4x - 8$ is $ax^2 + bx + c$, then the value of 24.

 $a^2 + b^2 - c^2$ is .

Ans. (25)

 $p(x) = 5x^4 + 9x^3 - 2x^2 - 4x - 8$ Sol.

$$P(1) = 0$$

so
$$p(x) = (x - 1)(5x^2 + 14x^2 + 12x + 8)$$

$$P(-2) = 0$$

$$P(x) = (x - 1)(x + 2) (5x^2 + 4x + 4)$$

$$\Rightarrow$$
 a = 5, b = 4, c = 4

so
$$a^2 + b^2 - c^2 = 5^2 + 4^2 - 4^2 = 25$$

In the adjoining figure, POQ is the diameter of the semicircle with centre O. 25. OABC is a square whose area is 36 cm². If QD = x cm, the value of $x\sqrt{3}$ is _____ Ans. (24)

$$P = A \qquad O \qquad Q$$

26. If
$$a = \sqrt{2024}$$
, $b = \sqrt{2025}$, the value of $2(ab)^{1/2}(a + b)^{-1} \left\{ 1 + \frac{1}{4} \left(\sqrt{\frac{a}{b}} - \sqrt{\frac{b}{a}} \right)^2 \right\}^{1/2}$ is _____.

(01)Ans.

Sol.
$$2(ab)^{1/2} (a + b)^{-1} \left\{ 1 + \frac{1}{4} \left(\frac{\sqrt{a}}{b} - \sqrt{\frac{b}{a}}^2 \right) \right\}^{1/2}$$

$$\frac{2\sqrt{ab}}{(a+b)} \left\{ 1 + \frac{1}{4} \frac{(a-b)^2}{(\sqrt{ab})^2} \right\}^{1/2}$$

$$\frac{2\sqrt{ab}}{a+b} \left\{ 1 + \frac{(a-b)^2}{4ab} \right\}^{1/2}$$

$$\frac{2\sqrt{ab}}{(a+b)}\frac{(a+b)}{2\sqrt{ab}} = 1$$

In a decreasing geometric progression, the 2nd term is 6. The sum of all infinite terms of the 27. progression is one-eighth of the sum to infinity of the squares of the terms. The sum of the 1st and the 4th terms is $\frac{p}{q}$ where p, q are relatively prime to each other. Then the value of $\left|\frac{p}{q}\right|$, where [x] represents the greatest integer not exceeding x is

Ans. (13) 28. The value of $\left(\frac{\sqrt{10}}{10}\right)^{(\log_{10} 9)-2}$ is of the form $\frac{a}{b}$, where a, b are relatively prime to each other. Then a-b is equal to ______.

Ans. (07)

Sol.
$$\left(\frac{\sqrt{10}}{10}\right)^{(\log_{10} 9)-2}$$

$$= \left(\frac{1}{\sqrt{10}}\right)^{\log_{10} 9 - \log_{10} 10^2}$$

$$= \left(\frac{1}{\sqrt{10}}\right)^{\log_{10} \left(\frac{9}{100}\right)}$$

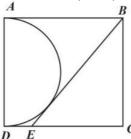
$$= 10^{-\frac{1}{2}\left[\log_{10}\left(\frac{3}{10}\right)^2\right]}$$

$$= 10^{\log_{10}\left(\frac{3}{10}\right)^{-1}}$$

$$= \left(\frac{3}{10}\right)^{-1} = \frac{10}{3} = \frac{a}{b}$$

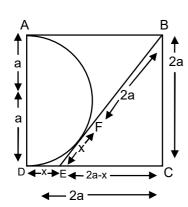
a - b = 10 - 3 = 7

29. ABCD is a square. BE is the tangent to the semicircle on AD as diameter. The area of the triangle BCE is 216 cm². The radius of the semicircle (in cm) is ______



Ans. (12)

Sol.



AD = 2a

DE = x = FE

CE = 2a - x

BF = AB = 2a

in ΔBEC By Pythagoras theorem

$$(2a + x)^{2} = (2a)^{2} + (2a - x)^{2}$$

$$4a^{2} + x^{2} + 4ax = 4a^{2} + 4a^{2} + x^{2} - 4ax$$

$$a = 2x$$

$$x = \frac{a}{2}$$

$$CE = 2a - x = 2a - \frac{a}{2}$$

$$CE = 2a - \frac{a}{2}$$

$$CE = \frac{3a}{2}$$

$$ar(\Delta BEC) = \frac{1}{2} \times BC \times CE = \frac{1}{2} \times 2a \times \frac{3a}{2}$$

$$3a^{2} = 216 \times 2$$

$$a = 12$$

30. a, b, c, d are real constants in a $f(x) = ax^{2025} + bx^{2023} + cx^{2021} + dx^{2019}$ and f(-4) = 18. Then the maximum value of $|f(4)| + |2\cos x|$ is _____.