

NATIONAL BOARD FOR HIGHER MATHEMATICS AND HOMI BHABHA CENTRE FOR SCIENCE EDUCATION TATA INSTITUTE OF FUNDAMENTAL RESEARCH

REGIONAL MATHEMATICAL OLYMPIAD, 2023 (All Region)

QUESTION PAPER WITH SOLUTION

Sunday, October 29, 2023 | Time: 1 PM – 4 PM

now we chick abcd is divisible by 3 or not.

 $n = 3k$, $3k + 1$, $3k + 2$

If $n = 3k$ then abcd is divisible by. If $n = 3k + 1$, $d = (3k + 1) (3km + 2) + 1 = 3k'$

 \Rightarrow abcd is divisible 3.

If $n = 3k + 2$ then $b = n + 1 = 3 (k + 1)$

 \Rightarrow abcd is divisible by 12

 \Rightarrow largest positive integer m = 12

2 st method

 $a^2 \equiv 0, 1 \pmod{4}$ $b^2 \equiv 0, 1 \pmod{4}$ $c^2 \equiv 0, 1 \pmod{4}$ $d^2 \equiv 0, 1 \pmod{4}$ \therefore a² + b² + c² = d² \therefore at least two of a^2 , b^2 , c^2 , d^2 are even ∴ 4 divide abcd now again $a^2 \equiv 0$, 1 (mode 3) $b^2 \equiv 0, 1 \pmod{3}$

 $c^2 \equiv 0, 1 \pmod{3}$

Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)- 324005 $^{\circ}$ Resonance **Website :** www.resonance.ac.in **[|] E-mail :** contact@resonance.ac.in **RMO291023-1 Toll Free :** 1800 258 5555 | **CIN:** [U80302RJ2007PLC024029](http://www.resonance.ac.in/reso/results/jee-main-2014.aspx)

 $b^2 = 0$, 1 (mode 3) \therefore a² + b² + c² = d² \therefore at least on of a^2 , b^2 , c^2 , d^2 is multiple of 3 ∴ 3 divide abcd \Rightarrow 12 divide abcd If $a = 1$, $b = 2$, $c = 3$ $d = 3$ So minimum value of abcd = 12 \therefore m = 12

- **2.** Let ω be a semicircle with AB as the bounding diameter and let CD be a variable chord of the semicircle of constant length such that C,D lie in the interior of the are AB. Let E be in point on the diameter AB such that CE and DE are equally inclined to the line AB. Prove that (a) the measure of \angle CED is a constant;
	- (b) the circumcircle of triangle CED passes through a fixed point.

Sol. Let $CD = \ell$

Now consider a circumcircle of $\triangle CDO$ where 'O' is mid-point of diameter AB.

This circle intersect AB at P, now join P to C & D

 \angle COD = \angle CPD = Angle on same segment = θ (Say)

- \angle OCD = \angle OPD = Angle on same segment = α
- \therefore OC = OD = radius of semi- circle

$$
\therefore \angle OCD = \angle ODC = \alpha
$$

$$
\alpha + \alpha + \theta = \pi \Rightarrow \alpha = \frac{\pi}{2} - \frac{\theta}{2}
$$

$$
\therefore \angle \text{APC} + \angle \text{CPD} + \angle \text{OPD} = \pi
$$

$$
\angle APC = \pi - \theta - \left(\frac{\pi}{2} - \frac{\theta}{2}\right)
$$

$$
= \frac{\pi}{2} - \frac{\theta}{2} = \angle OPD
$$

∴ P is point E. ⇒ Proof of Part (a)

and (b) circumcircle $\triangle DCE$ passed though a fixed point O

3. Far any natural number n, expressed in base 10, let s(n) denote the sum of all its digits. Find all natural numbers m and n such that m < n and $(S(n))^2 = m$, $(S(m))^2 = n$

Sol. Since $m < n$ and $(S(n))^2 = m$, $(S(m))^2 = n \Rightarrow m$ & n are perfect square

Case – I

\nIf n is one-digit number

\n
$$
max S(n) = 9 \Rightarrow m \leq 81 \Rightarrow S(m) = 9 \Rightarrow n \leq 81
$$

\n $possible value of n = 1, 4, 9$

$\overline{\mathsf{Reson}_{\mathsf{Educating\ for\ better\ tomorrow}}}$ \equiv

REGIONAL MATHEMATICAL OLYMPIAD (RMO) – 2023 | 29-10-2023

which is not possible

Case –II If n is of 2-digit number

max S(n) = 18 \Rightarrow m = (S(n))² = 324. $S(m) = 0 \rightarrow (S(m))^{2} = 81 \rightarrow n < 81$

max $S(n) = 27 \Rightarrow m = (27)^2 = 729$

 $(S(m))^{2} = 324 \Rightarrow n \le 324$

Resonance® \equiv REGIONAL MATHEMATICAL OLYMPIAD (RMO) – 2023 | 29-10-2023

- **4.** Let Ω_1, Ω_3 be two intersecting circles with centres O_1 , O_2 respectively. Let ℓ be a line that intersects Ω_1 at points A,C and Ω_2 at points B,D such that A,B,C,D are collinear in that order. Let the perpendicular bisector of segment AB intersect Ω_1 at point P,Q and the perpendicular bisector of segment CD intersect Ω_2 at points R,S such that P,R are on the same side of ℓ . Prove that the midpoints of PR , QS and O_1O_2 are collinear:
- **Sol.** Let M₁ & M₂ be mid point of PQ and RS
- \therefore O₁M₁ $\left| \right|$ O₂M₂ $\left| \right|$ ℓ

and O₁M₁ = $\frac{160 + 12}{2} = \frac{36}{2}$ BC 2 $\frac{AC - AB}{2} =$ $\frac{2}{2} = \frac{160}{2}$, O₂M₂ = $\frac{160}{2} = \frac{160}{2}$ BC 2 $\frac{\text{BD} - \text{CD}}{=}$ Now join M_1 and M_2 which interest O_1O_2 at M. Which is mid point of O_1O_2 and M_1M_2 both

Now drawn a line parallel to PQ through M which interest PR and QS at X and Y. Since M is mid point of $M_1 M_2$ therefore X and Y are also mid-point PR and QS. Hence proved.

5. Let $n > k > 1$ be positive integers. Determine all positive real numbers a_1, a_2, \ldots, a_n which satisfy

 $\dots(1)$

$$
\sum_{i=1}^{n} \sqrt{\frac{ka_i^k}{(k-1)a_i^k + 1}} = \sum_{i=1}^{n} a_i = \pi
$$

Sol. Apply A.M. G.M on $(k-1)$ a_i and 1

$$
\frac{a_i^k + a_i^k + \dots + a_i^k + 1}{k} \geq (a_i^{k-1})
$$
\n
$$
\frac{(k-1)a_i^k + 1}{ka_i^k} \geq a_i^{-1}
$$
\n
$$
\frac{ka_i^k}{(k-1)a_i^k + 1} \leq a_i
$$
\n
$$
\Rightarrow \sqrt{\frac{ka_i^k}{(k-1)a_i^k + 1}} \leq \sqrt{a_i}
$$
\n
$$
\sum_{i=1}^n \sqrt{\frac{ka_i^k}{(k-1)a_i^k + 1}} \leq \sum_{i=1}^n \sqrt{a_i}
$$
\n
$$
\dots
$$

Janson's inequality on $f(x) = \sqrt{x}$

$$
\frac{\sqrt{a_1} + \sqrt{a_2} + \dots + \sqrt{a_n}}{n} \le \sqrt{\frac{a_1 + a_2 + a_1}{n}}
$$

$$
\sum_{i=1}^{n} \sqrt{a_i} \le \sqrt{n} \cdot \sqrt{(\sum a_i)}
$$
(2)

but given
$$
\sum_{i=1}^{n} \sqrt{\frac{ka_i^{k}}{(k-1)a_i^{k}+1}} = \sum_{i=1}^{n} \sqrt{a_i} = n
$$
(3)

so from (1), (2) & (3)

$$
n=\sum_{i=1}^n\sqrt{\frac{ka_i^k}{(k-1)a_i^k+1}}\leq\sqrt{n}.\sqrt{n}=n
$$

which is possible only when equality in (1) and (2) both holds for equality in (2) $a_1 = a_2 = ... = a_n$ for equality in (1) $a_i^k = 1 \Rightarrow a_i = 1$ \Rightarrow a₁ = a₂ = = a_n = 1 is only

REGIONAL MATHEMATICAL OLYMPIAD (RMO) – 2023 | 29-10-2023

- **6.** Consider a set of 16 points arranged in a 4 × 4 square grid formation. Prove that if any 7 of these points are coloured blue, then there exists an isosceles right-angled triangle whose vertices are all blue.
- **Sol.** Five types of isosceles right-angled triangle are possible as shown below

Now consider following cases

Resonance®

 \equiv

Case-I: If we take 4-points in one row and other 3-points scattered then we always get triangle of type T_1 , T_3 or T_5

Case-II: If we take 3-points in one row and other 4-points scattered

Suppose three points taken are A₁, A₂, A₄ to not form isosceles right-angled triangle fourth, fifth and sixth points must be B_4, C_3 & D_2 . Still one Point need to select, If we select any point from R_2 , R³ & R⁴ then always we get isosceles right-angled triangle.

Case-III: If no row contain more than 2-points then 3 rows must contain 2-points each.

Suppose two points taken are A₁, A₃ to not form isosceles right-angled triangle third, fourth, fifth and sixth points taken B_1 , B_4 , C_2 , C_4 . Still one Point need to select, if we select any point from R_4 , then always we get isosceles right-angled triangle.

If D_1 is selected $B_1C_2D_1$ is isosceles right-angled triangle.

ABSONANCE

亖

- If D_2 is selected $A_3B_1D_2$ is isosceles right-angled triangle.
- If D_3 is selected $C_2D_3C_4$ is isosceles right-angled triangle.
- If D_4 is selected $A_3C_2D_4$ is isosceles right-angled triangle.

