

NATIONAL BOARD FOR HIGHER MATHEMATICS AND HOMI BHABHA CENTRE FOR SCIENCE EDUCATION TATA INSTITUTE OF FUNDAMENTAL RESEARCH

REGIONAL MATHEMATICAL OLYMPIAD, 2023 (All Region)

QUESTION PAPER WITH SOLUTION

Sunday, October 29, 2023 | Time: 1 PM – 4 PM

REGIONAL MATHEMATICAL OLYMPIAD (RMO) – 2023 29-10-2023					
Time : 3 hours (समय : 3 घंटे) October 29, 2023 Total marks (अधिकतम अंक)					
Instru	iction निर्देश :				
1.	Calculators (in any form)	and protractors are not allowed.			
	कैलकुलेटर (किसी भी रूप में)	या चांदा लाने की अनुमति नहीं है।			
2.	Rulers and compasses ar	e allowed.			
	रूलर एवं प्रकार लाने की अनु	मति है।			
3.	Answer all the questions.	Draw neat Geometry diagrams.			
	सभी प्रश्नों के जवाब दें।				
4.	All questions carry equal	marks. Maximum marks 102			
	सभी प्रश्न बराबर अंकों के हैं।	अधिकतम अंक : 102			
5.	Answerer to each questio	n should start on a new page, clea	arly indicate the question number.		
	हर प्रश्न का हल नए पन्ने से	शुरू करें। प्रश्न संख्या का साफ–साफ र	उल्लेख करें।		
1.		sitive integers and S = {(a,b,c,d) at m divides abcd for all (a,b,c,d)	$\in N^4$: $a^2 + b^2 + c^2 = d^2$ }. Find the largest \in S.		

Sol. <u>1st method</u>

Let $a = n, b = n + 1, c = n (n + 1) \Rightarrow d = (n (n + 1) + 1)$ which satisfy $a^2 + b^2 + c^2 = d^2$ a & b are two consecutive number in which one is odd & other is even c & d are two consecutive integers in which c is even & d is odd \Rightarrow abc is divisible by 4 If a = 1, b = 2, c = 2, d = 3 abcd = $12 \Rightarrow m \le 12$ now we chick abcd is divisible by 3 or not. n = 3k, 3k + 1, 3k + 2 If n = 3k then abcd is divisible by. If n = 3k + 1, d = (3k + 1)(3km + 2) + 1 = 3k' \Rightarrow abcd is divisible 3. If n = 3k + 2 then b = n + 1 = 3 (k + 1) \Rightarrow abcd is divisible by 12 \Rightarrow largest positive integer m = 12 2st method $a^2 \equiv 0, 1 \pmod{4}$ $b^2 \equiv 0, 1 \pmod{4}$ $c^2 \equiv 0, 1 \pmod{4}$ $d^2 \equiv 0, 1 \pmod{4}$ $\therefore a^2 + b^2 + c^2 = d^2$: at least two of a²,b²,c²,d² are even .:. 4 divide abcd now again $a^2 \equiv 0, 1 \pmod{3}$ $b^2 \equiv 0, 1 \pmod{3}$ $c^2 \equiv 0, 1 \pmod{3}$ Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)- 324005 Resonance Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in RMO291023-1 Educating for better tomorrow Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029

 $b^2 \equiv 0, 1 \pmod{3}$ $\therefore a^2 + b^2 + c^2 = d^2$ ∴ at least on of a²,b²,c²,d² is multiple of 3 : 3 divide abcd \Rightarrow 12 divide abcd If a = 1, b = 2, c = 3 d = 3So minimum value of abcd = 12 ∴ m = 12

Sol.

÷

- 2. Let ω be a semicircle with AB as the bounding diameter and let CD be a variable chord of the semicircle of constant length such that C,D lie in the interior of the are AB. Let E be in point on the diameter AB such that CE and DE are equally inclined to the line AB. Prove that (a) the measure of \angle CED is a constant;
 - (b) the circumcircle of triangle CED passes through a fixed point.

Let $CD = \ell$ D С α θ В Ρ Δ 0 Now consider a circumcircle of \triangle CDO where 'O' is mid-point of diameter AB. This circle intersect AB at P, now join P to C & D \angle COD = \angle CPD = Angle on same segment = θ (Say) \angle OCD = \angle OPD = Angle on same segment = α : OC = OD = radius of semi- circle $\therefore \angle \text{OCD} = \angle \text{ODC} = \alpha$ $\alpha + \alpha + \theta = \pi \Longrightarrow \alpha = \frac{\pi}{2} - \frac{\theta}{2}$ \angle APC + \angle CPD + \angle OPD = π

$$\angle APC = \pi - \theta - \left(\frac{\pi}{2} - \frac{\theta}{2}\right)$$
$$= \frac{\pi}{2} - \frac{\theta}{2} = \angle OPD$$
$$\therefore P \text{ is point E.} \Rightarrow Proof of Part (a)$$

and (b) circumcircle $\triangle DCE$ passed though a fixed point O

3. Far any natural number n, expressed in base 10, let s(n) denote the sum of all its digits. Find all natural numbers m and n such that m < n and $(S(n))^2 = m$, $(S(m))^2 = n$

Sol. Since m < n and $(S(n))^2 = m$, $(S(m))^2 = n \Rightarrow m \& n$ are perfect square

Case – IIf n is one-digit numbermax
$$S(n) = 9 \Rightarrow m \le 81 \Rightarrow S(m) = 9 \Rightarrow n \le 81$$
possible value of n = 1, 4, 9

	Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar R	oad, Kota (Raj.)- 324005
/ Resonance"	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	RM0291023-2
Educating for better tomorrow	Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	NW0291023-2

Resonance® \equiv

Case –II

81

9

REGIONAL MATHEMATICAL OLYMPIAD (RMO) - 2023 | 29-10-2023

n	S(n)	$m = (S(n))^2$	S(m)	$n = (Sm)^2$
1	1	1	1	1
4	4	16	7	49
9	9	81	9	81

which is not possible

If n is of 2-digit number

max $S(n) = 18 \Rightarrow m = (S(n))^2 = 324$. (0(...))2

$S(m) = 9 \Rightarrow (S(m))^2 = 81 \Rightarrow n \le 81$						
n	S(n)	$\mathbf{m} = (\mathbf{S}(\mathbf{n}))^2$	S(m)	$n = (Sm)^2$		
16	7	49	13	169		
25	7	49	30	169		
36	9	81	9	81		
49	14	196	16	256		
64	10	100	1	1		

which is not possible Case –III If n is of 3-digit number

max S(n) = 27 \Rightarrow m = (27)² = 729 $(S(m))^2 = 324 \Longrightarrow n \le 324$

9

81

n	S(n)	$m = (S(n))^2$	S(m)	$n = (Sm)^2$
100	1	1	1	1
121	4	16	7	49
144	9	81	9	81
225	9	81	9	81
256	13	169	16	256
289	19	361	10	100
324	9	81	9	81

	n = 256, m = 169
Case –IV	If n is of 4-digit
	$max (S(n)) = 36 \Rightarrow m = (S(n))^2 = 1296$
	$(S(n)) = 18 \Rightarrow (S(m))^2 = 324 \Rightarrow n \le 324$
	not possible
Case –V	n is of 5-digit
	$max (S(n)) = 45 \Rightarrow (m) = 2025$
	$S(m) = 9 \Rightarrow (S(m))^2 = 81 \Rightarrow n \le 81$
	Not possible
	So it can't have any solution for higher digits.

81

REGIONAL MATHEMATICAL OLYMPIAD (RMO) – 2023 | 29-10-2023

- **4.** Let Ω_1, Ω_3 be two intersecting circles with centres O_1, O_2 respectively. Let ℓ be a line that intersects Ω_1 at points A,C and Ω_2 at points B,D such that A,B,C,D are collinear in that order. Let the perpendicular bisector of segment AB intersect Ω_1 at point P,Q and the perpendicular bisector of segment CD intersect Ω_2 at points R,S such that P,R are on the same side of ℓ . Prove that the midpoints of PR,QS and O_1O_2 are collinear:
- **Sol.** Let M₁ & M₂ be mid point of PQ and RS
- $\therefore \qquad O_1M_1 \parallel O_2M_2 \parallel \ell$

and
$$O_1M_1 = \frac{AC - AB}{2} = \frac{BC}{2}$$
, $O_2M_2 = \frac{BD - CD}{2} = \frac{BC}{2}$
Now join M_1 and M_2 which interest O_1O_2 at M. Which is mid point of O_1O_2 and M_1M_2 both

Now drawn a line parallel to PQ through M which interest PR and QS at X and Y. Since M is mid point of $M_1 M_2$ therefore X and Y are also mid-point PR and QS. Hence proved.

5. Let n > k > 1 be positive integers. Determine all positive real numbers a_1, a_2, \dots, a_n which satisfy

...(1)

$$\sum_{i=1}^{n} \sqrt{\frac{ka_{i}^{k}}{(k-1)a_{i}^{k}+1}} = \sum_{i=1}^{n} a_{i} = \pi$$

Sol. Apply A.M. G.M on $(k - 1) a_i^k$ and 1

$$\begin{aligned} \frac{a_{i}^{k} + a_{i}^{k} + \dots + a_{i}^{k} + 1}{k} &\geq \left(a_{i}^{k-1}\right) \\ \frac{(k-1)a_{i}^{k} + 1}{ka_{i}^{k}} &\geq a_{i}^{-1} \\ \frac{ka_{i}^{k}}{(k-1)a_{i}^{k} + 1} &\leq a_{i} \\ \Rightarrow \sqrt{\frac{ka_{i}^{k}}{(k-1)a_{i}^{k} + 1}} &\leq \sqrt{a_{i}} \\ \sum_{i=1}^{n} \sqrt{\frac{ka_{i}^{k}}{(k-1)a_{i}^{k} + 1}} &\leq \sum_{i=1}^{n} \sqrt{a_{i}} \\ & \dots \end{aligned}$$

Janson's inequality on $f(x) = \sqrt{x}$

but given
$$\sum_{i=1}^{n} \sqrt{\frac{ka_i^n}{(k-1)a_i^k+1}} = \sum_{i=1}^{n} \sqrt{a_i} = n$$
(3)

so from (1), (2) & (3)

$$n = \sum_{i=1}^n \sqrt{\frac{ka_i^k}{(k-1)a_i^k + 1}} \le \sqrt{n}.\sqrt{n} = n$$

which is possible only when equality in (1) and (2) both holds for equality in (2) $a_1 = a_2 = \dots = a_n$ for equality in (1) $a_i^k = 1 \Rightarrow a_i = 1$ $\Rightarrow a_1 = a_2 = \dots = a_n = 1$ is only

REGIONAL MATHEMATICAL OLYMPIAD (RMO) - 2023 | 29-10-2023

- 6. Consider a set of 16 points arranged in a 4 × 4 square grid formation. Prove that if any 7 of these points are coloured blue, then there exists an isosceles right-angled triangle whose vertices are all blue.
- **Sol.** Five types of isosceles right-angled triangle are possible as shown below

Now consider following cases

Resonance®

Case-I: If we take 4-points in one row and other 3-points scattered then we always get triangle of type T₁, T₃ or T₅

Case-II: If we take 3-points in one row and other 4-points scattered

Suppose three points taken are A₁, A₂, A₄ to not form isosceles right-angled triangle fourth, fifth and sixth points must be $B_4, C_3 \& D_2$. Still one Point need to select, If we select any point from R₂, R₃ & R₄ then always we get isosceles right-angled triangle.

Case-III: If no row contain more than 2-points then 3 rows must contain 2-points each.

Suppose two points taken are A₁, A₃ to not form isosceles right-angled triangle third, fourth, fifth and sixth points taken B₁, B₄,C₂,C₄. Still one Point need to select, if we select any point from R₄, then always we get isosceles right-angled triangle.

If D_1 is selected $B_1C_2D_1$ is isosceles right-angled triangle.

Λ	
Λ	
\times N	

	Reg. & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)- 324005		
	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	RMO291023-5	
Educating for better tomorrow	Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029		

- If D_2 is selected $A_3B_1D_2$ is isosceles right-angled triangle.
- If D_3 is selected $\mathsf{C}_2\mathsf{D}_3\mathsf{C}_4$ is isosceles right-angled triangle.
- If D_4 is selected $A_3C_2D_4$ is isosceles right-angled triangle.

