	Denter tomorrow	re-university & School Preparatory Division	
		UG) 2	2024
Que Subject: Ma	thematics Code: 319	El Medium: English	Solutions
Educating for better tomorrow	(Do not open this Test E	Booklet until you are asked	I to do so)
Time Allo <mark>wed:</mark> 60 minutes	Maximu <mark>m M</mark> arks: 200	Total Questions : 15+35=50	Number of Questions to be answered 15+25=40
Kindly read the Instr	uctions given on this Page a	n <mark>d Ba</mark> ck Page carefully bef	fore attempting this Question Paper
 This Question Paper con Section A has 15 quest candidates. Section B1 has 35 quest Section B2 has 35 quest attempted. If a candidate answers n for evaluation. 	itains two sections i.e. Sections covering both i.e. Mati stions (Q. No. 16 to 50) from stions (Q. No. 51 to 85) pur nore than 25 questions from	etion A and Section B (B hematics and Applied M m Mathematics out of wh rely from Applied Mather n Section B1/B2, the firs	and B2). Iathematics which is compulsory for all hich 25 questions need to be attempted. matics out of which 25 questions need to t 25 answered questions will be considered
 When you are given the Use only Blue/Black Ba Mathematics (Q. No. 51 The CODE for this Test on this Test Booklet. Als 	OMR Answer Sheet, fill in y II Point Pen for marking re to 85) very carefully for mar Booklet is A. Make sure th o ensure that your Test Boo	our particulars on it caref esponses. Kindly select l king responses on the Of nat the CODE printed on oklet No. and OMR Answe	fully with blue/black ball point pen only. Mathematics (Q. No. 16 to 50) OR App MR Answer Sheet. the OMR Answer Sheet is the same as er Sheet No. are exactly the same. In cas
discrepancy, the candida and the OMR Answer examin <mark>atio</mark> n.	ate should immediately repo Sheet. No claim in this r	o <mark>rt the</mark> matter to the Invigil regard will be entertaine	lator f <mark>or re</mark> placement of both the Test Boo ed after five minutes from the start of
 Before attempting the q consists of one sheet. At pages of Test Booklet ar 	uestion paper kindly check the start of the examinatior d OMR Answer Sheet are p	that this Test Booklet h within first five minutes, properly printed and they	nas total 16 pages and OMR Answer Sł candidates are advised to ensure that are not damaged in any manner.]
6. Each question has four	answer op <mark>tions</mark> . Out of the	nese four opti <mark>ons choose</mark>	e the MOST APPROPRIATE OPTION
 7. Five (5) marks will be g than one circle is fou Unanswered questions v 	iven for each correct answer nd darkene <mark>d/bl</mark> acked for vill be given no mark.	er. One (1) mark will be a question, then it wil	deducted for each incorrect answer. If m Il be considered as an incorrect answ
Name of the Candidate (in Ca	apital Letters):	Resonance Educating for better tomorrow	Resonance"
Application Number (in figure Roll Number (in figures):)	es):® r tomorrow Resonance®	etter tomorrow Resonance	sonance [®] Resonance [®]
Centre of Examination (in Ca	pital Letters):	Educating for better tomorrow	tor's Signature:
Facsimile signature stamp of	Centre Sup <mark>erin</mark> tendent:	etter tomorrow	ng for better tomorrow
Resonance [®]	Resonance"	Resonance Educating for beller tomorrow	e" Resonance"
REGISTERED & CORPO Ph.No. : 77 Website : www	Resonance RATE OFFICE : CG Tower, A- 28890131 7728890101 FAX resonance.ac.in/cuet E-mail	Eduventure: 46 & 52, IPIA, Near City Mal No.: +91-022-39167222 : pspd@resonance.ac.in <u>Cl</u>	S Ltd. II, Jhalawar Road, Kota (Raj.) - 324005 7728890101 7728890131 IN: U80302RJ2007PLC024029

Read c	arefully	the	following	instructions:
--------	----------	-----	-----------	---------------

- 8. No candidate will be allowed to leave the **OMR** Answer Sheet blank. If any OMR Answer Sheet is found blank, it shall be crossed by the Invigilator with his/her signature, mentioning "Cancelled" on it.
- 9. Do not tear or fold any page of the Test Booklet and OMR Sheet.
- 10. Candidates are advised to ensure that they fill the correct particulars on the OMR Answer Sheet, i.e., Application No., Roll No., Test Booklet No., Name, Mother's Name, Father's Name and Signature.
- **11.** Rough work is to be done in the space provided for this purpose in the Test Booklet only.
- **12.** The answers will be evaluated through electronic scanning process. Incomplete or incorrect entries may render the OMR Answer Sheet invalid.
- 13. Candidates are advised not to fold or make any stray marks on the OMR Answer Sheet. Use of Eraser, Nail, Blade,
 White Fluid/Whitener, etc., to smudge, scratch or damage in any manner the OMR Answer Sheet during examination is strictly prohibited. Candidature and OMR Answer Sheet of candidates using Eraser, Nail, Blade or White Fluid/Whitener to smudge, scratch or damage in any manner shall be cancelled.
- 14. There-will be one copy of OMR Answer Sheet i.e., the Original Copy. After the examination is over, the candidate shall hand over the OMR Answer Sheet to the Invigilator. The candidate can take away the Test Booklet after the examination is over. If the candidates does not hand over the OMR Answer Sheet to the Invigilator and goes away with the OMR Answer Sheet, his/her candidature shall be cancelled and criminal proceedings shall also be initiated against him/her.
- 15. Candidates are advised strictly not to carry handkerchief, any mobile phone, any type of watch, belt or wear ornaments like ring, chain, ear-ring, etc., electronic or communication device, pen, pencil, eraser, sharpener and correction fluid to the Examination Centre. If candidate is found possessing any such item, he/she will not be allowed to enter the examination centre. Possession of a mobile phone or any other aiding material as mentioned above by the candidate in the examination room will be treated as a serious violation and it may lead to cancellation of the candidature and debarring him/her from future examinations.
- 16. If a 'candidate violates any instructions or shows any indiscipline or misbehaviour, appropriate action will be taken including cancellation of candidature and debarring from future examinations.
- 17. Use of electronic/manual calculator is not allowed.

Resonance [®]	Resonance [®]		
Reson	Resonance E	Eduventures L	td.e' Resonance'
REGISTERED & CORF Ph.No. : Website : ww Toll Free : 1800 258	PORATE OFFICE : CG Tower, A-4 7728890131 7728890101 FAX N w.resonance.ac.in/cuet E-mail : 5555 (S) 7728890101 f ^{facebook}	6 & 52, IPIA, Near City Mall, Jha Io.:+91-022-39167222 © 77288 pspd@resonance.ac.in <u>CIN: U8</u> com/ResonanceEdu _ V hvitter.com/ResonanceEd	lawar Road, Kota (Raj.) - 324005 390101 7728890131 30302RJ2007PLC024029 du 🛗 www.youtube.com/resowatch 🕒 blog.resonance.ac.in
	This solution was download fro	m Resonance CUET 2024 Soluti	on portal

MATHEMATICS

SECTION - A (MATHEMATICS)

Resonance Eduventures Ltd.

 REGISTERED & CORPORATE OFFICE : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

 Ph.No. : 7728890131 | 7728890101 | FAX No. : +91-022-39167222 |

 7728890101 | 7728890131
 Website : www.resonance.ac.in/cuet | E-mail : pspd@resonance.ac.in | CIN: U80302RJ2007PLC024029

 Toll Free : 1800 258 5555 [7728890101] facebook.com/ResonanceEdu] tutter.com/ResonanceEdu] www.youtube.com/resowatch] blog.resonance.ac.in

3. An objective function Z = ax + by is maximum at points (8, 2) and (4, 6). If $a \ge 0$ and $b \ge 0$ and ab = 25, then the maximum value of the function is equal to: (1) 60(2)50(3) 40(4) 80 Ans. (2) Sol. Z = ax + byMaximum value at points (8,2) and (4,6) ∴ 8a + 2b = 4a + 6b 4a = 4ba = bgiven ab = 25 \therefore a = 5 and b = 5 Max. value \Rightarrow 8x5 + 2x5 \Rightarrow 50 4. The area of the region bounded by the lines x + 2y=12, x=2, x=6 and x-axis is : (1) 34 sq units (2) 20 sq units (3) 24 sq units (4) 16 sq units Ans. (4) Sol. x + 2y = 12x = 2, x = 6and x-axis Area 12 x=2 x=6 y dx \Rightarrow 12-x dx \Rightarrow $\frac{1}{2}\left[12x-\frac{x^2}{2}\right]$ \Rightarrow 16 sq. unit \Rightarrow

Resonance Eduventures Ltd.

 REGISTERED & CORPORATE OFFICE : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

 Ph.No. : 7728890131 | 7728890101 | FAX No. : +91-022-39167222 |

 7728890101 | 7728890131
 Website : www.resonance.ac.in/cuet | E-mail : pspd@resonance.ac.in | CIN: U80302RJ2007PLC024029

 Toll Free : 1800 258 5555

 7728890101
 f acebook.com/ResonanceEdu
 tutter.com/ResonanceEdu
 twww.youtube.com/resowatch
 blog.resonance.ac.in

This solution was download from Resonance CUET 2024 Solution portal

	SONANCE® Pre-university & School PSPD	CUET (UG) 2024 DATE : 16	MAY-2024 PAPER & SOLUTIO	DNS
5.	A die is rolled thrice.	What is the probability	of getting a number	greater than 4 in the first and the	
			1 4 11 110 1110 1110 1110 1110 1110 111	1	
	(1) $\frac{1}{3}$	(2) $\frac{1}{6}$	(3) $\frac{1}{9}$	(4) $\frac{1}{18}$	
Ans.	(4)				
Sol.	A die is rolled thrice				
	Total outcome = 6×6	õ×6			
	= 216	6			
	Favourable outcome				
	(5, 5, 1) (5, 5,	2) (5, 5, 3)			
	(6, 6, 1) $(6, 6, 6, 6)$	2) (6, 6, 3)			
	(5, 6, 1) $(5, 6, 6)$	2) (5, 6, 3) (6, 5, 2)			
	(0, 5, 1) $(0, 5, 1)$	2) (0, 0, 3)			
		come = 12			
	∴ Probability =	$\frac{12}{240} = \frac{1}{40}$			
		210 18			
	• -				
6.	$\int \frac{\pi}{x^{n+1}} dx =$				
	(1) $\frac{\pi}{n}\log_{e}\left \frac{x^{n}-1}{x^{n}}\right +C$	(2) $\log_{e} \left \frac{x^{n} + 1}{x^{n} - 1} \right + C$	(3) $\frac{\pi}{n}\log_{e}\left \frac{\mathbf{x}^{n}+\mathbf{x}^{n}}{\mathbf{x}^{n}}\right $	$\frac{1}{1}$ + C (4) $\pi \log_{e} \left \frac{x^{n}}{x^{n} - 1} \right $ + C	
Ans.	(1)				
0.1	π	f 1			
501.	$\Rightarrow \int \frac{1}{x^{n+1} - x} dx$	$\Rightarrow \pi \int \frac{1}{x^n \cdot x - x} dx$			
	$\Rightarrow = \begin{bmatrix} 1 \\ dx \end{bmatrix}$				
	$\rightarrow \pi \int \frac{1}{x(x^n-1)} dx$				
	Multiply N ^r and D ^r	{ By x ⁿ⁻¹ }			
	$\rightarrow - \int x^{n+1} dx$				
	$\rightarrow \pi \int \frac{1}{x^n(x^n-1)} dx$				
	Let x ⁿ = t				
	n x^{n-1} dx = dt				
	$\therefore \Rightarrow \frac{\pi}{1} \int \frac{1}{1}$	dt			
	n J t(t – 1)				
	$\Rightarrow \frac{\pi}{n} \left[\int -\frac{1}{t} dt + \int \frac{1}{t-1} dt \right]$	lt			
	$\Rightarrow \frac{\pi}{n} \Big[-\log t + \log(t-1) \Big]$]			
	$\Rightarrow \frac{\pi}{n} \left[log \left(\frac{t-1}{t} \right) \right]$				
	$\Rightarrow \frac{\pi}{n} log \left(\frac{x^n - 1}{x^n} \right) + C$				

Resonance Eduventures Ltd.

 REGISTERED & CORPORATE OFFICE : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

 Ph.No. : 7728890131 | 7728890101 | FAX No. : +91-022-39167222 | ● 7728890101 | 7728890131

 Website : www.resonance.ac.in/cuet | E-mail : pspd@resonance.ac.in | CIN: U80302RJ2007PLC024029

 Toll Free : 1800 258 5555 ● 7728890101 ● 728890100 ● 728890101 ● 728890101 ● 7288901000 ● 7288901000 ● 7288901000 ● 728890100 ● 728890000 ● 7288900000 ● 7288900000 ● 7288900000 ● 7288900000 ● 7288900

Resonance® Pre-university & School PSPD

7. The value of
$$\int_{0}^{1} \frac{a - bx^{2}}{(a + bx^{2})^{2}} dx$$
 is :
(1) $\frac{a - b}{a + b}$ (2) $\frac{1}{a - b}$ (3) $\frac{a + b}{2}$ (4) $\frac{1}{a + b}$
Ans. (4)
Sol. $\int_{0}^{1} \frac{a - bx^{2}}{(a + bx^{2})^{2}} dx$
Put $x = \sqrt{\frac{a}{b}} \tan \theta \Rightarrow \tan \theta = x\sqrt{\frac{b}{a}}$
 $dx = \sqrt{\frac{a}{b}} \sec^{2} \theta d\theta$ $\lim_{x \to 1; \theta = \tan^{-1} \sqrt{\frac{b}{a}}$
 $\lim_{x \to 1; \theta = \tan^{-1} \sqrt{\frac{b}{a}} \sec^{2} \theta d\theta$
 $\lim_{x \to 1; \theta = \tan^{-1} \sqrt{\frac{b}{a}} \sec^{2} \theta d\theta$
 $\lim_{x \to 1; \theta = \tan^{-1} \sqrt{\frac{b}{a}} \sec^{2} \theta d\theta$
 $\lim_{x \to 1; \theta = \tan^{-1} \sqrt{\frac{b}{a}} \sec^{2} \theta d\theta$
 $\lim_{x \to 1; \theta = \tan^{-1} \sqrt{\frac{b}{a}} \sec^{2} \theta d\theta$
 $\lim_{x \to 1; \theta = \tan^{-1} \sqrt{\frac{b}{a}} \sec^{2} \theta d\theta$
 $\lim_{x \to 1; \theta = \tan^{-1} \sqrt{\frac{b}{a}} \sec^{2} \theta d\theta$
 $\lim_{x \to 1; \theta = \tan^{-1} \sqrt{\frac{b}{a}} \sec^{2} \theta d\theta$
 $\lim_{x \to 1; \theta = \tan^{-1} \sqrt{\frac{b}{a}} \sec^{2} \theta d\theta$
 $\lim_{x \to 1; \theta = \tan^{-1} \sqrt{\frac{b}{a}} \sec^{2} \theta d\theta$
 $\lim_{x \to 1; \theta = \tan^{-1} \sqrt{\frac{b}{a}} \sec^{2} \theta d\theta$
 $\lim_{x \to 1; \theta = \tan^{-1} \sqrt{\frac{b}{a}} \sec^{2} \theta d\theta$
 $\lim_{x \to 1; \theta = \tan^{-1} \sqrt{\frac{b}{a}} \sec^{2} \theta d\theta$
 $\lim_{x \to 1; \theta = \tan^{-1} \sqrt{\frac{b}{a}} = \frac{1}{\sqrt{\frac{b}{a}}} \left[\frac{\sin 2\theta}{2}\right]_{0}^{\frac{a^{-1}}{2}} \left[\frac{\sin^{2}\theta}{2}\right]_{0}^{\frac{a^{-1}}{2}} \left[\frac{$

8. The second order derivative of which of the following is 5^x?

(1) 5 [×] log _e 5	(2) 5 [×] (log _e 5) ²	(3) $\frac{5^{\times}}{\log_{e} 5}$	(4) $\frac{5^{x}}{(\log_{2} 5)^{2}}$
		Je	(3e -)

Ans. (4)

Sol. ∫5[×]dx

$$\int \frac{5^{x}}{\ln 5} dx \text{ Again Integrate}$$
$$\frac{1}{\ln 5} \times \frac{5^{x}}{\ln 5} = \frac{5^{x}}{(\ln 5)^{2}}$$

Resonance Eduventures Ltd.

 REGISTERED & CORPORATE OFFICE : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

 Ph.No. : 7728890131 | 7728890101 | FAX No. : +91-022-39167222 |

 7728890101 | 7728890131
 Website : www.resonance.ac.in/cuet | E-mail : pspd@resonance.ac.in | <u>CIN: U80302RJ2007PLC024029</u>

 Toll Free : 1800 258 5555

 7728890101
 facebook.com/ResonanceEdu
 twitter.com/ResonanceEdu
 twitter.com/ResonanceEdu
 twitter.com/ResonanceEdu

 twitter.com/ResonanceEdu
 twitter.com/ResonanceEdu
 twitter.com/ResonanceEdu

 twitter.com/ResonanceEdu
 twitter.com/ResonanceEdu
 twitter.com/ResonanceEdu
 twitter.com/ResonanceEdu

 twitter.com/ResonanceEdu
 twitter.com/ResonanceEdu
 twitter.com/ResonanceEdu

 twitter.com/ResonanceEdu
 twitter.com/ResonanceEdu
 twitter.com/ResonanceEdu

 twitter.com/ResonanceEdu
 twitter.com/ResonanceEdu
 twitter.com/ResonanceEdu
 twitter.com/ResonanceEdu

 twitter.com/ResonanceEdu
 twitter.com/ResonanceEdu
 twitter.com/ResonanceEdu

Resonance® Pre-university & School PSPD

		Contract of the second s		
9.	The degree of the	differential equation ($\left(1 - \left(\frac{\mathrm{d}x}{\mathrm{d}x}\right)^2\right)^{\frac{3}{2}} = k \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} \text{ is } :$	
	(1) 1	(2) 2	(3) 3	(4) $\frac{3}{2}$
Ans.	(2)			_
Sol.	degree of $\left(1 - \left(\frac{dy}{dx}\right)\right)$	$\left(\frac{d^2y}{dx^2}\right)^{3/2} = k \frac{d^2y}{dx^2}$		
	squaring both side			
	$\left[1 - \left(\frac{dy}{dx}\right)^2\right]^3 = k^2$	$\left(\frac{d^2y}{dx^2}\right)^2$		
	∴ degree = 2			
10.	If A and B are sym (1) symmetric mat	metric matrices of the rix	e same order, then AB - BA (2) zero matrix (4) identity matrix	A is a :
Ans. Sol.	(3) Given A = A'	c mainx	(4) identity matrix	
	В = В (AB – BA)' = (AB)' = B'A' - = BA – = – (AE	– (BA)' - A'B' AB 3 – BA)		
	∴ it is skew symm	etric matrix		
11.	If A is a square ma (1) 8	atrix of order 4 and A (2) 64	= 4, then 2A will be: (3) 16	(4) 4
Ans. Sol.	(2) A = 4 then			
	2A = 2 ⁴ A = 16 >	< 4 = 64		
12.	If $[A]_{3\times 2} [B]_{x\times y} = [A]_{x\times y}$	$J_{3 \times 1}$, then :		
A = = =	(1) $x=1, y=3$	(2) x=2, y = 1	(3) x=3, y = 3	(4) x=3, y = 1
Sol.	(2) $[A]_{3 \times 2} [B]_{x \times y} = [C]_{x}$ Product of matrice $\therefore x = 2$ and $[C]_{3 \times 1} = [C]_{x \times y}$	s is defined when (A)	no. of column = no. of row	(B)
	y = 1 $\therefore x = 2; y = 1$			

Resonance Eduventures Ltd.

Educat	sonance	Proparatory Division PSPD		CUET (UG)	2024 DATE :	16-MAY-2024	PAPER &	SOLUTIONS
13.	If a fund	ction $f(x) = x^2 +$	bx + 1 is	increasing in t	he interval [1, 2], then the least	value of b is	5:
	(1) 5		(2) 0		(3) –2	(4)	-4	
Ans.	(3)							
Sol.	$f(x) = x^2$	² + bx + 1						
	f'(x) = 2	2x + b						
	it is inci	reasing in [1, 2]						
	f' (x) ≥ 0	0						
	2x + b 2	≥ 0						
	b	≥ – 2x						
	at point	$x = 1 \Rightarrow b \ge -2$; at po	int $x = 2 \Longrightarrow b \ge 0$	-4		
	∴ least	value of b is – 2	2					
14.	Two dio	ce are thrown si	multaneo	usly. If X deno	otes the number	r of fours, then t	he expectati	on of X will be
	(1) 5		(2) 1		(2) 4	(4)	3	
	(1) 9		$(2) \overline{3}$		(3) 7	(4)	8	
Ans.	(2)							
Sol.	Two dia	ce thrown						
	then tot	tal out come = 3	6					
	x denot	tes no. of fours.						
	x can ta	ake value 0, 1, 2	2					
	Now							
		x 0	1	2				
		$P(x) = \frac{25}{25}$	<u>10</u>	1				
		36	36	36				
		E(x)	_	0 × ²⁵ + 1 ×	10 _ 2 ~ 1	12	_ 1	
	слре		-	$\frac{36}{36}$	$\overline{36}^{+2}$		$-\overline{3}$	
15.	For the	function $f(x) = 2$	$2x^3 - 9x^2$	+ 12x–5, x∈[0	3], match List-	I with List-II:		
	liet_l				liet-II			
	(A) Abs	olute maximum	value		(1) 3			
	(B) Abs	olute minimum	value		(II) 0			
	(C) Poi	nt of maxima			(III) –5			
	(D) Poi	nt of minima			(IV) 4			
	Choose	e the correct and	swer from	n the options g	iven below :			
	(1) (A)-	(IV), (B) - (II), (C	C) - (I), (C) - (III)	(2) (A) - (II),	(B) - (III), (C) -	(I), (D) - (IV)	
_	(3) (A)	(IV), (B) - (III), (0	C) - (II), (D) - (I)	(4) (A) (IV),	(B) - (III), (C) - (I), (D) - (II)	
Ans.	(4)		_	_				
Sol.	f(x) = 2x	$x^3 - 9x^2 + 12x -$	5;xε[0	,3]				
	put x =	$0 ; f(0) = -5 \leftarrow$	Minimum	۱				
	put x =	$3; f(3) = 4 \leftarrow$	Minimum	l				
	Now	(A) – IV ; (B) — III ;	(C) – I ; (D) — II			

Resonance Eduventures Ltd.

 REGISTERED & CORPORATE OFFICE : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

 Ph.No. : 7728890131 | 7728890101 | FAX No. : +91-022-39167222 |

 7728890101 | 7728890131
 Website : www.resonance.ac.in/cuet | E-mail : pspd@resonance.ac.in | CIN: U80302RJ2007PLC024029

 Toll Free : 1800 258 5555 (7728890101) facebook.com/ResonanceEdu) www.youtube.com/resowarch

This solution was download from Resonance CUET 2024 Solution portal

SECTION - B1 (MATHEMATICS)

CUET (UG) 2024 | DATE : 16-MAY-2024 | PAPER & SOLUTIONS

Resonance*

Pre-university & School PSPD

16.	The rate of channels of the rate of the r	ge (in cm²/s) of the to	tal surface area of a h	emisphere with respect to radius
	(1) 66π	(2) 6.6π	(3) 3.3π	(4) 4.4π
Ans.	(2)	(_) 0.000		(),
Sol.	Area of Hemi sph	$ere = 3\pi r^2$		
	$\therefore A = 3\pi r^2$			
	dA			
	$\frac{dr}{dr} = 6\pi r$			
	r = (1.331) ^{1/3}			
	11			
	$r = \frac{1}{10}$			
	dA 1'	1 66π		
	$\therefore \frac{\mathrm{d} r}{\mathrm{d} r} \Rightarrow 6\pi \times \frac{1}{10}$	$\frac{1}{10} = \frac{30\pi}{10} = 6.6 \pi$		
17.	The area of the re	gion bounded by the lin	$\frac{x}{7\sqrt{2}a} + \frac{y}{b} = 4$, x=0 and	y=0 is
			7√3a 0	() - · · ·
-	(1) 56 √3ab	(2) 56a	(3)ab/2	(4)3ab
Ans.	(1)			
Sol.	line $\frac{x}{y} + \frac{y}{z} = 4$	L .		
	7√3a b			
	\backslash \uparrow			
	4b			
	0	28,53		
		20100		
	∴ Area			
	1			
	$\Rightarrow \frac{1}{2} \times 4b \times 28\sqrt{3a}$	$\Rightarrow \Rightarrow 56\sqrt{3}ab$		
	-			
18.	If A is a square ma	atrix and I is an identity	matrix such that $A^2=A$, t	hen A(I–2A) ³ +2A ³ is equal to
	(1) I+A	(2) I+2A	(3) I–A	(4) A
Ans.	(4)			
Sol.	Given $A^2 = A$			
	A (I – 2A)	³ + 2A ³		
	\Rightarrow A [I – 8A –	– 6A + 12A] + 2A ³		
	\Rightarrow A [I – 2A]	+ 2A		
	\Rightarrow A – 2A ² +	2A		
	\Rightarrow A – 2A + 2	2A = A		

Resonance Eduventures Ltd.

 $\theta = 180^{\circ}$

option (4) Ans

The value of the integral $\int_{1}^{\log_{e} 3} \frac{e^{2x} - 1}{e^{2x} + 1} dx$ is 19. (1) log_e 3 (2) $\log_{e} 4 - \log_{e} 3$ (3) $\log_{2} 9 - \log_{2} 4$ (4) $\log_{2} 3 - \log_{2} 2$ Ans. (2) $\int_{\log_{e} 2}^{\log_{e} 3} \frac{e^{2x} - 1}{e^{2x} + 1} \, dx$ Sol. [multiply N^r and D^r By e^{-x}] $\Rightarrow \int_{\log_{e} 2}^{\log_{e} 3} \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}} dx$ \Rightarrow let e^x + e^{-x} = t $(e^{x} - e^{-x}) dx = dt$ $\Rightarrow \int \frac{dt}{t} \Rightarrow \ln t$ $\Rightarrow \left[ln \left(e^{x} + e^{-x} \right) \right]_{og_e 2}^{og_e 3}$ $\Rightarrow \log\left(\frac{10}{3}\right) - In\left(\frac{5}{2}\right)$ $\Rightarrow \ln\left(\frac{4}{3}\right) \Rightarrow \log_{e} 4 - \log_{e} 3$ If \vec{a} , \vec{b} and \vec{c} are three vectors such that $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, where \vec{a} and \vec{b} are unit vectors and $|\vec{c}| = 2$, 20. Then the angle between the vectors \vec{b} and \vec{c} is (1) 60° $(2) 90^{\circ}$ (4)180° (3) 120° (4) Ans. $\vec{a} + \vec{b} + \vec{c} = 0$ Sol. $\vec{b} + \vec{c} = -\vec{a}$ (squaring both side) $\left|\vec{b}\right|^{2} + \left|\vec{c}\right|^{2} + 2\left|\vec{a}\right| \left|\vec{c}\right| \cos \theta = \left|\vec{a}\right|^{2}$ \Rightarrow 1 + 4 + 2 × 2 cos θ = 1 $\Rightarrow \cos\theta = -1$

Resonance Eduventures Ltd.

This solution was download from Resonance CUET 2024 Solution portal

Resonance[®] Pre-university & School PSPD

CUET (UG) 2024 | DATE : 16-MAY-2024 | PAPER & SOLUTIONS

Let [x] denote the greatest integer function, then match List-I with List-II 21.

5 5	,
List-I	List-II
(A) $ x-1 + x-2 $	(I) is differentiable everywhere except
	at x =0
(B) x – x	(II) is continuous everywhere
(C) x – [x]	(III) is not differentialbe at x=1
(D) x x	(IV) is differentialbe at x=1

Choose the correct answer from the options given below:

(1) (A) –(I),(B)-(II), (C)-(III), (D)-(IV)

(3) (A) –(II),(B)-(I), (C)-(III), (D)-(IV)	(4) (A)
--	---------

(2) (A) –(I),(B)-(III), (C)-(II), (D)-(IV) -(II),(B)-(IV), (C)-(III), (D)-(I)

Ans. (3)

|x-1|+|x-2| is continuous everywhere Sol.

x - |x| is differentiable at every where except at x = 0.

x - [x] is not differentiable at x = 1

(1) (A) –(I),(B)-(III), (C)-(IV), (D)-(II)

(3) (A) –(II),(B)-(I), (C)-(III), (D)-(IV)

x |x| is differentiable at x = 1.

22. Match List-I with List-II

List-I	List-II
(A) Integrating factor of xdy–(y+2x ²)dx=0	(1) $\frac{1}{x}$
(B) Integrating factor of $(2x^2-3y)dx = xdy$	(II) x
(C) Integrating factor of (2y+3x ²)dx+ xdy=0	(III) x ²
(D) Integrating factor of 2xdy+ (3x ³ +2y)dx=0	(IV) x ³

Choose the correct answer from the options given below:

(2) (A) –(I),(B)-(IV), (C)-(III), (D)-(II) (4) (A) –(III),(B)-(IV), (C)-(II), (D)-(I)

Ans.

 $xdy - (y + 2x^2)dx = 0$ Sol.

(2)

$$\frac{dy}{dx} - \frac{y}{x} = 2x$$

$$p = -\frac{1}{x} \qquad \therefore \text{ I.F.} = e^{\int Pdx} \qquad \Rightarrow \qquad e^{\int -\frac{1}{x}dx}$$

I.F. $\Rightarrow \frac{1}{x}$
Similarlily
 $(2x^2 - 3y)dx xdy$
I.F. $= x^3$
 $(2y + 3x^2) dx xdy = 0$
I.F. $= x^2$
And $2xdy + (3x^3 + 2y)dx = 0$
I.F. $= x$

Resonance Eduventures Ltd.

REGISTERED & CORPORATE OFFICE : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph.No.: 7728890131 | 7728890101 | FAX No.: +91-022-39167222 | 9 7728890101 | 7728890131 Website : www.resonance.ac.in/cuet | E-mail : pspd@resonance.ac.in | CIN: U80302RJ2007PLC024029 Toll Free : 1800 258 5555 💿 7728890101 👫 facebook.com/ResonanceEdu 💟 twitter.com/ResonanceEdu 腸 www.youtube.com/resowatch blog.resonance.ac.in

	SONANCE Pre-university & School PSPD	CUET (UG) 2024 DATE : 16-MAY-2024 PAPER & SOLUTIONS
23.	If the function $f: N \rightarrow N$ is	s defined as $f(n) = \begin{cases} n-1 & \text{if niseven} \\ n+1 & \text{if n is odd} \end{cases}$, then
	(A) f is injective	(B) f is into
	(C) f is surjective	(D) f is invertible
	Chose the correct answe	from the options given below:
	(1) (B) only	(2) (A), (B) and (D) only
	(3) (A) and (C) only	(4) (A), (C) and (D) only
Ans.	(4)	
Sol.	$f: N \rightarrow N$	
	(n_1: n is even	
	$f(n) = \begin{cases} n-1, m \text{ is even} \\ n-1; n \text{ is odd} \end{cases}$	
	I his function is injective a	nd subjective both and if function is dijective then it is also invertible.
24.	$\int_{0}^{\frac{\pi}{2}} \frac{1 - \cot x}{\cos e c x + \cos x} dx$	
	(1) 0 (2) $\frac{\pi}{4}$ (3) ∞ (4) $\frac{\pi}{12}$
Sol.		
	$\int_{0}^{\pi/2} \frac{1 - \cot x}{\cos e c x + \cos x} dx$	
	$\Rightarrow \int_{0}^{\pi/2} \frac{1 - \frac{\cos x}{\sin x}}{\frac{1}{\sin x} + \cos x} dx$	
	$I = \int_{0}^{\pi/2} \frac{\sin x - \cos x}{1 + \sin x \cos x} dx$	(1) Using property
	$I = \int_{0}^{\pi/2} \frac{\cos x - \sin x}{1 + \sin x \cos x} dx$	(2)

Adding both equation (1) and (2)

$$2I = \int_{0}^{\pi/2} \frac{0}{1 + \sin x \cos x} dx$$

I = 0 Option (1)

Resonance Eduventures Ltd.

 REGISTERED & CORPORATE OFFICE : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

 Ph.No. : 7728890131 | 7728890101 | FAX No. : +91-022-39167222 |

 7728890101 | 7728890131
 Website : www.resonance.ac.in/cuet | E-mail : pspd@resonance.ac.in | <u>CIN: U80302RJ2007PLC024029</u>

 Toll Free : 1800 258 5555 [7728890101] facebook.com/ResonanceEdu] www.youtube.com/resowatch] blog.resonance.ac.in

PAGE # 10

Resonance[®] Pre-university & School PSPD

CUET (UG) 2024 | DATE : 16-MAY-2024 | PAPER & SOLUTIONS

If the random variable X has the following distribution : 25.

Х	0	1	2	otherwise
P(X)	k	2k	3k	0

Match List-I with List-II :

List-I		List-II	
(A)	k	(1)	5
. ,		~ /	6
(B)	P(X < 2)	(II)	$\frac{4}{3}$
(C)	E(X)	(III)	$\frac{1}{2}$
(D)	P(1 ≤ X ≤2)	(IV)	$\frac{1}{6}$

Choose the correct answer from the options given below :

	(1) (A) - (I), (B) - (II), (C) - (III), (D) - (IV) (3) (A) - (I), (B) - (II), (C) - (IV), (D) - (III)	(2) (A) - (IV), (B) - (III), (C) - (II), (D) - (I) (4) (A) - (III), (B) - (IV), (C) - (I), (D) - (II)				
Ans.	(2)					
Sol.	Here $k + 2k + 3k + 0 = 1$					
	$K = \frac{1}{6}$					
	$P(x < 2) = k + 2k = \frac{1}{6} + \frac{2}{6} = \frac{1}{2}$					
	$(x) = \frac{4}{3}$					
	and P(1 $\leq x \leq 2$) $\Rightarrow \frac{5}{6}$ Option (2)					
26.	For a square matrix A _{nxn}					
	(A) $ adj. A = A ^{n-1}$	(B) $ A = Adj. A ^{n-1}$				
	(C) $A(adj A) = A $	(D) $ A^{-1} = \frac{1}{ A }$				
	Choose the correct answer from the options given below :					
	(1) (B) and (D) only	(2) (A) and (D) only				
Ane	(3) (A) (C) and (D) only	(4) (B) (C) and (D) only				

Ans. (2)

According to standard properties of adjoint of matrix (A), (C) and (D) only option (3) correct. Sol.

Resonance Eduventures Ltd.

REGISTERED & CORPORATE OFFICE : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph.No.: 7728890131 | 7728890101 | FAX No.: +91-022-39167222 | 9 7728890101 | 7728890131 Website : www.resonance.ac.in/cuet | E-mail : pspd@resonance.ac.in | CIN: U80302RJ2007PLC024029 Toll Free : 1800 258 5555 💿 7728890101 🧗 facebook.com/ResonanceEdu 💟 twitter.com/ResonanceEdu 🛅 www.youtube.com/resowatch blog.resonance.ac.in

This solution was download from Resonance CUET 2024 Solution portal

28. The feasible region represented by the constraints $4x + y \ge 80$, $x + 5y \ge 115$, $3x + 2y \le 150$, $x, y \ge 0$ an LPP is

- Ans. (3)
- **Sol.** According to graph the common feasible region is C part option (3).

Resonance Eduventures Ltd.

This solution was download from Resonance CUET 2024 Solution portal

Resonance Eduventures Ltd.

 REGISTERED & CORPORATE OFFICE : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

 Ph.No. : 7728890131 | 7728890101 | FAX No. : +91-022-39167222 |

 7728890101 | 7728890131
 Website : www.resonance.ac.in/cuet | E-mail : pspd@resonance.ac.in | CIN: U80302RJ2007PLC024029

 Toll Free : 1800 258 5555 [7728890101] facbook.com/ResonanceEdu] tutter.com/ResonanceEdu] www.youtube.com/resowatch] blog.resonance.ac.in

	SONANCE®	Pre-university & School PSPD Proparatory Division	CUET	(UG) 2024	DATE : 1	6-MAY-20	24 PAPER	& SOLUTIONS
31.	If f(x), defined by f(x) = $\begin{cases} kx + 1 & \text{if } x \le \pi \\ \cos x & \text{if } x > \pi \end{cases}$ is continuous at x = π , then the value of k is:							
	(1) 0		(2) π	(3)	$\frac{\pi}{2}$		$(4) - \frac{\pi}{2}$	
Ans.	(4)							
Sol.	It is cor	$\begin{array}{ll} \text{ntinuos at } x = \pi \\ \therefore \qquad \text{LHS} = F \end{array}$	RHS					
		$\Rightarrow \pi k + 1$	= Cos (π)					
		$\Rightarrow \pi k + 1$	= -1					
		$\Rightarrow \pi k = -2$	2					
		$k = \frac{-2}{\pi}$						
		Option -	- 4					
	Г	1]						
32.	lf P =	2 and Q = [2	-4 1] are tw	o matrices, tl	nen (PQ)' v	will be		
	$II P = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ and $Q = \begin{bmatrix} 2 \\ -4 \end{bmatrix}$ If are two matrices, then (PQ) will be							
	4	5 7	-2 4	2	5 5	2	_−2 4	8
	(1)	$\begin{bmatrix} -3 & 0 \\ -3 & -2 \end{bmatrix}$	(2) $\begin{bmatrix} 4 & -8 \\ -1 & 2 \end{bmatrix}$	$\begin{bmatrix} -4 \\ 1 \end{bmatrix}$ (3)	7 6 -9 -7	0	$(4) \begin{bmatrix} 7 & 5 \\ -8 & -2 \end{bmatrix}$	6
Ans.	(2)							
	-1	1						
Sol.	$\begin{vmatrix} 2 \\ 1 \end{vmatrix}$	-4 1]						
		$\left[-2\right]$	4 -1]					
		$PQ \Rightarrow 4 -$	-8 2					
		2 -	-4 1					
		(-2)	4 2					
		$(PQ)' = \begin{vmatrix} 4 & -1 \\ -1 & \end{vmatrix}$	$ \begin{bmatrix} -8 & -4 \\ 2 & 1 \end{bmatrix} $					
		∟ Option - 2	L					
		•						

Resonance Eduventures Ltd. REGISTERED & CORPORATE OFFICE : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph.No. : 7728890131 | 7728890101 | FAX No. : +91-022-39167222 | 7728890101 | 7728890131

Resonance® Pre-university & School PSPD

cos x 1 1 1 - cos x cos x 33. $\Delta =$ -1 - cos x 1 (A) $\Delta = 2(1-\cos^2 x)$ (B) $\Delta = 2(2 - \sin^2 x)$ (C) Minimum value of Δ is 2 (D) Maximum value of Δ is 4 Choose the correct answer from the options given below: (1) (A), (C) and (D) only (2) (A), (B) and (C) only (4) (B), (C) and (D) only (3) (A), (B), (C) and (D) (4) $\Delta = \begin{bmatrix} 1 & Cosx & 1 \\ -Cosx & 1 & Cosx \\ -1 & -Cosx & 1 \end{bmatrix}$ $\Delta = 2[2 - Sin^2 x]$ Thus of Δ is 4 Ans. (4) Sol. Option – 4 $f(x) = \sin x + \frac{1}{2} \cos 2x \text{ in } \left[0, \frac{\pi}{2}\right]$ 34. (A) $f'(x) = \cos x - \sin 2x$ (B) The critical points of the function are $x = \frac{\pi}{6}$ and $x = \frac{\pi}{2}$ (C) The minimum value of the functions is 2 (D) The maximum value of the function is $\frac{3}{4}$ Choose the correct answer from the option given below: (1) (A), (B) and (D) only (2) (A), (B) and (C) only (3) (A), (B), (C) and (D) (4) (B), (C) and (D) only (1) Ans. $f(x) = Sinx + \frac{1}{2}Cos2x$ Sol. f'(x) = Cosx - Sin2xFor critical point. f'(x) = 0Cosx - 2SinxCosx = 0Cosx[1-2Sinx]=0Cosx=0 or $Sinx=\frac{1}{2}$ $x = \frac{\pi}{2}$ or $x = \frac{\pi}{6}$

Resonance Eduventures Ltd.

 REGISTERED & CORPORATE OFFICE : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

 Ph.No. : 7728890131 | 7728890101 | FAX No. : +91-022-39167222 |

 7728890101 | 7728890131
 Website : www.resonance.ac.in/cuet | E-mail : pspd@resonance.ac.in | <u>CIN: U80302RJ2007PLC024029</u>

 Toll Free : 1800 258 5555

 7728890101
 facebook.com/ResonanceEdu
 twitter.com/ResonanceEdu
 twitter.com/ResonanceEdu
 twitter.com/ResonanceEdu

 twitter.com/ResonanceEdu
 twitter.com/ResonanceEdu
 twitter.com/ResonanceEdu

 twitter.com/ResonanceEdu
 twitter.com/ResonanceEdu
 twitter.com/ResonanceEdu
 twitter.com/ResonanceEdu

 twitter.com/ResonanceEdu
 twitter.com/ResonanceEdu
 twitter.com/ResonanceEdu

 twitter.com/ResonanceEdu
 twitter.com/ResonanceEdu
 twitter.com/ResonanceEdu

 twitter.com/ResonanceEdu
 twitter.com/ResonanceEdu
 twitter.com/ResonanceEdu
 twitter.com/ResonanceEdu

 twitter.com/ResonanceEdu
 twitter.com/ResonanceEdu
 twitter.com/ResonanceEdu

This solution was download from Resonance CUET 2024 Solution portal F

Resonance® Pre-university & School PSPD

35. The direction cosines of the line which is perpendicular to the lines with direction ration 1, -2, -2 and 0, 2, 1 are:

(1) $\frac{2}{3}, -\frac{1}{3}, \frac{2}{3}$ (2) $-\frac{2}{3}, -\frac{2}{3}, -\frac{2}{3$	$-\frac{1}{3},\frac{2}{3}$ (3) $\frac{2}{3},-\frac{1}{3}$	$-\frac{2}{3}$ (4)	$\frac{2}{3}, \frac{1}{3}, \frac{2}{3}$
--	---	--------------------	---

Ans. (1)

Sol. let ℓ , m, n be the direction cosines of lines

 $\ell - 2m - 2n = 0$ $\ell + 2m + n = 0$

on solving equation, we get

$$\frac{\ell}{2}=\frac{m}{-1}=\frac{n}{2}$$

direction ration of lines are proportional to 2, -1, 2

- \therefore direction cosines are $\frac{2}{3}, \frac{-1}{3}, \frac{2}{3}$
- **36.** Let X denote the number of hours you play during a randomly selected day. The probability that X can take values x has the following form, where c is some constant.

$$p(X = x) = \begin{cases} 0.1 & , & \text{if } x = 0 \\ cx & , & \text{if } x = 1 \text{ or } x = 2 \\ c(5 - x) , & \text{if } x = 3 \text{ or } x = 4 \\ 0 & , & \text{otherwise} \end{cases}$$

Match List-I with List-II :

List-I	List-II
(A) c	(I) 0.75
(B) P(X ≤ 2)	(II) 0.3
(C) P(X = 2)	(III) 0.55
(D) P(X ≥ 2)	(IV) 0.15

Choose the correct answer from the options given below :

(1) (A) - (I), (B) - (II), (C) - (III), (D) - (IV)	
(3) (A) - (I), (B) - (II), (C) - (IV), (D) - (III)	
(2)	

(2) (A) - (IV), (B) - (III), (C) - (II), (D) - (I) (4) (A) - (III), (B) - (IV), (C) - (I), (D) - (II)

Ans.

Sol. \Rightarrow

⇒ P(x = 0) + P(x = 1) + P(x = 2) + P(x = 3) + P(x = 4) = 1⇒ 0.1 + c + 2c + 2c + c = 1⇒ 6c = 0.9

$$c = \frac{0.9}{6} = 0.15$$

 $\sum_{i=1}^{4} P(x) = 1$

 REGISTERED & CORPORATE OFFICE : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

 Ph.No. : 7728890131 | 7728890101 | FAX No. : +91-022-39167222 | ⊙ 7728890101 | 7728890131

 Website : www.resonance.ac.in/cuet | E-mail : pspd@resonance.ac.in | CIN: U80302RJ2007PLC024029

 Toll Free : 1800 258 5555

 7728890101

 f facebook.com/Resonance.Edu

 www.youtube.com/resowatch

 Ch. blog.resonance.ac.in

This solution was download from Resonance CUET 2024 Solution portal

Resonance[®] Frequencies for better formarrow

If sin y = x sin (a + y), then $\frac{dy}{dx}$ is : 37.

(1)
$$\frac{\sin^2 a}{\sin(a+y)}$$
 (2) $\frac{\sin(a+y)}{\sin^2 a}$ (3) $\frac{\sin(a+y)}{\sin a}$ (4) $\frac{\sin^2(a+y)}{\sin a}$

(4) Ans.

 $\sin y = x \sin (a + y)$ Sol.

differentiate wrt x

$$\cos y \frac{dy}{dx} = x \cos (a + y) \frac{dy}{dx} + \sin (a + y).1$$
$$\frac{dy}{dx} = \frac{\sin(a + y)}{\cos y - x \cos(a + y)} \quad \text{now put}$$
$$\therefore x = \frac{\sin y}{\sin(a + y)}$$

$$\therefore \frac{dy}{dx} = \frac{\sin^2(a+y)}{\sin a} \begin{cases} u \sin g \\ \sin(A-B) \end{cases} = \sin A \cos B - \cos A \sin B$$

38. The unit vector perpendicular to each of the vectors $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$, where $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ and

$$\vec{b} = \hat{i} + 2\hat{j} + 3\hat{k} , \text{ is :}$$

$$(1) \frac{1}{\sqrt{6}}\hat{i} + \frac{2}{\sqrt{6}}\hat{j} + \frac{1}{\sqrt{6}}\hat{k}$$

$$(2) -\frac{1}{\sqrt{6}}\hat{i} + \frac{1}{\sqrt{6}}\hat{j} - \frac{1}{\sqrt{6}}\hat{k}$$

$$(3) -\frac{1}{\sqrt{6}}\hat{i} + \frac{2}{\sqrt{6}}\hat{j} + \frac{2}{\sqrt{6}}\hat{k}$$

$$(4) -\frac{1}{\sqrt{6}}\hat{i} + \frac{2}{\sqrt{6}}\hat{j} - \frac{1}{\sqrt{6}}\hat{k}$$

$$(4)$$

$$(4) -\frac{1}{\sqrt{6}}\hat{i} + \frac{2}{\sqrt{6}}\hat{j} - \frac{1}{\sqrt{6}}\hat{k}$$

$$(4)$$

Ans.

Sol.

$$\vec{a} - \vec{b} = -\hat{j} - 2\hat{k}$$
$$(\vec{a} + \vec{b}) \times (\vec{a} - \vec{b}) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 4 \\ 0 & -1 & -2 \end{vmatrix}$$
$$\Rightarrow -2\hat{i} + 4\hat{j} - 2\hat{k}$$

^

Unit perpendicular vector *.*..

$$\Rightarrow \frac{-2\hat{i}+4\hat{j}-2\hat{k}}{\sqrt{24}}$$

Resonance Eduventures Ltd.

REGISTERED & CORPORATE OFFICE : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph.No.: 7728890131 | 7728890101 | FAX No.: +91-022-39167222 | 9 7728890101 | 7728890131 Website : www.resonance.ac.in/cuet | E-mail : pspd@resonance.ac.in | CIN: U80302RJ2007PLC024029 Toll Free : 1800 258 5555 💿 7728890101 🧗 facebook.com/ResonanceEdu 💟 twitter.com/ResonanceEdu 🛅 www.youtube.com/resowatch blog.resonance.ac.in

This solution was download from Resonance CUET 2024 Solution portal

	Ser batter formervow Preparatory Division PSPD CUET (UG) 20	024 DATE : 16-MAY-2024 PAPER & SOLUTIONS
39.	The distance between the lines $\ \vec{r}=\hat{i}-2\hat{j}+3\hat{k}+$	$\lambda \left(2\hat{i} + 3\hat{j} + 6\hat{k} \right) \text{ and } \vec{r} = 3\hat{i} - 2\hat{j} + 1\hat{k} + \mu \left(4\hat{i} + 6\hat{j} + 12\hat{k} \right) \text{ is } :$
	(1) $\frac{\sqrt{28}}{7}$ (2) $\frac{\sqrt{99}}{7}$	(3) $\frac{\sqrt{328}}{7}$ (4) $\frac{\sqrt{421}}{7}$
Ans.	(3)	
Sol.	$\vec{r} = \hat{i} - 2\hat{j} + 3\hat{k} + \lambda \left(2\hat{i} + 3\hat{j} + 6\hat{k}\right)$	
	$\vec{r} = 3\hat{i} - 2\hat{j} + \hat{k} + \mu \Big(4\hat{i} + 6\hat{j} + 12\hat{k} \Big)$	
	Both are parallel lines.	
	∴ distance d = $\left \frac{\vec{b} \times (\vec{a}_2 - \vec{a}_1)}{ \vec{b} } \right $	
	$\Rightarrow \vec{a}_2 - \vec{a}_1 = 2\hat{i} - 2\hat{k}$	
	$ \therefore \vec{\mathbf{b}} \times (\vec{\mathbf{a}}_2 - \vec{\mathbf{a}}_1) = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 2 & 3 & 6 \\ 2 & 0 & -2 \end{vmatrix} $	
	$= -6\hat{i} + 16\hat{j} - 6\hat{k}$	
	$\Rightarrow \sqrt{36 + 256 + 36}$	
	$\Rightarrow \sqrt{36 + 256 + 36}$	
	\therefore distance $\Rightarrow \frac{\sqrt{328}}{7}$ option (3)	
40.	If $f(x) = 2\left(\tan^{-1}(e^{x}) - \frac{\pi}{4}\right)$, then $f(x)$ is :	
	(1) even and is strictly increasing in $(0,\infty)$	(2) even and is strictly decreasing in $(0,\infty)$
	(3) odd and is strictly increasing in $(-\infty,\infty)$	(4) odd and is strictly decreasing in $(-\infty,\infty)$
Ans.	(3)	
Sol.	$f(x) = 2\left[\tan^{-1}(e^x) - \frac{\pi}{4}\right]$	
	$f'x = 2\left[\frac{1}{1+e^{2x}} \cdot e^{x} - 0\right]$	

- $f'(x) = \frac{2e^x}{1 + e^{2x}} > 0 \quad {:: e^x.0}$
- \therefore It is strictly increasing and this is odd function.

Resonance Eduventures Ltd.

 REGISTERED & CORPORATE OFFICE : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

 Ph.No. : 7728890131 | 7728890101 | FAX No. : +91-022-39167222 |

 Yebsite : www.resonance.ac.in/cuet | E-mail : pspd@resonance.ac.in | CIN: U80302RJ2007PLC024029

 Toll Free : 1800 258 5555
 7728890101 | facebook.com/ResonanceEdu

PAGE # 18

Resonance[®] Pre-university & School PSPD

CUET (UG) 2024 | DATE : 16-MAY-2024 | PAPER & SOLUTIONS

41. For the differential equation $(x \log_e x) dy = (\log_e x - y) dx$ (A) Degree of the given differential equation is 1. (B) It is a homogeneous differential equation. (C) Solution is $2y \log_e x + A = = (\log_e x)^2$, where A is an arbitrary constant (D) Solution is $2y \log_e x + A = \log_e (\log_e x)$, where A is an arbitrary constant Choose the correct answer from the options given below : (1) (A) and (C) only (3) (A), (B) and (D) only (2) (A), (B) and (C) only (4) (A) and (D) onlys Ans. (1) Sol. $(x \log x)dy = (\log_e x - y)dx$ $\frac{dy}{dx} = \frac{\log x - y}{x \log x}$ $\Rightarrow \qquad \frac{\mathrm{dy}}{\mathrm{dx}} = \frac{1}{\mathrm{x}} - \frac{\mathrm{y}}{\mathrm{x}\mathrm{logx}}$ $\frac{\mathrm{dy}}{\mathrm{dx}} + \frac{\mathrm{y}}{\mathrm{x \log x}} = \frac{1}{\mathrm{x}}$ $\mathsf{P} = \frac{1}{x \log x}; \frac{1}{x}$ I.F. = $e^{\int Pdx} = e^{\int \frac{1}{x \log x} dx} = e^{\ell_n} (\log x) = \log x$ $y \times I.F. = \int I.F. \times Q \, dx + C$.:. Solution $y \times \log x = \int \log x \cdot \frac{1}{x} dx$ (using ILATE) \Rightarrow $y \log x = \frac{1}{2}(\log x)^2 + C \implies 2y \log x = (\log x)^2$ \Rightarrow

42. There are two bags, Bag-1 contains 4 white and 6 black balls and Bag-2 contains 5 white and 5 black balls A die is rolled, if it shows a number divisible by 3, a ball is drawn from Bag-I, else a ball is drawn from Bag-2, If the ball drawn is not black in colour, the probability that it was not drawn from Bag-2 is :

(3) $\frac{2}{7}$

(4) 19

(1)
$$\frac{4}{9}$$
 (2) $\frac{3}{8}$

Ans. (2)

Sol. let E₁ be the event that a ball is drawn from first bag. let E₂ be the event that a ball is drawn from second bag.

∴
$$P(E_1) = \frac{2}{6} = \frac{1}{3}$$
 ; $P(E_2) = \frac{2}{3}$

Let A = Ball is drawn black ball

$$\mathsf{P}(\mathsf{A}) = \frac{1}{3} \times \frac{6}{10} + \frac{2}{3} \times \frac{5}{10} = \frac{16}{30}$$

Probability of ball is drawn second bag ÷.

$$\mathsf{P}\left(\frac{\mathsf{E}_2}{\mathsf{A}}\right) = \frac{\frac{2}{3} \times \frac{5}{20}}{\frac{16}{30}} \Rightarrow \frac{10}{16}$$

Ball is not drawn from Bag 2. *.*..

$$\Rightarrow \qquad 1 - \frac{10}{16} \Rightarrow \qquad \frac{6}{16} = \frac{3}{8}$$

Resonance Eduventures Ltd.

REGISTERED & CORPORATE OFFICE : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph.No.: 7728890131 | 7728890101 | FAX No.: +91-022-39167222 | 💿 7728890101 | 7728890131 Website : www.resonance.ac.in/cuet | E-mail : pspd@resonance.ac.in | CIN: U80302RJ2007PLC024029 Toll Free : 1800 258 5555 💿 7728890101 👫 facebook.com/ResonanceEdu 💟 twitter.com/ResonanceEdu 腸 www.youtube.com/resowatch blog.resonance.ac.in

Resonance[®] Pre-university & School PSPD CUET (UG) 20

CUET (UG) 2024 | DATE : 16-MAY-2024 | PAPER & SOLUTIONS

Which of the following *cannot* be the direction ratios of the straight line $\frac{x-3}{2} = \frac{2-y}{3} = \frac{z+4}{-1}$? 43. (1) 2, -3, -1(2) - 2, 3, 1(3) 2, 3, -1(4) 6, -9, -3Ans. (3) $\frac{x-3}{2} = \frac{2-y}{3} = \frac{z+4}{-1}$ Sol. $\frac{x-3}{2} = \frac{y-2}{-3} = \frac{z+4}{-1}$ Here direction Ratio \Rightarrow 2, -3, -1 then 2, 3, -1 can not be direction Ratio. 44. Which one of the following represents the correct feasible region determined by the following constraints of an LPP? $x + y \ge 10, 2x + 2y \le 25, x \ge 0, y \ge 0$ (3) (4) Ans. (3) Sol. $x + y \ge 10$, $2x + 2y \le 25$, $x \ge 0$, $y \ge 0$... Option (3) is correct Let R be the relation over the set A of all straight lines in a plane such that $I_1 R I_2 \Leftrightarrow I_1$ is parallel to I_2 . 45. Then R is: (2) An Equivalence relation (1) Symmetric (3) Transitive (4) Reflexive Ans. (2) Sol. ℓ_1 is parallel to ℓ_2 for reflexive. $\ell_1, \mathbf{R}, \ell_2 \Leftrightarrow$ $(\ell_1, \ell_2) \in \mathbf{R})$ ℓ_1 is parellel to ℓ_1 for symmetric : $(\ell_1, \ell_2) \in \mathbb{R} \Rightarrow (\ell_2, \ell_1) \in \mathbb{R}$ It is also true. For transitive : $(\ell_1, \ell_2) \in \mathbb{R} \& (\ell_2, \ell_3) \in \mathbb{R} \Rightarrow (\ell_1, \ell_3) \in \mathbb{R}$ It is also true. ÷. It is an equivalance relation.

Resonance Eduventures Ltd.

 REGISTERED & CORPORATE OFFICE : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

 Ph.No. : 7728890131 | 7728890101 | FAX No. : +91-022-39167222 |

 7728890101 | 7728890131
 Website : www.resonance.ac.in/cuet | E-mail : pspd@resonance.ac.in | <u>CIN: U80302RJ2007PLC024029</u>

 Toll Free : 1800 258 5555

 7728890101
 facebook.com/ResonanceEdu
 twitter.com/ResonanceEdu
 twitter.com/ResonanceEdu
 twitter.com/ResonanceEdu

 twitter.com/ResonanceEdu
 twitter.com/ResonanceEdu
 twitter.com/ResonanceEdu

 twitter.com/ResonanceEdu
 twitter.com/ResonanceEdu
 twitter.com/ResonanceEdu
 twitter.com/ResonanceEdu

 twitter.com/ResonanceEdu
 twitter.com/ResonanceEdu
 twitter.com/ResonanceEdu

 twitter.com/ResonanceEdu
 twitter.com/ResonanceEdu
 twitter.com/ResonanceEdu

 twitter.com/ResonanceEdu
 twitter.com/ResonanceEdu
 twitter.com/ResonanceEdu
 twitter.com/ResonanceEdu

 twitter.com/ResonanceEdu
 twitter.com/ResonanceEdu
 twitter.com/ResonanceEdu

This solution was download from Resonance CUET 2024 Solution portal

	sonance	Preparatory Division PSPD	CUET (UG) 2	024 DATE : 16-MAY-2	024 PAPER & SOLUTIONS	
46.	The pro	bability of not gett	ing 53 Tuesdays in a	leap year is:		_
	(1) 2/7	, j (j	2) 1/7	(3) 0	(4) 5/7	
Ans.	(4)	,	,		(<i>)</i>	
Sol.	Total da	ays in leap year \Rightarrow	366 days.			
	\Rightarrow 52 w	veeks + 2 davs	·			
	Probab	ility of not aetting 5	53 Tuesday			
	110000	ເງ ol not gotting t	5			
	in leap	year $\Rightarrow 1 - \frac{2}{7} =$	$\Rightarrow \frac{3}{7}$			
		(1			
47	The en	ala batwaan two lir	oc whose direction r	ation are proportional to 1	1 2 and	
47.			les whose direction is		1, -z aliu	
	(√3−1)	$(-\sqrt{3}-1) = 4 + 15$.				
	(1) $\frac{\pi}{1}$	(2	2) π	(3) $\frac{\pi}{2}$	(4) $\frac{\pi}{2}$	
_	3			6	2	
Ans.	(1)					
Sol.	$\cos\theta =$	$a_1a_2 + b_1b_2 +$	- c ₁ c ₂			
		$\sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2}$	$+b_2^2+c_2^2$			
	-	$(\sqrt{3} - 1) \cdot 1 + (-\sqrt{3})$	_1).1+8			
	$\cos\theta =$	$\frac{(\sqrt{3}-1)^{1}+(-\sqrt{3}+1)^{2}}{\sqrt{6}\sqrt{24}}$	- 1) 1+0			
		1				
	$\cos\theta =$	<u>-</u>				
	_	2				
	$\theta = \frac{\pi}{2}$					
	5					
48.	lf (ā−b	$(\vec{a} + \vec{b}) = 27$ and	$ \mathbf{a} = 2 \mathbf{b} $, then $ \mathbf{b} $ is :			
	(1) 3	(2	2) 2	(3) 5/6	(4) 6	
Ans.	(1)					
Sol.	$(\vec{a} - \vec{b}).$	$\left(\vec{a} + \vec{b}\right) = 27$				
		$\left \overrightarrow{\mathbf{L}} \right ^2 \left \overrightarrow{\mathbf{L}} \right ^2$ 07				
	\Rightarrow	a - b = 27				
		$\left \frac{1}{2} \right ^2 \left \frac{1}{2} \right ^2$				
	\Rightarrow	4 b - b = 27				
		l→l ²				
	\Rightarrow	3 b = 27				
		→ 2				
	\Rightarrow	b = 9				
		→ 2				
	\Rightarrow	b = 3				

Resonance Eduventures Ltd.

This solution was download from Resonance CUET 2024 Solution portal

Resonance[®] Pre-university & School PSPD

CUET (UG) 2024 | DATE : 16-MAY-2024 | PAPER & SOLUTIONS

If $\tan^{-1}\left(\frac{2}{3^{-x}+1}\right) = \cot^{-1}\left(\frac{3}{3^{x}+1}\right)$, then which one of the following is 'true? 49. (1) There is no real value of x satisfying the above equation. (2) There is one positive and one negative real value of x satisfying the above equations. (3) There are two real positive values of x satisfying the above equation. (4) There are two real negative values of x satisfying the above equation. (1) Ans. $\tan^{-1}\left(\frac{2}{2^{-x}+1}\right) = \cot^{-1}\left(\frac{3}{2^{-x}+1}\right)$ Sol.

 $\cot^{-1}\left(\frac{3^{-x}+1}{2}\right) = \cot^{-1}\left(\frac{3}{3^{x}+1}\right)$ $\therefore \qquad \frac{3^{-x}+1}{2} = \frac{3}{3^{x}+1}$ $\frac{1\!+\!3^x}{2.3^x}\!=\!\frac{3}{3^x+1}$ $3^{x} + 1 + 3^{2x} + 3^{x} = 6.3^{x}$ $2.3^{x} + 1 + 3^{2x} = 6.3^{x}$ \therefore there is no read value of x satisfying the above equation. If A, B and C are three singular matrices given by A = $\begin{bmatrix} 1 & 4 \\ 3 & 2a \end{bmatrix}$, B = $\begin{bmatrix} 3b & 5 \\ a & 2 \end{bmatrix}$ 50. and $C = \begin{bmatrix} a+b+c & c+1 \\ a+c & c \end{bmatrix}$, then the value of abc is : (1) 15 (2) 30(3) 45 (4) 90Ans. (3) $A = \begin{pmatrix} 1 & 4 \\ 3 & 2a \end{pmatrix}; \quad B = \begin{pmatrix} 3b & 5 \\ a & 2 \end{pmatrix}$ Sol. $C = \begin{pmatrix} a+b+c & c+1 \\ a+c & c \end{pmatrix}$ Matrices are singular |A| = 0*.*.. 2a - 12 = 0a = 6 |B| = 06b - 5a = 0b = 5 |C| = 0 \Rightarrow c(a + b + c) - (c + 1) (a + c) = 0c(6 + 5 + c) - (c + 1) (6 + c) = 0 \Rightarrow 4c - 6 = 0 \Rightarrow $c = \frac{3}{2}$ *.*:. abc $\Rightarrow 6 \times 5 \times \frac{3}{2}$

Stay Connected For More details about CUET (UG)

Resonance Eduventures Ltd.

REGISTERED & CORPORATE OFFICE : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph.No.: 7728890131 | 7728890101 | FAX No.: +91-022-39167222 | 💿 7728890101 | 7728890131 Website : www.resonance.ac.in/cuet | E-mail : pspd@resonance.ac.in | CIN: U80302RJ2007PLC024029 Toll Free : 1800 258 5555 💿 7728890101 👫 facebook.com/ResonanceEdu 💟 twitter.com/ResonanceEdu 腸 www.youtube.com/resowatch blog.resonance.ac.in

This solution was download from Resonance CUET 2024 Solution portal