SARANSH | BIOLOGY

BIOLOGY

DAILY PRACTICE PROBLEMS

DPP NO.

TARGET : NEET (UG) 2024

Course : SARANSH (Youtube Live CRASH COURSE)

4.

5.

8.

9.

ZOOLOGY: BREATHING AND EXCHANGE OF GASES

DPP No. : 1

1. Select the correct statement w.r.t. regulation of respiration (1) Role of oxygen in regulation of respiratory rhythm is insignificant (2) Chemosensitive area is highly sensitive to O₂ and hydrogen ions (3) Medulla region of the brain has Pneumotaxic centre (4) Respiratory rhythm centre is the pons varolli region of brain can reduce duration of inspiration 2. Respiratory organs in scorpions are (1) gills (2) book lungs (3) skin (4) book gills 3. In which of the following gaseous exchange between O₂ and CO₂ occurs through general body surface? (1) sponges (2) coelentrates (3) flatworms (4) All Emphysema is characterized by (1) destruction of alveolar wall (2) pulmonary haemorrhage (3) Increased number of air sacs (4) Infection of Mycobacterium trabeculae Trachea divides into right and left primary bronchi at___ thoracic vertebra. (1) 4(2)5(3) 6(4) 9The trachea is prevented from collapsing by the presence of the_____ rings 6. (1) Striated muscles (2) cartilage (3) bonv (4) sinus 7. Additional muscles for forceful breathing are (1) Diaphragm and external intercostal muscles (2) Abdominal muscles and internal intercostal muscles (3) Diaphragm and abdominal muscles (4) External and internal intercostal muscles During inspiration, the muscles of diaphragm (1) Contract to make the diaphragm dome shaped (2) Contract to make the diaphragm flat (3) Relax to make the diaphragm dome shaped (4) Relax to make the diaphragm flat Identify the incorrect statement w.r.t. mechanism of breathing (1) Inspiration in mammals is an active process (2) Inspiration can occur if intra-pulmonary pressure is more than the atmospheric pressure (3) Expiration can occur if intra-pulmonary pressure is higher than the atmospheric pressure (4) Inspiration is initiated by the contraction of diaphragm

- 10. Volume / capacity of air remianing in lungs after maximum respiratory effect is
 (1) Vital capacity
 (2) residual volume
 (3) Total lung capacity
 (4) tidal volume
- **11.** Total volume of air a person can inspire after a normal expiration is
 - (1) Expiratory capacity

- (2) Inspiratory capacity
- (3) Functional residual capacity
- (4) Expiratory reserve volume

- **12.** Exchange of gases
 - (1) Occurs between the alveoli and pulmonary blood capillary
 - (2) Occurs between blood and tissues
 - (3) By diffusion
 - (4) All
- 13. O_2 Hb dissociation curve may shift to right, when
 - (1) PCO_2 is low, temperature is high and pH is lower than normal
 - (2) PCO_2 and temperature are high and pH is lower than normal
 - (3) PCO_2 and temperature are low and pH is higher than normal
 - (4) PCO₂, temperature and pH are changed and show higher than normal
- **14.** During oxygen transport the oxyhaemoglobin, at the tissue level liberates oxygen to the cells because in tissue
 - (1) O_2 concentration is high and CO_2 is low
 - (2) O_2 concentration is low and CO_2 is not high
 - (3) O_2 tension is high and CO_2 tension is low
 - (4) O₂ tension is low and CO₂ tension is high
- 15. What would happen if human blood becomes acidic (low pH)?
 - (1) Oxygen carrying capacity of haemoglobin increases
 - (2) Oxygen carrying capacity of haemoglobin decreases
 - (3) RBCs count increases
 - (4) RBCs count decreases
- 16. Hb-Oxygen dissociation curve is (1) J-shaped (2) S-shaped (3) L-shaped (4) Zig-zag 17. Besides RBC blood plasma also carries O₂ in solution. The percentage is (1) 3% (2) 97% (3) 49% (4) 25% Amount of O₂ normally carried by 100 ml of oxygenated blood: 18. (1) 10 ml (2) 20 ml (3) 30 ml (4) 40 ml 19. The partial pressure of oxygen in alveolar air and oxygenated blood respectively. (1) 40 mm Hg, 45 mm Hg (2) 104 mm Hg, 95 mm Hg (3) 159 mm Hg, 104 mm Hg (4) 104 mm Hg, 40 mm Hg
- Expiration takes place when the Intrapulmonary pressure is
 (1) Greater than the atmospheric pressure
 (2) Lesser than the atmospheric pressure
 (3) Equal to atmospheric pressure
 (4) Equal to intrapleural pressure

