

TARGET: NEET (UG) 2024

Course: SARANSH (Youtube Live CRASH COURSE)

Organic Chemistry: Some Basic Principles and Techniques

DPP No.: 3

SR. No.	DPPs Qs. Details		Marking Scheme				Time Details	
	Type of Questions	Code	Full	(–)ve	Total	Total	Qs Time	Max. Time
			Marks	Marks	Ques.	Marks	(in Min.) for Each Qs	(in Min.)
1	MULTIPLE CHOICE QUESTION (ONLY ONE CORRECT OPTION)	MCQ	4	-1	10	40	1	10
	Total				10	40		10

1. Hyperconjugation is possible in which of the following species?

(1) CH₃ -
$$\overset{9}{\text{C}}$$
H₂

$$(4) \begin{array}{c} {\rm CH_3} \\ {\rm |} \\ {\rm CH_3} - {\rm C} - {\rm CH_2} \\ {\rm |} \\ {\rm CH_3} \end{array}$$

2. How many dichloro cyclobutane are possible

3. Which of the following alkenes will show maximum number of hyperconjugation forms?

(3)
$$H \subset C = C \subset CH_3$$

4. Hyperconjugation phenomenon is possible in :

$$CH_3$$

$$CH_3 - C - CH = CH_2$$

$$CH_3$$

$$CH_3$$

(1) C

(2) $CH_2 = CH_2$

(3) $C_6H_5 - CH = CH_2$

(4) $CH_3 - CH_2 - CH = CH_2$

5. What is the % s character in hybridisation of carbon when it exerts strongest -I effect?

6.
$$CH_2 = CH - CH = CH_2$$

$$\overset{\Theta}{\mathsf{CH}}_2 - \mathsf{CH} = \mathsf{CH} - \overset{\oplus}{\mathsf{CH}}_2$$

$$\overset{\Theta}{\mathsf{CH}}_2-\mathsf{CH}=\overset{\Theta}{\mathsf{CH}}-\overset{\Theta}{\mathsf{CH}}_2$$
 $\overset{\Theta}{\mathsf{CH}}_2-\mathsf{CH}=\overset{\Theta}{\mathsf{CH}}-\overset{\Theta}{\mathsf{CH}}_2$

Among these which are cannonical structures?

7. Isomers have essentially identical:

8. Isopentane and Neopentane are:

9. Resonance is not possible in

(1)
$$CH_2 = NH_2$$

(2)
$$CH_3CH = C = CH_2$$

10. The most unlikely representation of resonance structures of fluorobenzene is :

