
SARANSH | CHEMISTRY

TARGET : NEET (UG) 2024

Course : SARANSH (Youtube Live CRASH COURSE)

Organic Chemistry : Some Basic Principles and Techniques

DPP No. : 4								
	DPPs Qs. Details		Marking Scheme				Time Details	
SR. No.	Type of Questions	Code	Full Marks	(–)ve Marks	Total Ques.	Total Marks	Qs Time (in Min.) for Each Qs	Max. Time (in Min.)
1	MULTIPLE CHOICE QUESTION (ONLY ONE CORRECT OPTION)	MCQ	4	-1	10	40	1	10
	Total				10	40		10

1. Which of the following carbocation will show highest number of hyperconjugation structures?

(1)
$$CH_{3} \longrightarrow \overset{\oplus}{C}H_{2}$$

(2) $C_{6}H_{5} \longrightarrow \overset{\oplus}{C}H_{2}$
(3) $CH_{3} \longrightarrow \overset{\oplus}{C}^{\oplus}$
 $CH_{3} \longrightarrow \overset{\oplus}{C}^{\oplus}$
 $C_{2}H_{5} \longrightarrow \overset{\oplus}{C}^{\oplus}$

2. Resonance energy is :

(1) equal to the energy of resonance hybrid

(2) equal to the energy of most stable canonical structure

(3) equal to the energy of least stable canonical structure

(4) equal to the difference in energies of the most stable canonical structure and resonance hybrid

3. Decreasing + m-power of given group is :

(I) – NR ₂	(II) –OCOR
(III) –NHCOR	(IV) –Ph
(1) $\mathbf{I} > \mathbf{III} > \mathbf{IV} > \mathbf{II}$	(2) $\mathbf{I} > \mathbf{III} > \mathbf{II} > \mathbf{IV}$
(3) $III > I > II > IV$	(4) $II > I > IV > III$

4. Cyclohexa-1,3-diene and cyclohexa-1,4-diene are :

(1) Chain isomer	(2) Positions isomers
(3) Functional isomer	(4) Meta isomer

Excelling in IIT-JEE Since 2001	Pre Medical Division: CG Tower-2, A-51(A) IPIA, Behind City Mall, Jhalawar Road, Kota (Raj.)-324005				
Resonance [®]	Website: www.resonance.ac.in E-mail: contact@resonance.ac.in	PAGE NO -1			
Growing in Pre-Medical Since 2011	Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	PAGE NO1			

				SARANSH CHEMISTRY			
5.	In Kjeldahl's method, nitrogen present is estimated as :						
	(1) N ₂	(2) NO	(3) NH ₃	(4) NO ₂			
6.	In Kjeldahl's method, during digestion, the nitrogen of the organic compound is converted into :						
	(1) NH ₄ Cl		(2) (NH ₄) ₂ SO ₄				
	(3) NH ₄ NO ₃		(4) NH ₃				
7.	0.50 g of an orga	nic compound was Kje	eldahlised and the NH_3 ev	volved was absorbed in 50 ml of 0.5 M			
	H ₂ SO ₄ . The resid compound is :	ual acid required 60 I	MI of 0.5 M NaOH. The	percentage of nitrogen in the organic			
	(1) 14		(2) 28				
	(3) 56		(4) 42.				
8.	In organic compounds, phosphorus is estimated as :						
	(1) Mg ₂ P ₂ O ₇		(2) Mg(NH4)PO4				
	(3) Mg ₃ (PO ₄) ₂		(4) H ₃ PO ₄				
9.	In Carius tube, the compound CICH ₂ COOH was heated with fuming HNO ₃ and AgNO ₃ . After filtration and						
	washing, a white	opt. was formed. The p	opt. is :				
	(1) AgCl		(2) AgNO ₃				

Г

(),	(_/9
(3) Ag ₂ SO ₄	(4) CICH ₂ COOAg.

- 10. In Lassaigne's test, the organic compound is fused with a piece of sodium metal in order to
 - (1) increase the ionization of the compound
 - (2) decrease the melting point of the compound
 - (3) increase the reactivity of the compound
 - (4) convert the covalent compound into a mixture of ionic compounds.

