

CHEMISTRY: Chemical Equilibrium

- DPP No. : 1 1. For the reaction, $A + 2B \implies 2C$, the rate constants for the forward and the backward reactions are 1 x 10^{-4} and 2.5 x 10^{-2} respectively. The value of equilibrium constant, K for the reaction would be : (2) 2.5×10^{-2} (3) 4 × 10⁻³ (1) 1×10^{-4} (4) 2.5 $\times 10^2$ For the reaction $N_2(g) + O_2(g) \implies 2NO(g)$, the equilibrium constant is K_1 . The equilibrium constant is K_2 2. for the reaction $2NO(g) + O_2(g) \implies 2NO_2(g)$. What is K for the reaction $NO_2(g) \implies \frac{1}{2}N_2(g) + O_2(g)$? $(1) 1 / (2K_1K_2)$ $(2) 1 / (4K_1K_2)$ (3) 1 / [K,K]^{1/2} (4) 1 / (K,K) 3. $A(g) + B(g) \Longrightarrow C(g) + D(g)$ Above equilibrium is established by taking A & B in a closed container. Initial concentration of A is twice of the initial concentration of B. At equilibrium concentrations of B and C are equal. Then find the equilibrium constant for the reaction C (g) + D (g) \implies A (g) + B (g). (1) 3(2) 2 (3) 1 (4) 4 4. For which of the following reactions, $K_p > K_c$ at 298 K : (1) $PCI_3 + CI_2(g) \Longrightarrow PCI_5(g)$ (2) $N_2(g) + O_2(g) \Longrightarrow 2NO(g)$ (3) $\frac{1}{2}N_2(g) + \frac{3}{2}H_2(g) \Longrightarrow NH_3(g)$ (4) 2 NOBr (g) \Longrightarrow 2NO(g) + Br₂(g)
- 5. For the reaction $CaCO_3(s) \Longrightarrow CaO(s) + CO_2(g)$, the pressure of CO_2 depends on (1) the mass of $CaCO_3(s)$ (2) the mass of CaO(s)(3) The masses of both $CaCO_3(s)$ and CaO(s) (4) temperature of the system
- 6. For reaction $N_2O_4 \implies 2NO_2$ at given temperature if $K_p = \frac{8}{5}$ for 30% degree of dissociation at equilibrium then what will be new K_p for 50% dissociation of N_2O_4 at equilibrium at same temperature : (1) $\frac{5}{2}$ (2) $\frac{8}{2}$ (3) $\frac{2}{2}$ (3) $\frac{12}{2}$

(1) $\frac{5}{8}$	(2) $\frac{8}{5}$	(3) $\frac{2}{5}$	(4) $\frac{12}{5}$

SARANSH | CHEMISTRY

- 7. In the reaction C(s) + CO₂(g) \implies 2CO(g), the equilibrium pressure is 12 atm. If 50% of CO₂ reacts then K_p will be
 - (1) 12 atm (2) 16 atm (3) 20 atm (4) 24 atm
- 8. By how many of the following ways, the concentration of CO_2 can be decreased at equilibrium ?

 $CO(g) + H_2O(g) \implies CO_2(g) + H_2(g) \qquad \Delta H = + ve$

- (1) By increasing temperature (V = constant)
- (2) By increasing volume (T = constant)
- (3) By adding more CO(g) (V, T = constant)
- (4) By adding inert gas (V, T = constant)
- 9. Densities of diamond and graphite are 3.5 g/mL and 2.3 g/mL.

C (diamond)
$$\rightleftharpoons$$
 C (graphite) $\Delta_r H = -1.9 \text{ kJ/mole}$

- Favourable conditions for formation of diamond are :
- (1) high pressure and low temperature
- (2) low pressure and high temperature
- (3) high pressure and high temperature
- (4) low pressure and low temperature
- **10.** Consider the reaction.

 $A(s) \Longrightarrow 2B(g)$ $\Delta H^{\circ} = 160 \text{ KJ/mol.}$

 $\Delta S^{\circ} = 400 \text{ J/mol-K}, \text{ at } 400 \text{ K},$

which of the following is correct at 400 K?

- (1) On adding more A(s), more B(g) is produced, when A(s) and B(g) were in equilibrium.
- (2) The equilibrium constant at 400 K can't be found.
- (3) The reaction is at equilibrium at 400 K and standard condition
- (4) The ΔG of the reaction is greater than zero, at 400 K and standard condition.

Answer Key													
1.	(3)	2.	(3)	3.	(1)	4.	(4)	5.	(4)	6.	(2)	7.	(2)
8.	(2)	9.	(3)	10.	(3)								

Installing in 19-401 Since 2001	Pre Medical Division: CG Tower-2, A-51(A) IPIA, Behind City Mall, Jhalawar Road, Kota (Raj.)-324005			
/ Resonance	Website: www.resonance.ac.in E-mail: contact@resonance.ac.in	BACE NO. 2		
Graning to Pre-Madeal Size 2011	Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	FAGE NO2		