

- **1.** For a Chemical reaction
 - $4A + 3B \rightarrow 6C + 9D$

rate of formation of C is 6×10^{-2} mol L⁻¹ s⁻¹ and rate of disappearance of A is 4×10^{-2} mol L⁻¹ s⁻¹. The rate of reaction and amount of B consumed in interval of 10 seconds, respectively will be :

- (1) 1 \times 10^{-2} mol L^{-1} s ^1 and 30 \times 10 $^{-2}$ mol L^{-1}
- (2) 10×10^{-2} mol L^{-1} s $^{-1}$ and 10×10^{-2} mol L^{-1}
- (3) $1\times 10^{-2}\ mol\ L^{-1}\ s^{-1}$ and $10\times 10^{-2}\ mol\ L^{-1}$
- (4) $10\times 10^{-2}\ mol\ L^{-1}\ s^{-1}$ and $30\times 10^{-2}\ mol\ L^{-1}$
- 2. In a reaction, A + B → Product, rate is doubled when the concentration of B is doubled, and rate increases by a factor of 8 when the concentrations of both the reactants (A and B) are doubled, rate law for the reaction can be written as :

(1) Rate = $k[A][B]^2$ (2) Rate = $k[A]^2[B]^2$ (3) Rate = k[A] [B] (4) Rate = $k[A]^2 [B]$

3. When initial concentration of a reactant is doubled in a reaction, its half-life period is not effected. The order of the reaction is :

(1) First	(2) Second
(3) More than zero but less than first	(4) Zero

4. When initial concentration of the reactant is doubled, the half-life period of a zero order reaction

- (1) in halved(2) remains unchanged(3) is tripled(4) is doubled
- 5. For the reaction, $2A \rightarrow B$. rate = k[A]².
 - If concentration of reactant is doubled, then the
 - (a) rate of reaction will be doubled.

(b) rate constant will remain unchanged, however rate of reaction is directly proportional to the rate constant.

- (c) rate constant will change since reaction and rate constant are proportional to each other.
- (d) rate of reaction will increase by four times. Identify the set of correct statements:
- Choose the correct answer from the optio given below:
- (1) (a), (b)only (2) (b), (d) only (3) (c), (d)only (4) (a), (c) only
- 6. For a certain reaction, the rate = $k[A]^2[B]$, when the initial concentration of A is tripled keeping concentration of B constant, the initial rate would
 - (1) increase by a factor of six. (2) increase by a factor of nine.
 - (3) increase by a factor of three.
- (4) decrease by a factor of nine.

7. For a reaction $3A \rightarrow 2B$

The average rate of appearance of B is given by $\frac{\Delta[\text{B}]}{\Delta t}.$

The correct relation between the average rate of appearance of B with the average rate of disappearance of A is given in option:

SARANSH | CHEMISTRY

	$(1)\frac{-\Delta}{\Delta}$	[A] st	·	(2) —	3∆[A] 2∆t		(3) —	2∆[A] 3∆t		(4) $\frac{\Delta}{\Delta}$				
8.	The correct option for the rate law that correspo (1) Rate = k [A] ⁰ [B] ² (3) Rate = k [A] ^{1/2} [B] ²							oonds to overall first order reaction is: (2) Rate = k [A] [B] (4) Rate = k [A] ^{-1/2} [B] ^{3/2}						
9.	In a zero- order reaction for every 10° rise of temperature, the rate is doubled. If the temperature is increased from 10°C to 100°C, the rate of the reaction will become : (1) 256 times (2) 512 times (3) 64 times (4) 128 times													
	(1) 25	6 times		(2) 51	2 times		(3) 64	times		(4) 12	28 times			
10.	The rate of a first-order reaction is 0.04 mol ℓ^{-1} s ⁻¹ at 10 seconds and 0.03 mol ℓ^{-1} s ⁻¹ at 20 seconds										seconds			
	after initiation of the reaction. The half-life period of the reaction is : (1) 54.1 s (2) 24.1 s (3) 34.1 s (4) 44.1 s													
	(1) 54			(2) 24		\ t	. ,			()			.	
11.	The decomposition of phosphine (PH ₃) on tungsten at low pressure is a first-order reaction. It is because									because				
	the (1) Rate of decomposition is very slow													
	. ,				•	coverage	9							
	(3) Rate is inversely proportional to the surface coverage													
	(4) Rate is independent of the surface coverage													
12.	A first	order rea	action h	as a spe	cific rea	ction rate	e of 10 ⁻²	. How m	uch time	will it ta	ke for 20) g of the	reaction	
		uce to 5	g ?											
	(1) 23	88.6 sec		(2) 13	8.6 sec		(3) 34	6.5 sec		(4) 69	93.0 sec			
13.						nd secon								
	(1) The rate of a first-order reaction does not depend on reactant concentrations; the rate of a second order reaction does depend on reactant concentrations										second			
									oncontr	ations: th	no rato o	of a seco	nd-order	
	(2) The rate of a first-order reaction does depend on reactant concentrations; the rate of a second-order reaction does not depend on reactant concentrations													
			•			zed; a se		order rea	action ca	nnot be	catalyze	ed		
	(4) Th	e half-life	e of a fir	st-order	reaction	n does n	ot deper	nd on [A] ₀ ; the ha	alf-life of	f a secoi	nd-order	reaction	
	does o	depend c	on [A] ₀											
14.	If the rate constant for a first order reaction is k, the time (t) required for the completion of 99% of the reaction is given by :													
	(1) t =	2.303 /k	Σ.	(2) t =	0.693 /	k	(3) t =	: 6.909 /l	k	(4) t = 4.606 / k				
15.	A first order reaction has a rate constant of 2.303 \times 10 ⁻³ s ⁻¹ . The time required for 40 g of this reactant to								actant to					
	reduce to 10 g will be $-$ [Given that $\log_{10} 2 = 0.30$						-							
	(1) 230.3 s (2) 301 s (3) 2000 s (4) 602 s													
						Answ	er Ke	ey 🛛						
1.	(1)	2.	(4)	3.	(1)	4.	(4)	5.	(2)	6.	(2)	7.	(3)	
8.	(4)	9.	(2)	10.	(2)	11.	(2)	12.	(2)	13.	(4)	14.	(4)	
15.	(4)													

 Excelling in IIT-JEE Since 2001...
 Pre Medical Division: CG Tower-2, A-51(A) IPIA, Behind City Mall, Jhalawar Road, Kota (Raj.)-324005

 Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in
 Website: www.resonance.ac.in

 Toll Free : | 1800 258 5555 | CIN: U80302RJ2007PLC024029
 PAGE NO.-2