
SARANSH | CHEMISTRY

TARGET : NEET (UG) 2024

Course : SARANSH (Youtube Live CRASH COURSE)

Physical Chemistry : ELECTROCHEMISTRY

DPP No. : 2

1. For the cell reaction :

 $2Fe^{3+}(aq) + 2I^{-}(aq) \longrightarrow 2Fe^{2+}(aq) + I_2(aq)$

 E^{Θ}_{cell} = 0.24 V at 298 K. The rstandard Gibbs energy ($\Delta_r G^{\Theta}$) of the cell reaction is :

[Given that Faraday constant F = 96400 C mol⁻¹]

- (1) 23.16 kJ mol⁻¹ (2) -46.32 kJ mol⁻¹
- (3) $-23.16 \text{ kJ mol}^{-1}$ (4) $46.32 \text{ kJ mol}^{-1}$
- **2.** The three cells with their $E_{(cell)}^{\circ}$ values are given below :

Cells	$\dot{E_{(cell)}}/V$
(1) Fe Fe ²⁺ Fe ³⁺ Fe	0.404
(2) Fe Fe ²⁺ Fe ³⁺ , Fe ²⁺ Pt	1.211
(3) Fe Fe ³⁺ Fe ³⁺ , Fe ²⁺ Pt	0.807

The standard Gibbs free energy change values for three cells are, respectively

(F represents change on 1 mole of electrons)

- (1) +2.424 F, +2.422 F, +2.421 F
- (2) -0.808 F, -2.422 F, -2.421 F,
- (3) -2.424 F, -2.422 F, -2.421 F,
- (4) -1.212 F, -1.211 F, -0.807 F,
- 3. Standard electrode potential for the cell with cell reaction :

 $Zn(s) + Cu^{2+}(aq) \rightarrow Zn^{2+}(aq) + Cu(s)$ is 1.1 V. calculate the standard gibbs energy change for the cell reaction.

(Given F = 96487 C mol⁻¹)

(1) –200.27 kJ mol ⁻¹	(2) –212.27 kJ mol ⁻¹
(3) –212.27 J mol ⁻¹	(4) –200.27 J mol ⁻¹

SARANSH | CHEMISTRY

4. Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R : **Assertion A** : In equation $\Delta_r G = -nFE_{cell}$, value of $\Delta_r G$ depends on n. **Reasons R** : E_{cell} is an intensive property and $\Delta_r G$ is an extensive property. In the light of the above statements, choose the correct explanation of answer from the options given below : (1) Both A and R are true and R is NOT the correct explanation of A. (2) A is true but R is false (3) A is false but R is true. (4) Both A and R are true and R is the correct explanation of A. 5. A hydrogen gas electrode is made by dipping platinum wire in a solution of HCl of pH = 10 and by passing hydrogen gas around the platinum wiere at one atm pressure. The oxidation potential of electrode would be? (1) 0.59 V (2) 0.118 V (3) 1.18 V (4) 0.059 V The pressure of H₂ required to make the potential of H₂-electrode zero in pure water at 298 K is : 6. (3) 10⁻¹² atm (2) 10⁻¹⁴ atm (4) 10⁻¹⁰ atm (1) 10⁻⁴ atm 7. In the electrochemical cell : Zn I ZnSO₄ (0.01 M) II CuSO₄ (1.0 M) Cu, the emf of this Daniel cell is E₁. When the concentration of ZnSO₄ is changed to 1.0 M and that of CuSO₄ changed to 0.01 M, the emf changes to E₂ From the followings which one is the relationship between E₁ and E₂? (Given, $\frac{RT}{E}$ = 0.059 (1) $E_1 = E_2$ (2) $E_1 < E_2$ (3) $E_1 > E_2$ (4) $E_2 = 0 \neq E_1$ 8. Find the emf of the cell in which the following reaction takes place at 298 K p $Ni(s) + 2Ag^{+} (0.001 \text{ M}) \rightarrow Ni^{2+} (0.001 \text{ M}) + 2 Ag(s)$ (Given that $E_{cell}^0 = 1.05 \text{ V}, \frac{2.303 \text{ RT}}{E} = 0.059 \text{ at } 298 \text{ K}$) (3) 1.0385 V (1) 0.9615 V (2) 1.05 V (4) 1.385 V When 0.1 mol MnO_4^{2-} is oxidised the quantity of electricity required MnO_4^{2-} to MnO_4^{-} completely to is 9. (1) 96500 C (2) 2 × 96500 C (3) 9650 C (4) 96.50 C 10. The weight of silver (at.wt. = 108) displaced by a quantity of electricity which displaces 5600 mL of O₂ at STP will be -(3) 54.0 g (1) 5.4 g (2) 10.8 g (4) 108.0 g 11. The number of electrons delivered at the cathode during electrolysis by a current of 1 ampere in 60 seconds is (charge on electron = 1.60×10^{-19} C) (1) 7.48 × 10²³ (2) 6×10^{23} (3) 6×10^{20} (4) 3.75 × 10²⁰ **Answer Key** 1. (2) 2. (3) (4) 5. (2) (3) 3. (2) 4. (1) 6. 7. (4) 8. (1) 9. (3) 10. 11. (4)

 Excelling in IIT-JE Since 2001...
 Pre Medical Division: CG Tower-2, A-51(A) IPIA, Behind City Mall, Jhalawar Road, Kota (Raj.)-324005

 Website:
 www.resonance.ac.in | E-mail:
 contact@resonance.ac.in

 Toll Free : | 1800 258 5555 | CIN: U80302RJ2007PLC024029
 PAGE NO.-2