

- 4. The molar conductivity of a 0.5 mol/ dm³ solution of AgNO₃ with electrolytic conductivity of 5.76×10^{-3} S cm⁻¹ at 298 K is (1) 28.8 S cm²/mol (2) 2.88 S cm²/mol (3) 11.52 S cm²/mol (4) 0.086 S cm²/mol
- The specific conductance of a saturated solution of silver bromide is S cm⁻¹. The limiting ionic conductivity of Ag⁺ and Br⁻ ions are x and y, respectively. The solubility of silver bromide is gL⁻¹ is : (Molar mass of AgBr = 188)

(1) $\frac{k \times 1000}{x - y}$ (2) $\frac{k}{x + y} \times 188$ (3) $\frac{k \times 1000 \times 188}{x + y}$ (4) $\frac{x + y}{k} \times \frac{100}{188}$

6. The conductivity of centimolar solution of KCI at 25°C is 0.0210 ohm⁻¹ cm⁻¹ and the resistance of the cell containing the solution at 25°C is 60 ohm. The value of cell constant is (1) 3.28 cm⁻¹
(2) 1.26 cm⁻¹
(3) 3.34 cm⁻¹
(4) 1.34 cm⁻¹

SARANSH | CHEMISTRY

7. Molar conductance of an electrolyte increases with dilution according to the equation:

 $\Lambda_{\rm m}\,{=}\,\Lambda_{\rm m}^{\rm 0}\,{-}\,{\rm A}\sqrt{\rm c}$

Which of the following statements are true?

- (A) This equation applies to both strong and weak electrolytes.
- (B) Value of the constant A depends upon the nature of the solvent.
- (C) Value of constant A is same for both BaCl₂ and MgSO₄.
- (D) Value of constant A is same for both BaCl₂ and Mg(OH)₂.

Choose the most appropriate answer from the options given below:

- (1) (A) and (B) only (2) (A),(B) and (C) only
- (3) (B) and (C) only (4) (B) and (D) only

8. Limiting molar conductivity of NH₄OH $\left(i.e. \stackrel{0}{\Lambda_m}(NH_4OH)\right)$ is equal to :

- (1) $\stackrel{0}{\Lambda_{m}}$ (NH₄Cl) + $\stackrel{0}{\Lambda_{m}}$ (NaCl) $\stackrel{0}{\Lambda_{m}}$ (NaOH)
- (2) Λ_{m}^{0} (NaOH) + Λ_{m}^{0} (NaCl) Λ_{m}^{0} (NH₄Cl)

(3)
$$\stackrel{0}{\Lambda_{m}}$$
 (NH₄OH) + $\stackrel{0}{\Lambda_{m}}$ (NH₄Cl) – $\stackrel{0}{\Lambda_{m}}$ (HCl)

(4) $\stackrel{0}{\Lambda_{m}}$ (NH₄Cl) + $\stackrel{0}{\Lambda_{m}}$ (NaOH) - $\stackrel{0}{\Lambda_{m}}$ (NaCl)

9. Molar conductivities (Λ^{0}_{m}) at infinite dilution of NaCl, HCl and CH₃COONa are 126.4, 425.9 and 91.0 S cm² mol⁻¹ respectively. Λ^{0}_{m} for CH₃COOH will be :

(1) 425.5 S cm ² mol ⁻¹	(2)180.5 S cm ² mol ⁻¹
(3) 290.8 S cm ² mol ⁻¹	(4) 390.5 S cm² mol⁻¹

At 25°C molar conductivity of 0.1 molar aqueous solution of ammonium hydroxide is 9.54 ohm⁻¹ cm² mol⁻¹
 ¹ and at infinite dilution its molar conductivity is 238 ohm⁻¹ cm² mol⁻¹. The degree or ionisation of ammonium hydroxide at the same concentration and temperature is :

(1) 20.800%(2) 4.008%(3) 40.800%(4) 2.080%

11. Following limiting molar conductivities are given as

 $\lambda_m^0(H_2SO_4) = x Scm^2 mol^{-1}$

 $\lambda_{m}^{0}(K_{2}SO_{4})=yScm^{2}mol^{-1}$

 $\lambda_{m}^{0}(CH_{3}COOK) = zScm^{2}mol^{-1}$

 $\lambda_m^0\left(in\,S\,cm^2\,mol^{-1}\right)$ for CH_3COOH will be –

(1)
$$x - y + 2z$$
 (2) $x + y + z$ (3) $x - y + z$ (4) $\frac{(x - y)}{2} + z$

SARANSH | CHEMISTRY

12. The molar conductance of NaCl, HCl and CH₃COONa at infinite dilution are 126.45, 426.16 and 91.0 S cm² mol⁻¹ respectively. The moalr conductance of CH₃COOH at infinite dilution is. Choose the right option for your answer.
(1) 390.71 S cm² mol⁻¹
(2) 698.28 S cm² mol⁻¹
(3) 540.48 S cm² mol⁻¹
(4) 201.28 S cm² mol⁻¹

13. The molar conductivity of 0.007 M acetic acid is 20 S cm² mol⁻¹. What is the dissociation constant of acetic acid ? Choose the correct option.

 $[\Lambda^{\circ}_{H^{+}} = 350 \text{ S cm}^{2} \text{ mol}^{-1}; \Lambda^{\circ}_{CH_{2}COO^{-}} = 50 \text{ S cm}^{2} \text{ mol}^{-1}]$

(1) 2.50 × 10 ⁻⁴ mol L ⁻¹	(2) 1.75 × 10 ⁻⁵ mol L ⁻¹
(3) 2.50 × 10 ⁻⁵ mol L ⁻¹	(4) 1.75 × 10 ⁻⁴ mol L ⁻¹

Answer Key													
1.	(4)	2.	(4)	3.	(2)	4.	(3)	5.	(3)	6.	(2)	7.	(4)
8.	(4)	9.	(4)	10.	(2)	11.	(4)	12.	(1)	13.	(2)		

Excelling in IIT-JEE Since 2001	Pre Medical Division: CG Tower-2, A-51(A) IPIA, Behind City Mall, Jhalawar Road, Kota (Raj.)-324005				
/ Resonance	Website: www.resonance.ac.in E-mail: contact@resonance.ac.in				
Growing in Pre-Medical Since 2011.	Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029				