			SARANSH CHEMISTRY
Resonance [®] Educating for better tomorrow TARGET : NEET (UG) 2024		CHEMISTRY	
	Course : SARANSH (Youtube Liv	e CRASH COURSE)	DPP NO. 1
	CHEMI	STRY: Thermodyr	amics
1.	DPP No. : 1 One mole of an ideal gas at 300 K is expanded isothermally from an initial volume of 1 litre to 10 litres.		
	The ∆E for this process is (R = 2 ca (1) 163. 7 cal (3) 1381.1 cal	I. mol⁻¹) (2) z (4) 9	ero lit. atm
2.	During isothermal expansinon of an (1) internal energy increases (2) enthalpy decreases (3) enthalpy remains unaffected (4) enthalpy reduces to zero	ideal gas, its	
3.	Under isothermal condition, a gas pressure of 2 bar. The work done b (1) –30 J (3) 25 J	at 300 K expands front 0. y the gas is [Given that 1 L (2) 5 (4) 3	1 L to 0.25 L against a constant external . bar = 100 J] kJ 0 J
4.	An ideal gas expands isothermally Nm ⁻² . The work done on the gas is (1) + 270 kJ (3) + 900 kJ	from 10 ⁻³ m ³ to 10 ⁻² m ³ at : (2) – (4) –	300 K against a constant pressure of 10⁵ 900 J 900 kJ
5	A gas is allowed to expand in a well	Linsulated container again	st a constant external pressure of 2.5 atm

5. A gas is allowed to expand in a well insulated container against a constant external pressure of 2.5 atm from an initial volume of 2.50 L to a final volume of 4.50 L. The change in internal energy ∆U of the gas in joules will be:

(1) 1136.25 J	(2) –500 J
(3) –505 J	(4) +505 J

- 6. Adiabatic expansions of an ideal gas is accompanied by
 - (1) decrease in ΔE
 - (2) increase in temperature
 - (3) decrease in ΔS
 - (4) non change in any one of the above properties

7.	The correct option for free expansion of	of an ideal gas under adiabatic condition is:	
	(1) q = 0, $\Delta T < 0$ and w > 0	(2) q < 0, $\Delta T = 0$ and w = 0	
	(3) q > 0, ΔT > 0 and w > 0	(4) $q = 0$, $\Delta T = 0$ and $w = 0$	
8.	Three moles of an ideal gas expanded spontaneously into vaccum. The work done will be :		
	(1) Zero	(2) infinite	
	(3) 3 Joules	(4) 9 Joules	
9.	Considering entropy (s) as a thermody is	nsidering entropy (s) as a thermodynamic parameter, the criterion for the spontaneity of any pro-	
	(1) ΔS_{system} + $\Delta S_{\text{surroundings}}$, > 0	(2) $\Delta S_{system} - \Delta S_{surroundings}$, > 0	
	(3) $\Delta S_{system} > 0$ only	(4) $\Delta S_{surroundings} > 0$ only	
10.	For irreversible expansion of an ideal gas under isothermal condition, the correct option is :		
	(1) $\Delta U \neq 0$, $\Delta S_{\text{total}} = 0$	(2) $\Delta U = 0$, $\Delta S_{\text{total}} = 0$	
	(3) $\Delta U \neq 0$, $\Delta S_{\text{total}} \neq 0$	(4) $\Delta U = 0$, $\Delta S_{\text{total}} \neq 0$	
11.	A chemical reaction will be spontaneous if it is accompainded by a decreae of		
	(1) entropy of the system	(2) enthalpy of the system	
	(3) internal energy of the system	(4) free energy of the system	
12.	Identify the correcrt statement for change of Gibbs energy for a system (ΔG_{system}) at constant temperature and pressure :		
	(1) If $\Delta G_{\text{system}} = 0$, the system has attained equilirbium		
	(2) If $\Delta G_{\text{system}} = 0$, the system is still moving in a particular direction		
	(3) If ΔG_{system} < 0, the process is not spontaneous		
	(4) If $\Delta G_{\text{system}} > 0$, the process is not spontaneous		
13.	For the reaction, $2CI(g) \longrightarrow CI_2(g)$, the correct option is :		
	(1) $\Delta_r H > 0$ and $\Delta_r S < 0$	(2) $\Delta_r H < 0$ and $\Delta_r S > 0$	
	(3) $\Delta_r H < 0$ and $\Delta_r S < 0$	(4) $\Delta_r H > 0$ and $\Delta_r S > 0$	
14.	In which case change in entropy is negative ?		
	(1) Evaporation of water		
	(2) Expansion of a gas at constant temperature		
	(3) Sublimation of solid to gas		
	$(4) \ 2H(g) \rightarrow H_2(g)$		
15.	For the gas phase reaction,		
	$PCI_{5}(g) \longrightarrow PCI_{3}(g) + CI_{2}(g)$		
	which of the following conditions are c	orrect?	
	(1) $\Delta H = 0$ and $\Delta S < 0$	(2) $\Delta H > 0$ and $\Delta S > 0$	
_	(3) $\Delta H > 0$ and $\Delta S < 0$	(4) $\Delta H > 0$ and $\Delta S < 0$	

SARANSH | CHEMISTRY

16.The correct thermodynamics conditions for the spontaneous reaction at all temperatures is $(1) \Delta H > 0$ and $\Delta S > 0$ $(2) \Delta H > 0$ and $\Delta S < 0$ $(3) \Delta H < 0$ and $\Delta S > 0$ $(4) \Delta H < 0$ and $\Delta S < 0$

17. Which amongst the following options is the correct relation between change in enthalpy and change in internal energy?

(1) $\Delta H = \Delta U + \Delta n_g RT$	(2) $\Delta H - \Delta U = -\Delta nRT$
$(3) \Delta H + \Delta U = \Delta n R$	(4) $\Delta H = \Delta U - \Delta n_g RT$

18. Assume each reaction is carried out in an open container. For which reaction will $\Delta H = \Delta E$?

(1) $C(s) + 2H2O(g) \rightarrow 2H2(g) + CO_2(g)$ (2) $PCI_5(g) \rightarrow PCI_3(g) + CI_2(g)$ (3) $2CO(g) + O_2(g) \rightarrow 2CO_2(g)$ (4) $H_2(g) + Br_2(g) \rightarrow 2HBr(g)$ **19.** For the reaction $C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(I)$ at constant temperature, $\Delta H - \Delta E$ is (1) -RT (2) + RT (3) -3 RT (4) +3 RT **20.** For the reaction $N_2 + 3H_2 \rightarrow 2NH_3 \ \Delta H = 2$

 $N_2 + 3H_2 \rightarrow 2NH_3, \Delta H = ?$ (1) $\Delta E + 2RT$ (2) $\Delta E - 2RT$

(3)
$$\Delta H = RT$$
 (4) $\Delta E - RT$

Excelling in IIT-JEE Since 2001	Pre Medical Division: CG Tower-2, A-51(A) IPIA, Behind City Mall, Jhalawar Road, Kota (Raj.)-324005		
/ Resonance	Website: www.resonance.ac.in E-mail: contact@resonance.ac.in	BACENO 2	
Growing in Pre-Medical Since 2011	Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	FAGE NO3	