SARANSH | CHEMISTRY

TARGET : NEET (UG) 2024

Course : SARANSH (Youtube Live CRASH COURSE)

CHEMISTRY: Thermchemistry

DPP No. : 2

- 1. The enthalpy change for a reaction does not depend upon the :
 - (1) physical state of reactants and products
 - (2) use of different reactants for the same product
 - (3) nature of intermediate reaction steps
 - (4) difference in initial or final temperatures of involved substances
- **2.** Which of the reaction defines molar ΔH_f° ?

(1)
$$CaO(s) + CO_2(g) \longrightarrow CaCO_3(s)$$

(2)
$$\frac{1}{2}$$
 Br₂(g) + $\frac{1}{2}$ H₂(g) \longrightarrow HBr(g)

(3)
$$N_2(g) + 2H_2(g) + \frac{3}{2} O_2(g) \longrightarrow NH_4 NO_3(s)$$

- (4) $I_2(s) + H_2(g) \longrightarrow 2HI(g)$
- 3. Which of the following equations corresponds to the enthalpy of combustion at 298 K?

$$(1) C_{2}H_{6}(g) + \frac{7}{2}O_{2}(g) \longrightarrow 2CO_{2}(g) + 3H_{2}O(g)$$

$$(2) 2C_{2}H_{6}(g) + 7O_{2}(g) \longrightarrow 4CO_{2}(g) + 6H_{2}O(g)$$

$$(3) C_{2}H_{6}(g) + \frac{7}{2}O_{2}(g) \longrightarrow 2CO_{2}(g) + 3H_{2}O(\ell)$$

$$(4) 2C_{2}H_{6}(g) + 7O_{2}(g) \longrightarrow 4CO_{2}(g) + 6H_{2}O(\ell)$$

SARANSH | CHEMISTRY

4. A solution is 500 ml of 2 M KOH is added to 500 ml of 2 M HCl and the mixture is well shaken. The rise in temperature T₁ is noted. The experiment is then repeated using 250 ml of each solution and rise in temperature T₂ is again noted. Assume all heat is taken by the solution (1) $T_1 = T_2$ (2) T_1 is 2 times as large as T_2 (3) T_2 is twice of T_1 (4) None of these 5. Calculate the enthalpy change when 50 mL of 0.01 Ca(OH), reacts with 25 mL of 0.01 M HCI. Given that $\Delta {\rm H^o}_{\rm neut}$ of a strong acid and strong base is 140 kcal equivalent -(1) 14.0 cal (2) 35 cal (3) 10.0 cal (4) 7.5 cal 6. In which of the following thermochemical changes is ΔH° always negative ? (1) Enthalpy of solution (2) Enthalpy of hydrogenation

- (3) Enthalpy of combustion (4) Enthalpy of transition
- 7. Heat of hydrogenation of ethene is x_1 and that of benzene is x_2 . Hence resonance energy is -

(1) $x_1 - x_2$ (2) $x_1 + x_2$ (3) $3x_1 - x_2$ (4) $x_1 - 3x_2$

Theory

```
Mean/average bond enthalpy :
```

It is defined for hetronuclear polyatomic species as well as homonuclear polyatomic species.

E.g. $CH_4(9)$, $NH_3(9)$, $PCI_5(g) S_8(g)$

SARANSH | CHEMISTRY

(iv) CH₂ (g) \longrightarrow H(g) + CH (g) Δ H₃ = + 347 $\frac{kj}{mol}$ (i) + (ii) + (iii) + (iv) CH₄ (g) \longrightarrow C (g) + 4 H (g) Δ H_{Total} = Δ H₁ + Δ H₂ + Δ H₃ + Δ H₄ = 1665 $\frac{KJ}{mol}$ Δ H_{avB.E.}[C-H] = $\frac{1665}{4}$ = 416.5 $\frac{kj}{mol}$ E.g. CH₃-C-CH₃ $\stackrel{H}{H} \sim C - \stackrel{O}{C} - \stackrel{C}{C} \stackrel{H}{H}$

Enthalpy of atmisation :

Atoms / elements : Enthalpy change when one mole isolated gaseous atom are formed by thermodynamically most stable allotrope of elements.

C(irabhite) (s) \longrightarrow C(g) $\Delta H = + \frac{xkJ}{mol}$ $\Delta H_{\text{atomisation}}$ [C(grabnite), s] = ΔH sublimation

1. Find average P–P bond enthalpy of P₄ (s) at room temperature.

Given : \triangle Hsublimation of P₄ (s) = 59 $\frac{kj}{mol}$ \triangle Hatomisation of P₄ (s) = 1265 kj/mol.

2. Given the bond energies $N \equiv N$, H - H and N - H bonds are 945, 436 and 391 kJ mole⁻¹ respectively, the enthalpy of the following reaction $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$ is-

(1) – 93 kJ (2) 102 kJ (3) 90 kJ (4) 105 kJ

- 3. The dissociation energy of CH_4 and C_2H_6 are respectively 360 and 620 kcal /mole. The bond energy of C C is
 - (1) 260 kcal/mole (2) 180 kcal/mole (3) 130 kcal/mole (4) 80 kcal/mole
- 4. If $H_2(g) = 2H(g)$; $\Delta H = 104$ kcal, then heat of atomisation of hydrogen is : (1) 52 kcal (2) 104 kcal (3) 208 kcal (4) none of these
- 5. Heat evolved in the reaction $H_2 + CI_2 \rightarrow 2HCI$ is 182 kJ. Bond energies of H H and CI CI are 430 and 242 kJ/mol respectively. The H – CI bond energy is (1) 245 kJmol⁻¹ (2) 427 kJ mol⁻¹ (3) 336 kJ mol⁻¹ (4) 154 kJ mol⁻¹

