

DPP No. : 1

1. A force F is needed to break a copper wire having radius R. The force needed to break a copper wire of radius 2 R will be :

(1) F/2 (2) 2 F (3) 4 F (4) F/4

- 2. The fraction of a floating object of volume V₀ and density d₀ above the surface of a liquid of density d will be
 - (1) $\frac{d_0}{d}$ (2) $\frac{dd_0}{d+d_0}$ (3) $\frac{d-d_0}{d}$ (4) $\frac{dd_0}{d-d_0}$
- 3. Density of the ice is ρ and that of water is σ . What will be the decrease n volume when a mass M of ice melts.
 - (1) $\frac{M}{\sigma \rho}$ (2) $\frac{\sigma \rho}{M}$ (3) $M\left[\frac{1}{\rho} \frac{1}{\sigma}\right]$ (4) $\frac{1}{M}\left[\frac{1}{\rho} \frac{1}{\sigma}\right]$
- 4. The diameter of a brass rod is 4 mm and Young's modulus of brass is 9×10^{10} N/m². The force required to stretch by 0.1% of its length is : (1) 360 π N (2) 36 N (3) 144 $\pi \times 10^3$ N (4) 36 $\pi \times 10^5$ N
- 5. A steel wire is suspended vertically from a rigid support. When loaded with a weight in air, it expands by L_a and when the weight is immersed completely in water, the extension is reduced to L_w. Then relative density of the material of the weight is

(1)
$$\frac{L_a}{L_a - L_w}$$
 (2) $\frac{L_w}{L_a}$ (3) $\frac{L_a}{L_w}$ (4) $\frac{L_w}{L_a - L_w}$

6. Two wires of equal length and cross-section area suspended as shown in figure. Thier Young's modulus are Y₁ and Y₂ respectively. The equivalent Young's modulus will be

7. A square brass plate of side 1.0 m and thickness 0.005 m is subjected to a force F on its smaller opposite edges, causing a displacement of 0.02 cm. If the shear modulus of brass is 0.4 × 10¹¹ N/m², the value of the force F is (1) 4×10^3 N (3) 4 × 10⁴ N (4) 1000 N

(2) 400 N

- The terminal velocity of a sphere moving through a viscous medium is : 8.
 - (1) directly proportional to the radius of the sphere
 - (2) inversely proportional to the radius of the sphere
 - (3) directly proportional to the square of the radius of sphere
 - (4) inversely proportional to the square of the radius of sphere
- 9. Assertion : Bulk modules of incompressible fluid is zero.

Reason : Bulk modulus of elasticity (K) represents $K = -\frac{\Delta V}{\Delta p/V}$, where symbols have their standard

meaning.

(1) $\frac{2ac}{b^2}$

Read the assertion and reason carefully to mark the correct option out of the options given below :

- (1) If both assertion and reason are true and the reason is the correct explanation of the assertion.
- (2) If both assertion and reason are true but reason is not the correct explanation of the assertion.
- (3) If both assertion is true but reason is false.
- (4) If the assertion and reason both are false.
- 10. If the ratio of lengths, radii and Young's modulii of steel and brass wires in the figure are a, b, c respectively. Then the corresponding ratio of increase in their lengths would be :

Educating for better tomorrow	Pre Medical Division: CG Tower-2, A-51(A) IPIA, Behind City Mall, Jhalawar Road, Kota (Raj.)-324005	
	Website: www.resonance.ac.in E-mail: contact@resonance.ac.in	PAGE NO2
	Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	