

- 4. Tesla is a unit of -(1) magnetic flux
 - (2) magnetic flux density (3) electric flux (4) self inductance
- 5. The formula of the induced emf due to rate of change of magnetic flux passing through a coil will be-

(3) $e = -\vec{A} \cdot \left(\frac{\vec{dB}}{dt} \right)$ (4) $e = -\vec{B} \cdot \vec{dA} \cdot \vec{dt}$ (2) $e = -\frac{d}{dt} (\vec{B}, \vec{A})$ (1) $e = -\frac{d}{dt} (\overrightarrow{B}, \overrightarrow{A})$

- 6. Lenz's law is based on the law of conservation of -(2) momentum (3) mass (4) energy (1) charge A wire of length 2m is moving with a velocity of 1 m/s normal to a magnetic field of 0.5 Wb/m². The emf 7. induced in it will be - $(\ell \perp \vec{v})$ (1) 0.5 V (2) 0.1 V (3) 2 V (4) 1 V When current flowing in a coil changes from 3A to 2A in one millisecond, 5 volt emf is induced in it. The 8. self-inductance of the coil will be -(1) zero (2) 5kH (3) 5H (4) 5 mH
- The magnetic flux linked with a coil is given by an equation ϕ (in webers) = $8t^2 + 3t + 5$. The induced 9. e.m.f. in the coil at the fourth second will be (3) 67 units (1) 16 units (2) 39 units (4) 145 units
- 10. A coil of 100 turns and area 5 square centimetre is placed in a magnetic field B = 0.2 T. The normal to the plane of the coil makes an angle of 60° with the direction of the magnetic field. The magnetic flux linked with the coil is (4) 10⁻⁴ Wb

 $(1)5 \times 10^{-3}$ Wb (2) 5×10^{-5} Wb (3) 10^{-2} Wb

Excelling in IIT-JEE Since 2001 Resonance [®] Educating for better tomorrow Growing in Pre-Medical Since 2011	Pre Medical Division: CG Tower-2, A-51(A) IPIA, Behind City Mall, Jhalawar Road, Kota (Raj.)-324005	
	Website: www.resonance.ac.in E-mail: contact@resonance.ac.in	BACENO 4
	Toll Free : 1800 258 5555 CIN: U80302RJ2007PLC024029	PAGE NO1