

## DPP No. : 2

1. Which of the following represents the correct graph for electric field intensity and the distance $r$ from the centre of a hollow charged metal sphere or solid metallic conductor of radius R :
(1)

(2)

(3)

(4)

2. A particle $A$ has charge $+q$ and particle $B$ has charge $+4 q$ with each of them having the same mass $m$. When allowed to fall from rest through same electrical potential difference, the ratio of their speed $\mathrm{v}_{\mathrm{A}}$ : $\mathrm{v}_{\mathrm{B}}$ will be :
(1) $2: 1$
(2) $1: 2$
(3) $4: 1$
(4) $1: 4$
3. The dimensions of $\left(\frac{1}{2}\right) \varepsilon_{0} E^{2}$ ( $\varepsilon_{0}$ : permittivity of free space; $E$ : electric field) are: [JEE $\mathbf{2 0 0 0}$ Scr.,3/105]
(1) $\mathrm{MLT}^{-1}$
(2) $\mathrm{ML}^{2} \mathrm{~T}^{-2}$
(3) $\mathrm{MLT}^{-2}$
(4) $\mathrm{ML}^{-1} \mathrm{~T}^{-2}$
4. $A, B$ and $C$ are three points in a uniform electric field. The electric potential is :

(1) maximum at $B$
(2) maximum at C
(3) same at all the three points $A, B$ and $C$
(4) maximum at $A$
5. If potential (in volts) in a region is expressed as $V(x, y, z)=6 x y-y+2 y z$, the electric field (in $N / C$ ) at point $(1,1,0)$ is :
(1) $-(6 \hat{i}+5 \hat{j}+2 \hat{k})$
(2) $-(2 \hat{i}+3 \hat{j}+\hat{k})$
(3) $-(6 \hat{\mathbf{i}}+9 \hat{j}+\hat{k})$
(4) $-(3 \hat{i}+5 \hat{j}+3 \hat{k})$
6. When an $\alpha$-particle of mass ' $m$ ' moving with velocity ' v ' bombards on a heavy nucleus of charge 'Ze' its distance of closet approach from the nucleus depends on $m$ as :
(1) $m$
(2) $\frac{1}{\mathrm{~m}}$
(3) $\frac{1}{\sqrt{m}}$
(4) $\frac{1}{m^{2}}$
7. An electron falls from rest through a vertical distance $h$ in a uniform and vertically upward directed electric field $E$. The direction of electric field is now reversed, keeping its magnitude the same. A proton is allowed to fall from rest in it through the same vertical distance $h$. The time of fall of the electron, in comparison to the time of falls of the proton is :
(1) smaller
(2) equal
(3) 10 times greater
(4) 5 times greater
8. The variation of electrostatic potential with radial distance $r$ from the centre of a positively charged metallic thin shell of radius $R$ is given by the graph
(1)

(2)

R
(3)

R
(4)

R
9. An uncharged sphere of metal is placed in a uniform electric field produced by two large conducting parallel plates having equal and opposite charges, then lines of force look like
(1)

(2)

(3)

(4)

10. Two spherical conductors $A$ and $B$ of radii 1 mm and 2 mm are separated by a distance of 5 cm and are uniformly charged. If the spheres are connected by a conducting wire then in equilibrium condition, the ratio of the magnitude of the electric fields at the surfaces of sphere $A$ and $B$ is :
(1) $2: 1$
(2) $1: 4$
(3) $4: 1$
(4) $1: 2$

| Educating for better tomorrow <br> Growing in Pre-Medical Since 2011. | Pre | Kota (Raj.)-324005 |
| :---: | :---: | :---: |
|  | Website: www.resonance.ac.in \| E-mail: contact@resonance.ac.in | PAGE NO.-2 |
|  | Toll Free : \| 18002585555 | CIN: U80302RJ2007PLC024029 |  |

