

DPP No. : 2

Which of the following graph represents the time period of the planet moving around the sun.
[R = semi major axis of the path]

2. The orbital velocity of an artificial satellite in a circular orbit just above the earth's surface is V_0 . The value of orbital velocity for another satellite orbiting at an altitude of half of earth's radius is

(1)
$$\left(\frac{3}{2}\right)V_0$$
 (2) $\sqrt{\frac{3}{2}}V_0$ (3) $\sqrt{\frac{2}{3}}V_0$ (4) $\frac{3}{4}V_0$

- 3.Energy required to move a body of mass m from an orbit of radius 2R to 3R is-
(1) GMm/12R(2) GMm/3R(3) GMm/8R(4) GMm/6R
- **4.** Suppose the gravitational force varies inversely as the nth power of distance. Then the time period of a planet in circular orbit of radius R around the sun will be proportional to -

(1) $R^{\left(\frac{n+1}{2}\right)}$ (2) $R^{\left(\frac{n-1}{2}\right)}$ (3) R^n (4) $R^{\left(\frac{n-2}{2}\right)}$

- **5.** Average density of the earth :
 - (1) does not depend on g. (2) is a complex function of g
 - (3) is directly proportional to g (4) is inversely proportional to g
- 6. Weight of an object is :
 - (1) Normal reaction between ground and the object
 - (2) Gravitational force exerted by earth on the object.
 - (3) dependent on frame of reference.
 - (4) net force on the object

SARANSH | PHYSICS

- 7. The weight of a body at the centre of the earth is -
 - (1) Zero
 - (2) Infinite
 - (3) Same as on the surface of earth
 - (4) None of the above
- 8. If the distance between two masses is doubled, the gravitational attraction between them.
 - (1) Is doubled
 - (2) Becomes four times
 - (3) Is reduced to half
 - (4) Is reduced to a quarter
- **9.** The gravitational force between two stones of mass 1 kg each separated by a distance of 1 metre in vacuum is -
 - (1) Zero
 - (2) 6.675 × 10^{-5} newton
 - (3) 6.675 × 10⁻¹¹ newton
 - (4) 6.675 × 10⁻⁸ newton
- **10.** A body of mass m is lifted up from the surface of earth to a height three times the radius of the earth. The change in potential energy of the body is (g = gravity field at the surface of the earth)

(1) mgR	(2) $\frac{3}{4}$ mgR	(3) $\frac{1}{3}$ mgR	(4) $\frac{2}{3}$ mgR
---------	-----------------------	-----------------------	-----------------------

